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Abstract: Background: Diffuse large B-cell lymphoma (DLBCL) is one of the most frequent lym-
phomas. DLBCL is phenotypically, genetically, and clinically heterogeneous. Aim: We aim to identify
new prognostic markers. Methods: We performed anomaly detection analysis, other artificial in-
telligence techniques, and conventional statistics using gene expression data of 414 patients from
the Lymphoma/Leukemia Molecular Profiling Project (GSE10846), and immunohistochemistry in
10 reactive tonsils and 30 DLBCL cases. Results: First, an unsupervised anomaly detection analysis
pinpointed outliers (anomalies) in the series, and 12 genes were identified: DPM2, TRAPPC1, HYAL2,
TRIM35, NUDT18, TMEM219, CHCHD10, IGFBP7, LAMTOR2, ZNF688, UBL7, and RELB, which
belonged to the apoptosis, MAPK, MTOR, and NF-kB pathways. Second, these 12 genes were used
to predict overall survival using machine learning, artificial neural networks, and conventional
statistics. In a multivariate Cox regression analysis, high expressions of HYAL2 and UBL7 were
correlated with poor overall survival, whereas TRAPPC1, IGFBP7, and RELB were correlated with
good overall survival (p < 0.01). As a single marker and only in RCHOP-like treated cases, the
prognostic value of RELB was confirmed using GSEA analysis and Kaplan–Meier with log-rank test
and validated in the TCGA and GSE57611 datasets. Anomaly detection analysis was successfully
tested in the GSE31312 and GSE117556 datasets. Using immunohistochemistry, RELB was positive
in B-lymphocytes and macrophage/dendritic-like cells, and correlation with HLA DP-DR, SIRPA,
CD85A (LILRB3), PD-L1, MARCO, and TOX was explored. Conclusions: Anomaly detection and
other bioinformatic techniques successfully predicted the prognosis of DLBCL, and high RELB was
associated with a favorable prognosis.

Keywords: anomaly detection; gene expression; diffuse large B-cell lymphoma; artificial intelligence;
machine learning; artificial neural networks; prognosis; immuno-oncology; RELB; macrophages

1. Introduction
1.1. Clinicopathological Characteristics and Prognosis of Diffuse Large B-Cell Lymphoma

This study aimed to identify new prognostic markers of diffuse large B-cell lymphoma
(DLBCL) using anomaly detection analysis. By identifying outlier cases, the genes associ-
ated with those unusual cases were identified, and their prognostic value was assessed.

The classification of hematologic malignancies integrates data from several sources, in-
cluding pathologic characteristics, pathophysiology, treatment, and outcomes. The current
classification is the World Health Organization (WHO) revised 4th edition (WHO4R) [1],
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which has recently been updated into the International Consensus Classification 2022
(ICC2022) [1–4], and the proposed 5th edition of the World Health Organization Classification of
Haematolymphoid Tumours: Lymphoid Neoplasms (WHO5) [5]. In this classification, mature B-
cell neoplasms are hematological cancers originating from lymphocytes with a lymphocyte
subtype or cell lineage of B cells.

These neoplasms are classified according to several parameters, such as morpholog-
ical characteristics, architectural distribution of the neoplastic cells, immunophenotypic
markers, genetic alterations, and clinical features of the patients [6–13]. They are classified
into different subtypes based in part on the postulated cell of origin.

DLBCL is one of the most frequent histological subtypes of hematological neoplasia,
accounting for approximately 25–30% of non-Hodgkin lymphomas.

The incidence of DLBCL in the United States and the United Kingdom is approximately
7 cases per 100,000 people per year. In Europe, there are 5 cases per 100,000 people per
year [14–16]. Interestingly, the incidence differs according to ethnicity. White Americans
have a higher incidence than Blacks, Asians, and Native Americans [14,15,17].

The diagnostic criteria of DLBCL are heterogeneous and include several subtypes such
as T cell/histiocyte-rich large B cell lymphoma, the primary DLBCL of the mediastinum,
intravascular large B cell lymphoma, lymphomatoid granulomatosis, the primary DLBCL
of the central nervous system, the primary cutaneous DLBCL leg type, DLBCL associated
with chronic inflammation, and Epstein–Barr virus-positive (EBER)-positive DLBCL. In the
WHO classification, other categories are included [1,2,5], which have features of overlap
between DLBCL and other subtypes (Burkitt lymphoma), such as high-grade B-cell lym-
phoma with MYC and BCL2 and/or BCL6 rearrangements and high-grade B-cell lymphoma
not otherwise specified [18–32].

DLBCL originates from mature B cells that have the histological appearance of centrob-
last or immunoblasts, which are two types of activated B cells. The histological appearance
of DLBCL is variable because of the heterogeneity of the morphological characteristics of the
neoplastic B lymphocytes and the tumor-immune microenvironment. This heterogeneity is
shown in Figure 1.

Clinically, most patients present with a rapidly growing mass located in the lymph
nodes or abdomen. In approximately 60% of cases, the disease will present as an advanced
stage. Two subtypes of DLBCL have been identified on the basis of gene expression and
the postulated cell-of-origin: the germinal center B cell type (GCB) and the activated B cell
type (ABC) [2,33–35].

Predicting clinical evolution is currently performed using the International Prognostic
Index (IPI) with its variants, the revised IPI, and the National Comprehensive Cancer
Network (NCCN)-IPI [33–35]. The IPI uses as unfavorable predictors an age > 60 years,
serum lactate dehydrogenase concentration above normal, ECOG performance status ≥ 2,
Ann Arbor stage III or IV, and number of extranodal disease sites > 1 [34]. Gene expression
profiling also stratifies patients into two prognostic groups, with the activated B cell
type associated with a poorer prognosis. Integration with other genetic factors, such as
the presence of BCL2, MYC, and BCL6 translocations; copy number changes and LOH;
and mutational profiling, has allowed the identification of different genetic subtypes
(MCD, BN2, EZB, ST2, A53, and N1) [36]. Interestingly, these subtypes also showed
different gene signatures, including malignant processes (proliferation signature and MYC,
ribosomal proteins, glycolipid pathways), B cell differentiation, transcription factors (IRF4,
BCL6, OCT2, and TCF3), oncogenic signaling (NFKB, p53, NOTCH, PI3K, and JAK2), and
immune microenvironment (T follicular helper cells, CD4 T helper cells, CD8 cytotoxic T
lymphocytes, regulatory T lymphocytes, natural killer cells, macrophages, dendritic cells,
and fibrosis) [36].
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Figure 1. Histological heterogeneity of DLBCL. Despite the fact that DLBCL is a unique lymphoma 
subtype, its morphological characteristics are heterogeneous, including the neoplastic B lympho-
cytes and variable content of the tumor immune microenvironment. Hematoxylin and eosin stain 
(scale bar = 50 µm). The histological cases were retrieved from the lymphoma database of the De-
partment of Pathology, Tokai University, School of Medicine. 
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Figure 1. Histological heterogeneity of DLBCL. Despite the fact that DLBCL is a unique lymphoma
subtype, its morphological characteristics are heterogeneous, including the neoplastic B lymphocytes
and variable content of the tumor immune microenvironment. Hematoxylin and eosin stain (scale
bar = 50 µm). The histological cases were retrieved from the lymphoma database of the Department
of Pathology, Tokai University, School of Medicine.

1.2. Machine Learning and Anomaly Detection
1.2.1. Machine Learning

Machine learning can be defined as an analytic method that uses data and algorithms
to emulate human learning and gradually improve accuracy [37]. It is a branch of artificial
intelligence (AI) that uses statistical methods and algorithms to make classifications and
predictions [37]. Neural networks are a subfield of machine learning, and deep learning is
a subfield of neural networks [38].

A machine learning algorithm has three components: the decision process algorithms
make predictions or classifications; the error function evaluates the prediction of the model;
and the model optimization process adjusts the weights autonomously to improve the
performance of the model [38].
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There are three main types of learning: supervised, unsupervised, and reinforcement
learning. Supervised learning uses labeled datasets to make classifications, predictions, and
regression. Unsupervised learning uses unlabeled datasets to identify not readily apparent
patterns and classify cases [39]. Reinforcement learning is an area of machine learning that
handles sequential decision-making problems in a situation of uncertainty. Reinforcement
learning learns to optimize sequential decisions by finding the best strategy [40].

Machine learning is an area of artificial intelligence that fits mathematical models
to observed data. Machine learning can be broadly divided into supervised learning,
unsupervised learning, and reinforcement learning (Figure 2). Deep neural networks
contribute to each of these areas. The type of analysis to be performed depends on the type
of data and the aim of the study [41].
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Figure 2. Types of artificial intelligence methods.

In this study, anomaly detection was used to identify anomalies (rare events) in
the dataset. A model was constructed from the input data (gene expression) without
corresponding labels (i.e., “no supervision”). Rather than learning a mapping from input
to output, the goal is to describe or understand the structure of the data. Subsequently,
supervised learning was used to predict the overall survival outcome (dead vs. alive).

Different types of machine learning methods, including supervised, unsupervised,
and reinforcement learning, are shown in Figure 3.

1.2.2. Segmentation Analysis

Segmentation is the technique of splitting cases into different groups depending on
their characteristics. There are several segmentation methods, such as K-Means, Kohonen,
TwoSteps cluster, TwoStep-AS, and Anomaly detection.

K-Means is a type of clustering analysis that is unsupervised because there is no
definition of the target variable (field). The dataset is clustered into different groups to
search for patterns in the input data. Within a cluster, the cases are similar to each other,
but the characteristics differ between clusters. From the data, the centers of the clusters are
searched, and the cases are assigned to the most similar cluster based on the input variables.
Of note, the order of the data may affect the clustering output [42]

Kohonen clustering analysis is also known as knet or self-organizing map (S.O.M). A
type of neural network that performs unsupervised clustering. Within a group, the cases
are similar and different from a different cluster. The basic unit of the neural network is
the neuron. The network architecture organizes neurons into input and output layers. All
input neurons connect to output neurons, and the connections have a weight (w), which is
also known as strength. The output is a map of a two-dimensional grid in which the units
have no connections [43,44].
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unsupervised (B), and reinforcement learning (C). Of note, this figure includes methods usually used
in predictive data analysis, but it does not focus on deep learning and reinforcement learning (please
refer to popular deep learning frameworks such as tensorflow, keras, and pytorch, for documentation).

An image of the K-Means cluster (left), Kohonen clustering analysis (middle), and
anomaly detection (right) are shown in Figure 4.
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The TwoStep cluster is also an unsupervised method. As in the K-Means and Kohonen
methods, the cases are grouped in clusters with similar characteristics, whereas differences
are observed between clusters. The method follows two steps. First, the raw input data are
compressed into different subclusters. Second, a hierarchical clustering method joins the
subclusters into larger clusters. Of note, this method is sensitive to the order of the training
data. The TwoStep cluster has the advantage of handling mixed types of variables, can use
large datasets, and can exclude outliers. However, it cannot handle missing data.

1.2.3. Anomaly Detection Analysis

An anomaly is a data point or collection of data that does not follow the same pattern
or has the same structure as the rest of the data [45]. Anomaly detection is a machine
learning method that identifies data points, events, and/or observations that deviate from
a dataset’s ordinary distribution [46]. In other words, anomaly detection is a technique
that allows the identification of rare events that do not fit normal patterns. Examples of
applications of this technique can be found in the following link: https://paperswithcode.
com/task/anomaly-detection (accessed on 18 October 2023).

The anomaly detection procedure is designed to quickly detect unusual cases for data-
auditing purposes in the exploratory data analysis step before any inferential data analysis.
It searches for unusual cases and can be useful for detecting outliers within a large amount
of data. The algorithm is designed for generic anomaly detection, which means that the
definition of an anomalous case is not specific to any particular application [47]. Therefore,
it can identify outliers even if they do not follow any known pattern. This method analyzes
several variables to identify clusters that include cases with similar characteristics. Later,
each record is compared with the others of the peer group to identify the anomalies. For
each record, an anomaly index is assigned. The higher the anomaly index, the greater
the deviation of a particular case from the average. An index above 2 is a good cutoff
for identifying anomalies because it indicates a deviation twice the average. Of note, the
identified cases should be assessed as suspected anomalies because, after close analysis,

https://paperswithcode.com/task/anomaly-detection
https://paperswithcode.com/task/anomaly-detection
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they may turn out to be true outliers. The algorithm is divided into three stages: modeling,
scoring, and reasoning.

2. Aim

This study aimed to identify new prognostic markers of DLBCL using anomaly detec-
tion analysis. By identifying outlier cases, the genes associated with those unusual cases
were identified. Then, the prognostic value of the identified genes was evaluated in all
cases of the series using other techniques, including several machine learning and artificial
neural networks, and conventional biostatistics, such as Cox regression and Kaplan–Meier
with log-rank test (Figure 5).
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Profiling Project (LLMPP) GSE10846 gene expression dataset (last update 25 March 2019) of 414 cases.

3. Materials and Methods

The gene expression of DLBCL is an important source of data for identifying prognostic
markers. This study analyzed the gene expression of one of the most relevant DLBCL gene
expression datasets of the Lymphoma/Leukemia Molecular Profiling Project (LLMPP). The
dataset was GSE10846, which is a retrospective study of 414 DLBCL cases [48,49]. The last
update of this dataset was 25 March 2019.

GSE10846 is a very well clinically characterized series of DLBCL. Despite being some
years old, it serves the purpose of this research because we are looking for genes associated
with the pathogenesis of DLBCL. Of note, to test the predictive value of one of the most
relevant genes, only RCHOP-like cases were used.

A complete description of the clinicopathological characteristics of this series is pre-
sented in our previous publication that analyzed CSF1R expression [50]. In summary, 55%
of the cases were male and aged > 60 years, NCCN-IPI was high–intermediate and high
risk in 35.8%, the cell-of-origin molecular subtype was activated B cell type and unclassified
in 45.8%, and the treatment was RCHOP-like in 56.3% of the cases.

The method used was anomaly detection analysis, which is a model designed to iden-
tify outliers in the gene expression data. This method is unsupervised. While traditional
methods usually look into a few variables at the same time (one or two), the anomaly
detection method can examine several fields (genes). The variables are analyzed to find
clusters or peer groups that are similar. Each record can then be compared with others in
its peer group to identify possible anomalies. The further away a case is from the typical
center, the more likely it is to be abnormal. The anomaly detection algorithm is presented
in the Zenodo repository [51].

The GSE10846 data were downloaded from the National Center for Biotechnology
Information (NCBI) Gene Expression Omnibus (GEO) public functional genomics data
repository (https://www.ncbi.nlm.nih.gov/gds; accessed on 15 February 2024). The gene
expression array used in this series was the GPL570, Affymetrix Human Genome U133
Plus 2.0 Array (HG-U133_Plus_2). The data were normalized and log2 transformed [50].
The series comprises 420 cases, 414 cases of DLBCL, and 6 cases of reactive lymphoid
tissue. The series contains 20,684 genes. The gene expression values were collapsed to
one value for each gene in the case of multiple probes using collapse to the maximum
expression function [50]. The output identified case anomalies and the most relevant genes
that contributed to them.

https://www.ncbi.nlm.nih.gov/gds
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Further analysis consisted of several machine learning and artificial neural networks,
as we recently published [52–57]. Finally, a conventional Cox regression for overall survival,
backward conditional, was performed using the same set of genes to easily understand the
prognostic value of these markers. Table 1 describes the basics of the machine learning and
neural network analyses used in this study [58].

The immunohistochemical expression of RELB and other macrophage/dendritic cells-
related markers was performed in 10 reactive tonsils and 30 cases of DLBL not-other-wise
specified (NOS), including RELB, HLA DP-DR, SIRPA, CD85A, PD-L1, MARCO, and TOX.
The primary antibodies were as follows: RELB (D7D7W, #10544, Cell Signaling Technology
(CST)), HLA DP-DR (JS76, Spanish National Cancer Research Center (CNIO), Madrid,
Spain), SIRPA (SIRPα/SHPS1, D6I3M, #13379, CST), CD85A (LILRB3, FRAS92B, CNIO), PD-
L1 (E1J2J, #15165, CST), MARCO (MAKI373B, CNIO), and TOX (TOX1, NAN448B, CNIO).
The immunohistochemistry was performed as previously described [52,53,55,57,59,60]
using a Leica Bond-Max fully automated immunohistochemistry and in situ hybridization
staining system (Leica Biosystems K.K., Tokyo, Japan). The slides were first visualized in
an Olympus BX53 light microscope and later fully digitalized using a NanoZoomer S360
digital slide scanner (Hamamatsu whole slide imaging—WSI) and evaluated using the
NDP.view2 image viewing software (version 2.9.29, U12388-01, Hamamatsu Photonics
K.K., Hamamatsu, Japan).

Table 1. A brief description of the machine learning methods used in this study.

Model Description

Anomaly detection Method that quickly looks for unusual cases based on deviations from the norms of their cluster
groups [51].

Bayesian Network
Creates a graphical model that shows variables (nodes) linked using arcs. Probabilistic
independencies between nodes are displayed. The arcs do not necessarily represent cause and
effect [52,53,55,61].

C5.0

Builds a decision tree. It splits the samples on the basis of the variable that provides more
information and has more weight. Then, multiple splits are made based on other variables until the
cases cannot be further divided. Finally, splits with few contributions to the model are removed. This
model can only predict a categorical target [58,62].

C&R Tree The classification and regression (C&R) tree is similar to the C5.0 method. All splits are binary [63].

CHAID
Chi-squared Automatic Interaction Detection (CHAID) creates decision trees using calculations based
on the chi-square test. Crosstabulations between the input variables and the output are examined,
and the variables are ranked according to their significance for selection in the tree model [64–68].

Discriminant Creates a predictive model for group membership [69,70].

KNN Algorithm Nearest Neighbor Analysis classifies cases based on their similarity to other cases. This method
identifies the pattern of the data [71].

Logistic regression Also known as nominal regression, it is a method that classifies records based on predictors in a
manner similar to linear regression but with a categorical target variable.

LSVM The data were classified on the basis of a linear support vector machine. This method is useful for
large datasets with many variables [72,73].

Neural Network

Basic units, known as neurons, are organized into different layers. The input layer contains nodes
with input variables (predictors). The output layer contains nodes with the target fields. Nodes are
interconnected by different strengths (weights). The number of hidden layers defines the “deep” of
the network. Using training, the weights are changed from random to optimized, and the network
replicates the known outcomes [74–79].

Quest Quick, Unbiased, Efficient Statistical (QUEST) tree creates a binary classification method. All splits
are binary.
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Table 1. Cont.

Model Description

Random Forest This is an implementation of the bagging algorithm. A collection of decision trees is used to make
predictions [80–82].

Random Trees It is based on the C&R methodology and uses recursive partitioning to split records into segments
with similar outputs [83].

SVM
A support vector machine (SVM) is suitable when the dataset contains a very large number of
predictors. It is a solid classification and regression technique that does not overfit the training
data [84,85].

Tree-AS This method creates a decision tree using CHAID or exhaustive CHAID, which is more
time-consuming [52,53,57].

XGBoost Linear Implementation of a gradient boosting algorithm with a linear model as the base [86].

XGBoost Tree Implementation of a gradient boosting algorithm with a tree model as the base [87–94].

Additional descriptions of machine learning and neural network models are presented in the companion
manuscript “Artificial Intelligence Analysis and Reverse Engineering of Molecular Subtypes of Diffuse Large
B-Cell Lymphoma Using Gene Expression Data”. BioMedInformatics 2024, 4, 295–320. https://doi.org/10.3390/
biomedinformatics4010017 (accessed on 15 February 2024) [58].

All analyses were performed on a desktop equipped with an AMD Ryzen 9 5900X
and NVIDIA GeForce RTX 3060 Ti GPU and 16 GB of RAM. Conventional statistics were
calculated using IBM SPSS version 27.0.1.0 64-bit edition (IBM Corporation, Orchard Rd,
Armonk, NY 10504, USA).

Anomaly detection analysis was also performed using other series to confirm that the
method is applicable. The GSE31312 and GSE117556 datasets were used, which have 498
and 928 cases of DLBCL.

The gene expression analysis of RELB was also performed in TCGA (n = 267) and
GSE57611 (n = 30).

4. Results
4.1. Anomaly Detection Analysis

The anomaly detection analysis using GSE10846 ranked the cases according to the
anomaly index, which ranged from 0.813 to 1.763 (Supplementary Excel File). Of note, cases
with anomaly index values of less than 1 or even 1.5 would not be considered anomalies.
The distribution of anomaly index values is shown in Figure 6.
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Figure 6. Anomaly index values. Anomaly detection analysis identifies outliners, or unusual cases, in
the data. It records information on what normal behavior looks like and identifies outliers even if they
do not conform to any known pattern. It is an unsupervised method that examines large numbers of
variables to identify clusters or peer groups. Then, each record is compared to others in its peer group
to identify possible anomalies. Each record (blue circle) is assigned an abnormality index. High index
implies a higher average of the case than the average. In the setup, several options can be specified,
such as the adjustment of coefficient, number of peer groups, noise level, and noise ratio.

The model also identified the 12 genes that contributed to anomaly detection: DPM2,
TRAPPC1, HYAL2, TRIM35, NUDT18, TMEM219, CHCHD10, IGFBP7, LAMTOR2, ZNF688,
UBL7, and RELB (Table 2).

https://doi.org/10.3390/biomedinformatics4010017
https://doi.org/10.3390/biomedinformatics4010017


BioMedInformatics 2024, 4 1489

Table 2. Genes identified in anomaly detection analysis using the GSE10846 series.

Gene Name Function

DPM2 Dolichyl-Phosphate Mannosyltransferase
Subunit 2, Regulatory Regulation of protein stability

TRAPPC1 Trafficking Protein Particle Complex
Subunit 1 Endoplasmic reticulum-to-Golgi vesicle-mediated transport

HYAL2 Hyaluronidase 2
Positive regulation of the extrinsic apoptotic signaling pathway.
Related to bladder cancer inflammation and tumor-associated

myeloid cells [95]

TRIM35 Tripartite Motif Containing 35

Multiple biological processes, including cell death, glucose
metabolism, and innate immune response. Correlation with high
infiltration of NK cells in DLBCL [96], tumor suppressor in breast
cancer [97], predicts survival in hepatocellular carcinoma, and is

related to tumorigenesis

NUDT18 Nudix Hydrolase 18 Elimination of potentially toxic nucleotide metabolites

TMEM219 Transmembrane Protein 219 Apoptosis

CHCHD10 Coiled-Coil-Helix-Coiled-Coil-Helix
Domain Containing 10

Positive regulation of mitochondrial outer membrane
permeabilization involved in the apoptotic signaling pathway

IGFBP7 Insulin-Like Growth Factor Binding
Protein 7

Prostacyclin production and cell adhesion. Related to Epstein–Barr
virus tumorigenesis, mantle cell lymphoma, and lung cancer

[56,98,99]

LAMTOR2
Late Endosomal/Lysosomal Adaptor,

MAPK, a
nd MTOR Activator 2

Activation of mTORC1, with control of cell growth and related to the
risk of breast cancer [100]

ZNF688 Zinc Finger Protein 688 Negative regulation of transcription by RNA polymerase II

UBL7 Ubiquitin Like 7
Ubiquitin-dependent protein catabolic process, cellular response to
stress. Autoantibody signature in hepatocellular carcinoma [101];

necroptosis-related marker in stomach adenocarcinoma [102]

RELB RELB Proto-Oncogene, NF-KB Subunit

NF-kappa-B is a pleiotropic transcription factor involved in many
biological processes, such as inflammation, immunity, differentiation,

cell growth, tumorigenesis, and apoptosis. Pathogenic marker of
DLBCL [103,104]

Information based on GeneCards and UniProtKB/Swiss-Prot.

The anomaly detection methodology was also tested in another series of DLBCL,
GSE31312. This is a series of 498 de novo adult DLBCL cases treated with RCHOP. Gene
expression was performed using the Affymetrix HG-U133 Plus 2.0 platform. The last
update was 3 August 2020. Anomaly detection classified the series into two peer groups
of 315 and 183 cases. In the peer group of 183, the contribution was also of 12 genes, but
different (NACA4P, DAZAP2, RSP28, RPS7, TSPOAP1_AS1, MT_ND5, MIR142, MGC16275,
SHOC2, CALM1, GLUL, and SIT29). Therefore, the anomaly detection method can be
applied to series other than GSE10846. Of note, because of the intrinsic heterogenicity of
DLBCL, including the characteristics of unusual cases (anomalies), the two series provided
different results. This is not a bad result. Other methods, such as artificial neural networks,
can also provide different results in each analysis due to different factors, including the
random number generator.

Anomaly detection was also performed using the GSE117556 dataset. This dataset
belongs to a retrospective analysis of whole transcriptome data for 928 DLBCL patients
from the REMoDLB clinical trial. The platform was an Illumina HumanHT-12 WG-DASL
V4.0 R2 expression beadchip [105]. RNA was extracted from formalin-fixed, paraffin-
embedded (FFPE) biopsies. The method classified the series into two peer groups of 661
and 267 records. In the second peer group, the contribution was of 27 genes.
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4.2. Prediction of Overall Survival Using Machine Learning and Artificial Neural Networks Based
on 12 Genes

The 12 genes previously identified in the anomaly detection analysis were used as
predictors (inputs) of the prognosis of patients with DLBCL in the GSE10846 series. The
prognosis was defined by the outcome of overall survival (output variable, dead versus
alive). Several machine learning models and artificial neural networks were tested, includ-
ing the C5.0 decision tree, logistic regression, Bayesian network, discriminant analysis,
KNN algorithm, LSVM, random trees, SVM, Tree-AS, XGBoost linear, SGBoost tree, CHAID
tree, Quest tree, C&R tree, random forest, and neural network.

The models were ranked according to overall accuracy (%), and the best models were
the XGBoost tree, random forest, and C5 tree (Table 3).

Of note, the analysis was performed in all cases, CHOP-like, and RCHOP-like cases.

Table 3. Prediction of overall survival outcome (dead vs. alive) using machine learning and artificial
neural networks, based on 12 previously identified genes in anomaly detection analysis.

Model No. of Genes Overall Accuracy (%)

XGBoost Tree 12 99.8
Random Forest 12 98.6
Random Trees 12 93.9

C5 7 75.4
KNN Algorithm 12 73.4

CHAID 5 71.7
Neural Network 12 71.3

Logistic regression 12 71.0
LSVM 12 70.1
SVM 12 69.3

Discriminant 12 68.4
C&R Tree 12 68.4
Tree-AS 3 65.5
Quest 6 64.5

XGBoost Linear 12 60.2
Bayesian Network 12 0.0

The performance was assessed with the overall accuracy that is the percentage of records for which the outcome
was correctly predicted. The formula is shown in Appendix B.

4.3. Cox Regression Analysis of Overall Survival Using the 12 Genes

The 12 genes were used as predictors of overall survival using conventional Cox
regression analysis in the GSE10846 series. The method was backward conditional. In
the last step (n = 8), only five genes retained significant values. In this model, TRAPPC1,
IGFBP7, and RELB were associated with a favorable prognosis, and HYAL2 and UBL7 were
associated with a poor prognosis (Table 4).

Table 4. Prediction of the overall survival using Cox regression analysis based on the 12 genes.

Gene B p Value Hazard Risk
95% CI for HR

Lower Upper

TRAPPC1 −0.391 0.023 0.676 0.483 0.946
HYAL2 0.757 0.000 2.133 1.461 3.113
IGFBP7 −0.683 0.000 0.505 0.400 0.637
UBL7 0.507 0.001 1.660 1.234 2.233
RELB −0.361 0.003 0.697 0.549 0.885

Backward conditional method.
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When MYC and BCL2 were added to the equation, the Cox regression analysis only
kept MYC as a significant predicted value (p value = 0.008, HR = 1.280, 95% CI 1.066–1.536),
in addition to the other five genes that had similar values as in Table 4.

Similar results were found when NCCN-IPI was added to the equation with the
five genes. NCCN-IPI was also significant, as were the other five genes (p value < 0.001,
HR = 2.438, 95% CI = 1.713–3.469).

In this model, the molecular subtypes of GCB and ABC had no predictive value when
combined with the five genes.

Finally, the prognostic value as a single variable of RELB was tested using survival
analysis with Kaplan–Meier and log-rank tests. In the DLBCL cases treated with RCHOP-
like cases, high RELB expression was associated with a favorable prognosis of the patients
(Figure 7).
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Figure 7. Machine learning and artificial neural networks using the LLMPP gene expression dataset.
Abnormality detection analysis identified 12 genes. The prognostic value of these genes for overall
survival was tested using several artificial intelligence analysis techniques. XGBoost tree (A), random
forest (B), C5 tree (C), and neural network (D). Of note, the prognostic value of RELB was confirmed
in the RCHOP-like cases of the LLMPP series using conventional overall survival analysis of Kaplan–
Meier with log-rank tests (E). High gene expression of RELB was associated with favorable overall
survival (E).

The prognostic value of RELB was evaluated in other series of patients. In TCGA
and GSE57611, high RELB gene expression was associated with favorable overall sur-
vival (Hazard-risk 0.45 and 0.1645, respectively (p values 0.0018 and 0.0171) (Appendix A,
Figure A1).

4.4. Validation of the Predictive Value of RELB for Overall Survival of Patients Using Gene Set
Enrichment Analysis (RCHOP-Treated Cases)

The predictive value of RELB in DLBCL was assessed using GSEA analysis in the
RCHOP-treated cases of the LLMPP series. Gene set enrichment analysis (GSEA) is a
computational method that determines whether an a priori-defined set of genes shows
statistically significant, concordant differences between two biological states (e.g., pheno-
types) [106–108]. In this study, the phenotypes were the overall survival outcome as dead
and alive. The priori set of genes was the RELB pathway. To define the RELB pathway,
the STRING platform was used. STRING is a protein–protein interaction network and
functional enrichment analysis [109,110]. A functional network association analysis was per-
formed using RELB as the hub gene to design the RELB pathway (1st shell ≤ 20 interactions;
2nd shell ≤ 5 interactions; confidence as the meaning of network edges). The network had
26 nodes and 227 edges, with an average node degree of 17.5, an averaged local clustering
coefficient of 0.865, and protein–protein interaction enrichment p value < 0.001 (Figure 8A).
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Figure 8. Protein−protein interaction analysis and gene set enrichment analysis (GSEA) of RELB gene
and pathway. First, a functional network association analysis (protein−protein interaction network)
focused on RELB created a pathway. Later, this RELB pathway was used in the GSEA analysis. The
GSEA analysis confirmed the association of the RELB gene and pathway with a favorable overall
survival of patients with DLBCL treated with R-CHOP therapy. Functional network association
analysis (A), GSEA (B).

Later, the genes of the RELB network were used as a pathway for the GSEA analysis,
and the results showed enrichment toward the alive phenotype (Figure 8B). Therefore, the
RELB pathway was associated with a favorable overall survival of the DLBCL pathway,
as identified in our previous analyses of machine learning and conventional biostatistics.
In the core enrichment of the GSEA plot, 13 genes were identified, with RELB in the third
position (Figure 8, Table 5).
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Table 5. Gene set enrichment analysis (GSEA) using RELB network and pathway.

No. Symbol Title
Running

Enrichment Score
(ES)

Core Enrichment

1 REL REL proto-oncogene, NF-kB subunit 0.0879 Yes
2 LTB Lymphotoxin beta 0.1807 Yes
3 RELB RELB proto-oncogene, NF-kB subunit 0.2316 Yes
4 TRAF2 TNF receptor-associated factor 2 0.2571 Yes
5 NFKB2 Nuclear factor kappa B subunit 2 0.2892 Yes
6 CD40 CD40 molecule 0.3301 Yes
7 MALT1 MALT1 paracaspase 0.3536 Yes
8 NFKBID NFKB inhibitor delta 0.3914 Yes
9 NFKBIA NFKB inhibitor alpha 0.3964 Yes
10 RELA RELA proto-oncogene, NF-kB subunit 0.4062 Yes
11 IKBKG Inhibitor of nuclear factor kappa B kinase regulatory subunit 0.4174 Yes
12 BCL3 BCL3 transcription coactivator 0.4145 Yes
13 TAB1 TGF-beta activated kinase 1 (MAP3K7) binding protein 1 0.4192 Yes
14 TANK TRAF family member-associated NFKB activator 0.4068 No
15 NFKBIB NFKB inhibitor beta 0.3919 No
16 EZH2 Enhancer of zeste 2 polycomb repressive complex 2 subunit 0.3875 No
17 TNFRSF1A TNF receptor superfamily member 1A 0.3872 No
18 NFKBIE NFKB inhibitor epsilon 0.3934 No
19 IKBKB Inhibitor of nuclear factor kappa B kinase subunit beta 0.3868 No
20 SKP1 S-phase kinase-associated protein 1 0.3765 No
21 CHUK Component of inhibitor of nuclear factor kappa B kinase complex 0.3782 No
22 NFKB1 Nuclear factor kappa B subunit 1 0.3747 No
23 KPNA1 Karyopherin subunit alpha 1 0.3685 No
24 MAP3K14 Mitogen-activated protein kinase kinase kinase 14 0.2468 No
25 LTBR Lymphotoxin beta receptor 0.106 No
26 NFKBIZ NFKB inhibitor zeta 0.082 No

This table shows the genes used in the GSEA analysis of Figure 8B.

4.5. Immunohistochemical Analysis of RELB and Immune Microenvironment

The histological protein expression of RELB was analyzed by immunohistochemistry
in 10 reactive tonsils (i.e., reactive tissue control) and 30 cases of DLBCL NOS. In reactive
tonsils, the expression of RELB was mainly located in the germinal centers of reactive
follicles. There, two types of intensity were identified: strong in macrophages/dendritic
cells and weak in the B lymphocytes. In DLBCL NOS, the expression was heteroge-
neous, and four patterns were identified: 0 (negative), 1+ (weak), 2+ (moderate), and
3+ (strong). In DLBCL, the positive cells were heterogeneous when the staining was
moderate/strong, with a mixture of B-cell staining and macrophage/dendritic cell-like.
Additional markers were included in the panel to investigate the expression of macrophage-
related immune microenvironment markers, including HLA DP-DR, SIRPA, CD85A, PD-
L1, MARCO, and TOX (TOX1). In summary, the expression of RELB partially corre-
lated with macrophage/dendritic cell markers but was also present in the B-lymphocytes
(Figures 9 and 10).



BioMedInformatics 2024, 4 1495BioMedInformatics 2024, 4, FOR PEER REVIEW 16 
 

 

 
Figure 9. Immunohistochemical analysis of RELB in reactive tonsils and DLBCL. The protein ex-
pression of RELB was analyzed in 10 reactive tonsils (tissue control) and 30 cases of DLBCL not 
otherwise specified (NOS). In reactive tonsils, RELB expression was mainly present in the germinal 
centers of the follicles, with strong staining in macrophage/dendritic cells and weak in the B-lym-
phocytes. In DLBCL NOS, the staining was heterogeneous, ranging from 0 to 3+, and expressed by 
neoplastic B-lymphocytes and cells of the microenvironment. 

Figure 9. Immunohistochemical analysis of RELB in reactive tonsils and DLBCL. The protein
expression of RELB was analyzed in 10 reactive tonsils (tissue control) and 30 cases of DLBCL
not otherwise specified (NOS). In reactive tonsils, RELB expression was mainly present in the
germinal centers of the follicles, with strong staining in macrophage/dendritic cells and weak in the
B-lymphocytes. In DLBCL NOS, the staining was heterogeneous, ranging from 0 to 3+, and expressed
by neoplastic B-lymphocytes and cells of the microenvironment.
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Figure 10. Immunohistochemical analysis of RELB in relationship with other immune microenvi-
ronment markers in DLBCL NOS. The expression of RELB in DLBCL was heterogeneous, with a
pattern compatible with mixture of macrophage/dendritic cells and B-lymphocytes. Correlation
with other macrophage-associated and immune microenvironment/immune checkpoint markers
was performed using HLA DP-DR, SIRPA, CD85A, PD-L1, MARCO, and TOX (TOX1). Original
magnification 400×.

5. Discussion

Diffuse large B-cell lymphoma (DLBCL) is one of the most frequent histological
subtypes of non-Hodgkin lymphomas, accounting for approximately 20–30% of cases.
DLBCL is a heterogeneous diagnostic category with heterogeneous morphological, genetic,
and clinical characteristics. The current classification dates back to 2017 with the revised 4th
edition [1], and several subtypes were defined, including T cell/histiocyte-rich large B cell
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lymphoma, the primary mediastinal large B cell lymphoma, intravascular B cell lymphoma,
the primary DLBCL of the central nervous system, the primary cutaneous DLBCL, leg type,
and EBV-positive DLBCL not–otherwise–specified (NOS) [1]. An important subtype is
high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements, which
in some cases had previously been called Burkitt-like lymphoma [1,2]. In this study, our
diagnostic category was diffuse large b-cell lymphoma not otherwise specified.

The molecular pathogenesis of DLBCL includes a complex and multistage pathological
mechanism that results in the proliferation of a germinal center or postgerminal center B cell
clone. One of the best characterized molecular changes is the acquisition of rearrangements
of BCL6, BCL2, and MYC.

The MYC proto-oncogene is a transcription factor that binds to DNA nonspecifically
yet recognizes the 5′-CAC[GA]TG-3′ sequence [111,112]. MYC activates the transcription
of several genes that have tumor-promoting functions [111,112]. In DLBCL, MYC gene rear-
rangement occurs in approximately 10% of cases [113], and in 80% of translocation-positive
cases, the partner is the IGH locus. The presence of MYC rearrangement, copy-number
gain (amplification), and/or overexpression is associated with poor prognosis [113–115].
Despite the importance of MYC in DLBCL pathogenesis, most cases are MYC rearrange-
ment negative. In our series, the REL high group was characterized by a lower frequency
of MYC translocation: REL high vs. low, 11.5% vs. 88.5% (p = 0.009).

Using a novel analysis approach, we identified 12 genes with prognostic value in
DLBCL: DPM2, TRAPPC1, HYAL2, TRIM35, NUDT18, TMEM219, CHCHD10, IGFBP7,
LAMTOR2, ZNF688, UBL7, and RELB. The functions and biological relevance of these genes
are shown in Table 1. Most of these genes have multiple functions, but a proportion of them
are related to the control of apoptosis, such as HYAL2, TRIM35, TMEM219, CHCHD10, and
UBL7. In DLBCL, the dysregulation of the apoptosis pathway is an important pathogenic
mechanism. In up to 30% of DLBCL cases, especially in the germinal center B cell-like
subtype, there is BCL2 overexpression. BCL2 is an oncogene that inhibits apoptosis and
leads to the enhanced survival of tumor cells [116].

We also identified a marker of the NF-kappa-B pathway, the RELB proto-oncogene, NF-
KB subunit. NF-kappa-B is a pleiotropic transcription factor involved in many biological
processes, such as inflammation, immunity, differentiation, cell growth, tumorigenesis,
and apoptosis. It is a pathogenic marker of DLBCL [103,104]. We found that the high
expression of RELB was associated with a favorable prognosis. Our results are consistent
with previously reported data in DLBCL [117,118].

The work of Chi Young Ok et al. [118] is of special interest. This study analyzed a
large cohort of 533 cases of de novo DLBCL, and the gene and protein expression of the five
NF-KB pathway subunits (p50, p52, p65, RELB, and c-Rel) was assessed. All subunits were
expressed by GCB and ABC DLBCL, but there were differences between the two subtypes
of the cell of origin. The expression of p52/RELB was associated with improved OS and
PFS. When cases were stratified into GCB and ABC, p52 or p52/RELB expression status
was associated with better OS and PFS only within the GCB subtype.

NF-KB signaling is an important regulator of apoptosis. Several genetic alterations and
other mechanisms activate the NF-KB pathway. The constitutive activation of the NF-KB
pathway contributes to cancer development, progression, and therapy resistance [119].
NF-KB signaling is categorized as canonical or noncanonical.

The canonical pathway is activated by C-like receptors 4, the TNF receptor family,
and the antigen receptors BCR and TCR, whereas the noncanonical pathway is activated
by other receptors, such as BAFF-R, CD40, RANK, CD30, and LTβ-R [119]. The canonical
pathway includes SYK, BTK, CARD1/MLAT1/BCL10, and RELA. Target genes are related
to survival, anti-apoptosis, cell proliferation, inflammation, and innate immunity.

Conversely, the noncanonical leads to the activation of IKK, p100/RELB/P50. This
pathway targets genes related to lymphoid organogenesis, adaptive immunity, anti-
inflammatory properties, and B-cell maturation [119].
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This study and the use of the anomaly detection technique have limitations. This study
focused on the GSE10846 dataset. This is a series that was made public on 28 November
2008 and was last updated on 25 March 2019. Therefore, it is a relatively old series of
DLBCL cases. This retrospective study included 181 clinical samples from CHOP-treated
patients and 233 samples from Rituximab–CHOP–treated patients. The array used was
Affymetrix U133 plus 2.0. Currently, there is newer technology to assess gene expression
data, such as Clariom assays from Thermo Fisher Scientific and next-generation sequencing
(RNA-Seq) to reveal the presence and quantity of RNA molecules in biological samples.
Therefore, this study used a series with relatively old technology, and approximately half
of the patients had received CHOP therapy. However, this series was created by the
Lymphoma/Leukemia Molecular Profiling Project (LLMPP). It is very well annotated, and
the clinicopathological characteristics of the samples are complete and reliable. The analysis
was first performed using all 414 cases but was later repeated using only the R-CHOP cases.
For example, Figure 2 shows the overall survival of patients based on RELB expression
only in RCHOP-like cases, and the prognostic relevance of RELB was maintained.

The anomaly detection procedure searches for unusual cases based on deviations from
the norms of their cluster groups [47]. This procedure allows the rapid detection of unusual
cases during the exploratory data analysis step before any inferential data analysis [47].
However, this algorithm is designed for generic anomaly detection, and the definition of
anomalous cases is not specific to any particular application [46,47].

The anomaly detection analysis using GSE10846 ranked the cases according to the
anomaly index, which ranged from 0.813 to 1.763 (Supplementary Excel File). There is no
definitive cutoff for selecting anomalous cases. Cases with anomaly index values less than
1 or even 1.5 would not be considered anomalies, but the selection cases should be tested
by other techniques to confirm that they are true anomalous cases.

The results of the anomaly detection technique depend on the series of cases. This is a
limitation because anomalous cases may have different clinicopathological characteristics
and different gene expression profiles depending on the series, especially if the disease
is heterogeneous, such as DLBCL. Anomaly detection was technically successful in the
GSE31312 and GSE117556 datasets, but the genes identified were different. This is due to
the heterogeneous profile of DLBCL and the characteristics of each series. This is not a bad
result. However, we confirmed the relevance of RELB for predicting DLBCL not only in the
GSE10846 but also in the TCGA and GSE57611 series.

The model identified 12 genes that contributed to anomaly detection in the GSE10846
series: DPM2, TRAPPC1, HYAL2, TRIM35, NUDT18, TMEM219, CHCHD10, IGFBP7,
LAMTOR2, ZNF688, UBL7, and RELB (Table 1). The importance of these genes was
validated using other machine learning techniques and conventional statistics.

When the 12 genes were used as predictors of overall survival using a conventional
Cox regression analysis in the GSE10846 series, in the last step, only five genes retained
a significant value. In this model, TRAPPC1, IGFBP7, and RELB were associated with a
favorable prognosis, whereas HYAL2 and UBL7 were associated with a poor prognosis
(Table 4). Similar results were found when NCCN-IPI was added to the equation with the
five genes. NCCN-IPI was also significant, as were the other five genes (p value < 0.001,
HR = 2.4). Therefore, despite its limitations, this bioinformatics approach provides useful
information regarding the pathogenesis of DLBCL. Of note, further analysis will include
the validation of RELB in individual series of cases.

Jintao Wu et al. recently identified RELB as a potential molecular biomarker for im-
munotherapy in human pan-cancer [120]. Using the Cancer Genome Atlas Program (TCGA)
dataset, they found that RELB was detected in human cancers and that the expression was
associated with the overall survival of the patients, with a favorable in some cases, such
as glioblastoma multiforme and lung adenocarcinoma, and unfavorable in others, such as
breast cancer. Interestingly, using gene set enrichment analysis, an association of RELB and
the tumor immune microenvironment and immune checkpoint was identified [120]. This is
a relevant result because immuno-oncology and immunotherapeutic therapies in DLBCL
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include monoclonal anti-CD20 antibody (rituximab), monoclonal anti-PD-1 antibodies
(nivolumab and pembrolizumab), monoclonal anti-PD-L1 antibodies (avelumab, durval-
umab, and atezolizumab), and chimeric antigen receptor (CAR) T-cell therapy [121,122].
The role of RELB in the pathogenesis of DLBCL is complex [103,104,118,123–126]. Further
analysis of the impact of RELB on the prognosis of DLBCL and their relationship with
known and well stablished markers such as MYC, BCL2, and BCL6 [12,127] is warranted.

6. Conclusions

In conclusion, using a statistical approach based on anomaly detection and artificial
intelligence of gene expression data of DLBCL, we identified pathogenic markers related
to apoptosis, MAPK and MTOR, and the NF-KB pathway. High expression of the RELB
proto-oncogene is associated with a favorable prognosis of DLBCL.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedinformatics4020081/s1, Anomaly detection Excel File.
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Appendix B

Overall accuracy is the percentage of records for which the outcome is correctly
predicted.

The formula is as follows:

a =
∑n

i=1 m(i)
n

·100%, m(i) =
{

1, if(x̂i = xi)
0, otherwise

where x̂i is the predicted outcome value for record i and xi is the observed value.
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