Enhancing the Release of Ellagic Acid from Mexican Rambutan Peel Using Solid-State Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism and Plant Material
2.2. Water Absorption Capacity (WAC) and Maximum Moisture
2.3. Screening of SSF Conditions
2.4. Enhancement of EA Using a Central Composite Design
2.5. Analytical Analysis
2.5.1. Determination of Total Polyphenols
2.5.2. ABTS Antioxidant Assay
2.5.3. DPPH Antioxidant Assay
2.6. Ellagic Acid HPLC-ESI-MS Analysis
2.7. Statistical Analysis
2.8. Validation of the Model
2.9. Separation and Partial Purification of EA Using Amberlite XAD-16
2.10. Separation and Isolation of EA by Preparative HPLC
3. Results
3.1. Water Absorption Capacity and Maximum Moisture
3.2. Identification of Parameters Affecting EA Using PBD
3.3. Effects of Ideal SSF Conditions for the Maximum Recovery of EA
3.4. Identification of Phenolic Compounds
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuo, Y.-Y.; Li, S.-Y. Solid-state fermentation of food waste by Serratia marcescebs NCHU05 for prodigiosin production. J. Taiwan Inst. Chem. Eng. 2024, 160, 105260. [Google Scholar] [CrossRef]
- Srivastava, N.; Srivastava, M.; Ramteke, P.W.; Mishra, P.K. Solid-State Fermentation Strategy for Microbial Metabolites Production: An Overview. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 345–354. [Google Scholar] [CrossRef]
- Cheynier, V.; Comte, G.; Davies, K.M.; Lattanzio, V.; Martens, S. Plant phenolics: Recent advances on their biosynthesis, genetics, andecophysiology. Plant Physiol. Biochem. 2013, 72, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Banc, R.; Rusu, M.E.; Filip, L.; Popa, D.S. The Impact of Ellagitannins and Their Metabolites through Gut Microbiome on the Gut Health and Brain Wellness within the Gut–Brain Axis. Foods 2023, 12, 270. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Ghosh, S.; Kumar, P.; Basu, B.; Nagpal, K. Ellagic acid-loaded, tween 80-coated, chitosan nanoparticles as a promising therapeutic approach against breast cancer: In-vitro and in-vivo study. Life Sci. 2021, 284, 119927. [Google Scholar] [CrossRef]
- Shakeri, A.; Zirak, M.; Sahebkar, A. Ellagic acid: A logical lead for drug development? Curr. Pharm. Des. 2018, 24, 106–122. [Google Scholar] [CrossRef]
- Jaman, M.; Sayeed, M. Ellagic acid, sulforaphane, and ursolic acid in the prevention and therapy of breast cancer: Current evidence and future perspectives. Breast Cancer 2018, 25, 517–528. [Google Scholar] [CrossRef]
- Monrroy, M.; Araúz, O.; García, J.R. Active compound Identification in Extracts of N. lappaceum Peel and evaluation of antioxidant capacity. J. Chem. 2020, 2020, 4301891. [Google Scholar] [CrossRef]
- Soccol, C.R.; Ferreira-Da Costa Eduardo, S.; Junior-Letti Luiz, A.; Karp, S.G.; Lorenci-Woiciechowski, A.; Porto de Souza-Vanderberghe, L. Recent developments and innovations in Solid-state fermentation. Biotechnol. Res. Innov. 2019, 1, 52–71. [Google Scholar] [CrossRef]
- Costa, J.A.V.; Treichel, H.; Kumar, V.; Pandey, A. Advances in Solid-State Fermentation. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–17. [Google Scholar] [CrossRef]
- De Oliveira, J.; Rodrigues, C.; Vandenberghe, L.P.S.; Câmara, M.C.; Libardi, N.; Soccol, C.R. Gibberellic Acid Production by Different Fermentation Systems Using Citric Pulp as Substrate/Support. BioMed Res. Int. 2017, 2017, 5191046. [Google Scholar] [CrossRef]
- Robledo, A.; Aguilera-Carbó, A.; Rodriguez, R.; Martinez, J.L.; Garza, Y.; Aguilar, C.N. Ellagic acid production by Aspergillus niger in solid state fermentation of pomegranate residues. J. Ind. Microbiol. Biotechnol. 2008, 35, 507–513. [Google Scholar] [CrossRef]
- Kalaycıoğlu, Z.; Erim, F.B. Total phenolic contents, antioxidant activities, and bioactive ingredients of juices from pomegranate cultivars worldwide. Food Chem. 2017, 221, 496–507. [Google Scholar] [CrossRef]
- Miliauskas, G.; Venskutonis, P.R.; Van Beek, T.A. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- Hou, F.; Su, D.; Xu, J.; Gong, Y.; Zhang, R.; Wei, Z.; Chi, J.; Zhang, M. Enhanced Extraction of Phenolics and Antioxidant Capacity from Sorghum (Sorghum bicolor L. Moench) Shell Using Ultrasonic-Assisted Ethanol–Water Binary Solvent. J. Food Process. Preserv. 2016, 40, 1171–1179. [Google Scholar] [CrossRef]
- Wong-Paz, J.E.; Muñiz-Márquez, D.B.; Aguilar-Zárate, P.; Rodríguez-Herrera, R.; Aguilar, C.N. Microplate Quantification of Total Phenolic Content from Plant Extracts Obtained by Conventional and Ultrasound Methods. Phytochem. Anal. 2014, 25, 439–444. [Google Scholar] [CrossRef]
- Carvalho, M.J.; Costa, J.R.; Pedrosa, S.S.; Pintado, M.; Oliveira, A.L.; Madureira, A.R. Sugarcane Straw extracts: Production and purification by amberlite XAD-2. Food Bioprod. Process 2023, 140, 189–199. [Google Scholar] [CrossRef]
- Buerostro-Figueroa, J.J.; Nevárez-Moorillón, G.V.; Chávez-González, M.L.; Sepúlveda, L.; Ascacio-Valdés, J.A.; Aguilar, C.N.; Pedroza-Islas, R.; Huerta-Ochoa, S.; Arely Prado-Barragán, L. Improved Extraction of High Value-Added Polyphenols from Pomegranate Peel by Solid-State Fermentation. Fermentation 2023, 9, 530. [Google Scholar] [CrossRef]
- Hernández-Hernández, C.; Aguilar, C.N.; Rodríguez-Herrera, R.; Flores-Gallegos, A.C.; Morlett-Chávez, J.; Govea-Salas, M.; Ascacio-Valdés, J.A. Rambutan (Nephelium lappaceum L.): Nutritional and Functional Properties. Trends Food Sci. Technol. 2019, 85, 201–210. [Google Scholar] [CrossRef]
- Aguilar-Zarate, P.; Wong-Paz, J.E.; Buenrostro-Figueroa, J.J.; Ascacio, J.A.; Contreras-Esquivel, J.C.; Aguilar, C.N. Ellagitannins: Bioavailability, Purification and Biotechnological Degradation. Mini Rev. Med. Chem. 2018, 18, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Arfaoui, L. Dietary plant polyphenols: Effects of food processing on their content and bioavailability. Molecules 2021, 26, 2959. [Google Scholar] [CrossRef] [PubMed]
- Larios-Cruz, R.; Buenrostro-Figueroa, J.; Prado-Barragán, A.; Rodríguez-Jasso, R.M.; Rodríguez-Herrera, R.; Montañez, J.C.; Aguilar, C.N. Valorization of grapefruit by-products as solid support for solid-state fermentation to produce antioxidant bioactive extracts. Waste Biomass Valorization 2019, 10, 763–769. [Google Scholar] [CrossRef]
- Jin, G.; Zhu, Y.; Rinzema, A.; Wijffels, R.H.; Ge, X.; Xu, Y. Water dynamics during solid-state fermentation by Aspergillus oryzae YH6. Bioresour. Technol. 2019, 277, 68–76. [Google Scholar] [CrossRef]
- Kondo, M.; Mulianda, R.; Matamura, M.; Shibata, T.; Mishima, T.; Jayanegara, A.; Isono, N. Validation of a Phenol-sulfuric Acid Method in a Microplate Format for the Quantification of Soluble Sugars in Ruminant Feeds. Anim. Sci. J. 2021, 92, e13530. [Google Scholar] [CrossRef] [PubMed]
- Sala, A.; Artola, A.; Sánchez, A.; Barrena, R. Rice Husk as a Source for Fungal Biopesticide Production by Solid-State Fermentation Using B. bassiana and T. harzianum. Bioresour. Technol. 2020, 296, 122322. [Google Scholar] [CrossRef] [PubMed]
- Kucharczyk, K.; Tuszyński, T. The Effect of Temperature on Fermentation and Beer Volatiles at an Industrial Scale. J. Inst. Brew. 2018, 124, 230–235. [Google Scholar] [CrossRef]
- Sood, S.; Singhal, R.; Bhat, S.; Kumar, A. Inoculum Preparation. In Comprehensive Biotechnology; Moo-Young, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 230–243. [Google Scholar] [CrossRef]
- Falconer, R.E.; Otten, W.; White, N.A. Towards modelling the resistanceand resilience of “below-ground” fungal communities: A mechanistic and trait-based approach. Adv. Appl. Microbiol. 2015, 93, 1–44. [Google Scholar] [CrossRef]
- Kavanagh, K. (Ed.) Fungi: Biology and Applications, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018. [Google Scholar]
- Kashker, E.R.; Cao, Z. Clostridial Strain Degeneration. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Rev. 2006, 17, 307–315. [Google Scholar] [CrossRef]
- Dias, E.; Ebdon, J.; Taylor, H. Estimating the Concentration of Viral Pathogens and Indicator Organisms in the Final Effluent of Wastewater Treatment Processes Using Stochastic Modelling. Microb. Risk Anal. 2019, 11, 47–56. [Google Scholar] [CrossRef]
- Cerda-Cejudo, N.D.; Buenrostro-Figueroa José, J.; Sepúlveda, L.; Torres-León, C.; Chávez-González, M.L.; Ascacio-Valdés, J.A.; Aguilar, C.N. Recovery of ellagic acid from Mexican rambután peel by solid-state fermentation-assisted extraction. Food Bioprod. Process. 2022, 134, 86–94. [Google Scholar] [CrossRef]
- De La Rosa-Esteban, K.; Sepúlveda, L.; Chávez-González, M.L.; Torres-León, C.; Estrada-Gil, L.E.; Aguilar, C.N.; Ascacio-Valdés, J.A. Valorization of Mexican Rambutan Peel through the Recovery of Ellagic acid via Solid-State Fermentatin using a Yeast. Fermenatation 2023, 9, 723. [Google Scholar] [CrossRef]
- Crafack, M.; Keul, H.; Eskildsen, C.E.; Petersen, M.A.; Saerens, S.; Blennow, A.; Skovmand-Larsen, M.; Swiegers, J.H.; Petersen, G.B.; Heimdal, H.; et al. Impact of starter cultures and fermentation techniques on the volatile aroma and sensory profile of chocolate. Food Res. Int. 2014, 63, 306–316. [Google Scholar] [CrossRef]
- Pandey, A.; Soccol, C.R.; Larroche, C. (Eds.) Current Developments in Solid-State Fermentation; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Kumar, A.; Chadha, S.; Rath, D. CRISPR-Cas9 System for Functional Genomics of Filamentous Fungi: Applications and Challenges. In Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-Technology; Sharma, V.K., Shah, M.P., Parmar, S., Kumar, A., Eds.; Elsevier: London, UK, 2021; pp. 541–576. [Google Scholar] [CrossRef]
- Perricone, M.; Gallo, M.; Corbo, M.R.; Sinigaglia, M.; Bevilacqua, A. Yeasts. In The Microbiological Quality of Food; Becilacqua, A., Corbo, M.R., Sinigaglia, M., Eds.; Woodhead Publishing: Duxford, UK, 2017; pp. 121–131. [Google Scholar] [CrossRef]
Treatment | A | B | C | D | E | F | G | EA (mg/g) * |
---|---|---|---|---|---|---|---|---|
1 | −1 | −1 | −1 | 1 | 1 | 1 | −1 | 97.5 ± 1.9 c |
2 | 1 | −1 | −1 | −1 | −1 | 1 | 1 | 18.3 ± 5.3 e |
3 | −1 | 1 | −1 | −1 | 1 | −1 | 1 | 132.5 ± 7.3 b |
4 | 1 | 1 | −1 | 1 | −1 | −1 | −1 | 24.7 ± 5.2 d |
5 | −1 | −1 | 1 | 1 | −1 | −1 | 1 | 91.1 ± 10.1 c |
6 | 1 | −1 | 1 | −1 | 1 | −1 | −1 | 91.3 ± 6.4 bc |
7 | −1 | 1 | 1 | −1 | −1 | 1 | −1 | 201.5 ± 0.6 a |
8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 80.5 ± 11.1 bc |
Code | Factors | High level | Low level | |||||
A | Temperature (°C) | 30 | 25 | |||||
B | Moisture (%) | 70 | 60 | |||||
C | Inoculum (spores/g) | 2 × 107 | 1.5 × 107 | |||||
D | NaNO3 (g/L) | 7.65 | 3.83 | |||||
E | KCl (g/L) | 5.08 | 2.54 | |||||
F | MgSO4 (g/L) | 3.04 | 1.52 | |||||
G | KH2PO4 (g/L) | 3.04 | 1.52 |
A | B | C | |||
---|---|---|---|---|---|
Treatment | Temperature (°C) | Inoculum (Spores/g) | NaNO3 (g/L) | EA Recovered (mg/g) | |
1 | −1 | −1 | −1 | 27.9 ± 0.8 h | |
2 | −1 | −1 | 1 | 96.9 ± 8.5 fg | |
3 | −1 | 1 | −1 | 101.5 ± 5.4 fg | |
4 | −1 | 1 | 1 | 102.4 ± 2.0 fg | |
5 | 1 | −1 | −1 | 121.9 ± 13.3 ef | |
6 | 1 | −1 | 1 | 117.9 ± 5.7 efg | |
7 | 1 | 1 | −1 | 148.5 ± 4.5 de | |
8 | 1 | 1 | 1 | 255.8 ± 27.8 b | |
9 | −α | 0 | 0 | 280.5 ± 15.6 b | |
10 | α | 0 | 0 | 392.2 ± 17.5 a | |
11 | 0 | −α | 0 | 203.5 ± 10.5 c | |
12 | 0 | α | 0 | 83.2 ± 4.3 g | |
13 | 0 | 0 | −α | 148.3 ± 2.1 de | |
14 | 0 | 0 | α | 257.3 ± 13.7 b | |
15C | 0 | 0 | 0 | 163.7 ± 11.8 d | |
16C | 0 | 0 | 0 | 178.9 ± 7.2 cd | |
Levels | |||||
Factors | α | 1 | 0 | −1 | −α |
Temperature (°C) | 28.2 | 27 | 25 | 23 | 21.8 |
Inoculum (spores/g) | 2.8 × 107 | 2.5 × 107 | 2 × 107 | 1.5 × 107 | 1.2 × 107 |
NaNO3 (g/L) | 6.87 | 5.75 | 3.83 | 1.915 | 0.766 |
Parameters | Results |
---|---|
Maximum moisture of the support/substrate (%) | 84.0 ± 2.0 |
Water absorption capacity (g gel/g of dry weight) | 5.4 ± 0.2 |
Moisture (%) | 6.0 ± 0.0 |
Solids (%) | 94.0 ± 0.0 |
Parameters | Significant Effect * |
---|---|
Temperature (°C) | (−) |
Inoculum (spores/g) | (+) |
NaNO3 (g/L) | (−) |
Moisture (%) | (+) |
MgSO4 (g/L) | (+) |
KCl (g/L) | (+) |
KH2PO4 (g/L) | (−) |
* Tukey (α = 0.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerda-Cejudo, N.D.; Buenrostro-Figueroa, J.J.; Sepúlveda, L.; Estrada-Gil, L.E.; Torres-León, C.; Chávez-González, M.L.; Aguilar, C.N.; Ascacio-Valdés, J.A. Enhancing the Release of Ellagic Acid from Mexican Rambutan Peel Using Solid-State Fermentation. Biomass 2024, 4, 1005-1016. https://doi.org/10.3390/biomass4030056
Cerda-Cejudo ND, Buenrostro-Figueroa JJ, Sepúlveda L, Estrada-Gil LE, Torres-León C, Chávez-González ML, Aguilar CN, Ascacio-Valdés JA. Enhancing the Release of Ellagic Acid from Mexican Rambutan Peel Using Solid-State Fermentation. Biomass. 2024; 4(3):1005-1016. https://doi.org/10.3390/biomass4030056
Chicago/Turabian StyleCerda-Cejudo, Nadia D., José J. Buenrostro-Figueroa, Leonardo Sepúlveda, L. E. Estrada-Gil, Cristian Torres-León, Mónica L. Chávez-González, Cristóbal N. Aguilar, and J. A. Ascacio-Valdés. 2024. "Enhancing the Release of Ellagic Acid from Mexican Rambutan Peel Using Solid-State Fermentation" Biomass 4, no. 3: 1005-1016. https://doi.org/10.3390/biomass4030056