Isolation of Bacteriophages Lytic to Fusobacterium necrophorum Subspecies necrophorum from Bovine Ruminal Fluid and City Sewage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fusobacterium necrophorum Strains
2.2. Collection of Ruminal Fluid and City Sewage Samples
2.3. Isolation of Bacteriophages
2.4. Bacteriophage Purification
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eastwood, L.C.; Boykin, C.A.; Harris, M.K.; Arnold, A.N.; Hale, D.S.; Kerth, C.R.; Griffin, D.B.; Savell, J.W.; Belk, K.E.; Woerner, D.R.; et al. National Beef Quality Audit-2016: Transportation, mobility, and harvest-floor assessments of targeted characteristics that affect quality and value of cattle, carcasses, and by-products. Trans. Anim. Sci. 2017, 1, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Nagaraja, T.G.; Lechtenberg, K.F. Liver Abscesses in Feedlot Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2007, 23, 351–369. [Google Scholar] [CrossRef] [PubMed]
- Langworth, B.F. Fusobacterium necrophorum: Its characteristics and role as an animal pathogen. Bacteriol. Rev. 1977, 41, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Tadepalli, S.; Narayanan, S.K.; Stewart, G.C.; Chengappa, M.M.; Nagaraja, T.G. Fusobacterium necrophorum: A ruminal bacterium that invades the liver to cause abscesses in cattle. Anaerobe 2009, 15, 36–43. [Google Scholar] [CrossRef]
- Amachawadi, R.G.; Nagaraja, T.G. Pathogenesis of liver abscesses in cattle. Vet. Clin. N. Am. Food Anim. Pract. 2022, 38, 335–346. [Google Scholar] [CrossRef]
- Loh, B.; Gondil, V.S.; Manohar, P.; Khan, F.M.; Yang, H.; Leptihn, S. Encapsulation and delivery of therapeutic phages. Appl. Environ. Microbiol. 2021, 87, e01979-20. [Google Scholar] [CrossRef]
- Czaplewski, L.; Bax, R.; Clokie, M.; Dawson, M.; Fairhead, H.; Fischetti, V.A.; Foster, S.; Gilmore, B.F.; Hancock, R.E.W.; Harper, D.; et al. Alternatives to antibiotics—A pipeline portfolio review. Lancet Infect. Dis. 2016, 16, 239–251. [Google Scholar] [CrossRef]
- Gadde, U.; Kim, W.H.; Oh, S.T.; Lillehoj, H.S. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Anim. Health Res. Rev. 2017, 18, 26–45. [Google Scholar] [CrossRef]
- Fischetti, V. Development of phage lysins as novel therapeutics: A historical perspective. Viruses 2018, 10, 310. [Google Scholar] [CrossRef]
- Bruce, R.L.; James, J.B. Population and evolutionary dynamics of phage therapy. Nat. Rev. Microbiol. 2004, 2, 166–173. [Google Scholar] [CrossRef]
- Housby, J.N.; Mann, N.H. Phage therapy. Drug Discov. Today 2009, 14, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, N.; Bhardwaj, S.K.; Deep, A.; Dahiya, S.; Kapoor, S. Lytic bacteriophages as biocontrol agents of food-borne pathogens. Asian J. Anim. Vet. Adv. 2015, 10, 708–723. [Google Scholar] [CrossRef]
- Tamada, H.; Harasawa, R.; Shinjo, T. Isolation of a bacteriophage in Fusobacterium necrophorum. Nihon Juigaku Zasshi. Jpn. J. Vet. Sci. 1985, 47, 483. [Google Scholar] [CrossRef] [PubMed]
- Andrews, D.M.; Gharbia, S.E.; Shah, H.N. Characterization of a novel bacteriophage in Fusobacterium varium. Clin. Infect. Dis. 1997, 25 (Suppl. S2), S287–S288. [Google Scholar] [CrossRef]
- Machuca, P.; Daille, L.; Vinés, E.; Berrocal, L.; Bittner, M. Isolation of a novel bacteriophage specific for the periodontal pathogen Fusobacterium nucleatum. Appl. Environ. Microbiol. 2010, 76, 7243–7350. [Google Scholar] [CrossRef]
- Amachawadi, R.G.; Purvis, T.J.; Lubbers, B.V.; Homm, J.W.; Maxwell, C.L.; Nagaraja, T.G. Bacterial flora of liver abscesses in crossbred beef cattle and Holstein steers fed finishing diets with or without tylosin. J. Anim. Sci. 2017, 95, 3425–3434. [Google Scholar] [CrossRef]
- Russell, J.B. Factors affecting lysine degradation by ruminal fusobacteria. FEMS Microbiol. Ecol. 2006, 56, 18–24. [Google Scholar] [CrossRef]
- Abedon, S.T.; Yin, J. Bacteriophage plaques: Theory and analysis. Methods Mol. Biol. 2009, 501, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Gingerich, D.A.; Baggot, J.D.; Kowalski, J.J. Tylosin antimicrobial activity and pharmacokinetics in cows. Can. Vet. J. 1977, 18, 96–100. [Google Scholar]
- Tan, Z.L.; Nagaraja, T.G.; Chengappa, M.M. Biochemical and biological characterization of ruminal Fusobacterium necrophorum. FEMS Microbiol. Lett. 1994, 120, 81–86. [Google Scholar] [CrossRef]
- Lechtenberg, K.F.; Nagaraja, T.G.; Chengappa, M.M. Antimicrobial susceptibility of Fusobacterium necrophorum isolated from bovine hepatic abscesses. Am. J. Vet. Res. 1998, 59, 44–47. [Google Scholar] [CrossRef] [PubMed]
- Scott, H.M.; Acuff, G.; Bergeron, G.; Bourassa, M.W.; Gill, J.; Graham, D.W.; Kahn, L.H.; Morley, P.S.; Salois, M.J.; Simjee, S.; et al. Critically important antibiotics: Criteria and approaches for measuring and reducing their use in food animal agriculture. Annal. N. Y. Acad. Sci. 2019, 1441, 8–16. [Google Scholar] [CrossRef]
- FDA, U.S. Veterinary Feed Directive. Available online: https://www.fda.gov/animal-veterinary/development-approval-process/veterinary-feed-directive-vfd (accessed on 24 January 2025).
- Zaheer, R.; Cook, S.R.; Klima, C.L.; Stanford, K.; Alexander, T.; Topp, E.; Read, R.R.; McAllister, T.A. Effect of sub-therapeutic vs. therapeutic administration of macrolides on antimicrobial resistance in Mannheimia haemolytica and enterococci isolated from beef cattle. Front. Microbiol. 2013, 4, 133. [Google Scholar] [CrossRef] [PubMed]
- Beukers, A.G.; Zaheer, R.; Cook, S.R.; Stanford, K.; Chaves, A.V.; Ward, M.P.; McAllister, T.A. Effect of in-feed administration of tylosin phosphate on antibiotic resistance in enterococci isolated from feedlot steers. Front. Microbiol. 2015, 6, 483. [Google Scholar] [CrossRef] [PubMed]
- Müller, H.C.; Van Bibber-Krueger, C.L.; Ogunrinu, O.J.; Amachawadi, R.G.; Scott, H.M.; Drouillard, J.S. Effects of intermittent feeding of tylosin phosphate during the finishing period on feedlot performance, carcass characteristics, antimicrobial resistance, and incidence and severity of liver abscesses in steers. J. Anim. Sci. 2018, 96, 2877–2885. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.W.; Vikram, A.; Miller, E.; Jones, S.A.; Arthur, T.M. In-feed tylosin phosphate administration to feedlot cattle minimally affects antimicrobial resistance. J. Food Protect. 2020, 83, 350–364. [Google Scholar] [CrossRef]
- Nagaraja, T.G.; Beharka, A.B.; Chengappa, M.M.; Carroll, L.H.; Raun, A.P.; Laudert, S.B.; Parrott, J.C. Bacterial flora of liver abscesses in feedlot cattle fed tylosin or no tylosin. J. Anim. Sci. 1999, 77, 973–978. [Google Scholar] [CrossRef]
- Saginala, S.; Nagaraja, T.G.; Lechtenberg, K.F.; Chengappa, M.M.; Kemp, K.E.; Hine, P.M. Effect of Fusobacterium necrophorum leukotoxoid vaccine on susceptibility to experimentally induced liver abscesses in cattle. J. Anim. Sci. 1997, 75, 1160–1166. [Google Scholar] [CrossRef]
- Jones, G.; Jayappa, H.; Hunsaker, B.; Sweeney, D.; Rapp-Gabrielson, V.; Woesman, T.; Nagaraja, T.G.; Swingle, S.; Branine, M. Efficacy of an Arcanobacterium pyogenes-Fusobacterium necrophorum bacterin-toxoid as an aid in the prevention of liver abscesses in cattle. Bovine Pract. 2004, 38, 36–44. [Google Scholar] [CrossRef]
- Fox, J.T.; Thomson, D.U.; Lindberg, N.N.; Barling, K. A Comparison of two vaccines to reduce liver abscesses in natural-fed beef cattle. Bovine Pract. 2009, 43, 168–174. [Google Scholar] [CrossRef]
- Meyer, N.F.; Erickson, G.E.; Klopfenstein, T.J.; Greenquist, M.A.; Luebbe, M.K.; Williams, P.; Engstrom, M.A. Effect of essential oils, tylosin, and monensin on finishing steer performance, carcass characteristics, liver abscesses, ruminal fermentation, and digestibility. J. Anim. Sci. 2009, 87, 2346–2354. [Google Scholar] [CrossRef] [PubMed]
- Elwakeel, E.A.; Amachawadi, R.G.; Nour, A.M.; Nasser, M.E.A.; Nagaraja, T.G.; Titgemeyer, E.C. In vitro degradation of lysine by ruminal fluid-based fermentations and by Fusobacterium necrophorum. J. Dairy Sci. 2013, 96, 495–505. [Google Scholar] [CrossRef]
- Samii, S.S.; Wallace, N.; Nagaraja, T.G.; Engstrom, M.A.; Miesner, M.D.; Armendariz, C.K.; Titgemeyer, E.C. Effects of limonene on ruminal Fusobacterium necrophorum concentrations, fermentation, and lysine degradation in cattle. J. Anim. Sci. 2016, 94, 3420–3430. [Google Scholar] [CrossRef]
- Mir, P.S.; Dugan, M.E.R.; He, M.L.; Entz, T.; Yip, B. Effects of dietary sunflower seeds and tylosin phosphate on production variables, carcass characteristics, fatty acid composition, and liver abscess incidence in crossbred steers. J. Anim. Sci. 2008, 86, 3125–3136. [Google Scholar] [CrossRef]
- Stotz, M.K.; Henry, D.D.; Crossland, W.L. Evaluation of immunoglobulin-Y in place of tylosin phosphate in the diets fed to Holstein steers and preliminary analysis of liver abscess duration on animal growth performance. Trans. Anim. Sci. 2021, 5, 1–12. [Google Scholar] [CrossRef]
- Huebner, K.L.; Martin, J.N.; Weissend, C.J.; Holzer, K.L.; Parker, J.K.; Lakin, S.M.; Doster, E.; Weinroth, M.D.; Abdo, Z.; Woerner, D.R.; et al. Effects of a Saccharomyces cerevisiae fermentation product on liver abscesses, fecal microbiome, and resistome in feedlot cattle raised without antibiotics. Sci. Rep. 2019, 9, 2559. [Google Scholar] [CrossRef]
- Amachawadi, R.G.; Nagaraja, T.G. Liver abscesses in cattle: A review of incidence in Holsteins and of bacteriology and vaccine approaches to control in feedlot cattle. J. Anim. Sci. 2016, 94, 1620–1632. [Google Scholar] [CrossRef]
- Checkley, S.L.; Janzen, E.D.; Campbell, J.; McKinnon, J.J. Efficacy of vaccination against Fusobacterium necrophorum infection for control of liver abscesses and footrot in feedlot cattle in western Canada. Can. Vet. J. 2005, 46, 1002–1007. [Google Scholar]
- Shen, Y.; Taylor, D.; Tao, R.; Saleem, A.M.; Yoon, I.; Narvaez, C.; McAllister, T.A.; Yang, W. Ruminally protected and unprotected Saccharomyces cerevisiae fermentation products as alternatives to antibiotics in finishing beef steers. J. Anim. Sci. 2019, 97, 4323–4333. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, H.; Ran, T.; Yoon, I.; Saleem, A.M.; Yang, W. Influence of yeast culture and feed antibiotics on ruminal fermentation and site and extent of digestion in beef heifers fed high grain rations. J. Anim. Sci. 2018, 96, 3916–3927. [Google Scholar] [CrossRef]
- Gordillo Altamirano, F.L.; Barr, J.J. Phage therapy in the postantibiotic era. Clin. Microbiol. Rev. 2019, 32, e00066. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Van Belleghem, J.D.; de Vries, C.R.; Burgener, E.; Chen, Q.; Manasherob, R.; Aronson, J.R.; Amanatullah, D.F.; Tamma, P.D.; Suh, G.A. The safety and toxicity of phage therapy: A review of animal and clinical studies. Viruses 2021, 13, 1268. [Google Scholar] [CrossRef] [PubMed]
- Summers, W.C. The strange history of phage therapy. Bacteriophage 2012, 2, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Joerger, R.D. Alternatives to antibiotics: Bacteriocins, antimicrobial peptides, and bacteriophages. Poultry Sci. 2003, 82, 640–647. [Google Scholar] [CrossRef]
- Matsuzaki, S.; Rashel, M.; Uchiyama, J.; Sakurai, S.; Ujihara, T.; Kuroda, M.; Ikeuchi, M.; Tani, T.; Fujieda, M.; Wakiguchi, H.; et al. Bacteriophage therapy: A revitalized therapy against bacterial infectious diseases. J. Infect. Chemother. 2005, 11, 211–219. [Google Scholar] [CrossRef]
- Kutateladze, M.; Adamia, R. Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol. 2010, 28, 591–595. [Google Scholar] [CrossRef]
- Ghosh, C.; Sarkar, P.; Issa, R.; Haldar, J. Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol. 2019, 27, 323–338. [Google Scholar] [CrossRef]
- Saha, D.; Mukherjee, R. Ameliorating the antimicrobial resistance crisis: Phage therapy. IUBMB Life 2019, 71, 781–790. [Google Scholar] [CrossRef]
- Russell, J.B. Enrichment of fusobacteria from the rumen that can utilize lysine as an energy source for growth. Anaerobe 2005, 11, 177–184. [Google Scholar] [CrossRef]
- Szafrański, S.P.; Winkel, A.; Stiesch, M. The use of bacteriophages to biocontrol oral biofilms. J. Biotechnol. 2017, 250, 29–44. [Google Scholar] [CrossRef]
- Zheng, D.W.; Dong, X.; Pan, P.; Chen, K.W.; Fan, J.X.; Cheng, S.X.; Zhang, X.Z. Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy. Nat. Biomed. Eng. 2019, 3, 717–728. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, L.H.; Prag, J. Human necrobacillosis, with emphasis on Lemierre’s syndrome. Clin. Infect. Dis. 2000, 31, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Amess, J.A.; O’Neill, W.; Ni Giollariabhaigh, C.; Dytrych, J.K. A six-month audit of the isolation of Fusobacterium necrophorum from patients with sore throat in a district general hospital. Brit. J. Biomed. Sci. 2007, 64, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Kuppalli, K.; Livorsi, D.; Talati, N.J.; Osborn, M. Lemierre’s syndrome due to Fusobacterium necrophorum. Lancet Infect. Dis. 2012, 12, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Eaton, C.; Swindells, J. The significance and epidemiology of Fusobacterium necrophorum in sore throats. J. Infect. 2014, 69, 194–196. [Google Scholar] [CrossRef]
- Holm, K.; Collin, M.; Hagelskjær-Kristensen, L.; Jensen, A.; Rasmussen, M. Three variants of the leukotoxin gene in human isolates of Fusobacterium necrophorum subspecies funduliforme. Anaerobe. 2017, 45, 129–132. [Google Scholar] [CrossRef]
- Tadepalli, S.; Stewart, G.C.; Nagaraja, T.G.; Narayanan, S.K. Human Fusobacterium necrophorum strains have a leukotoxin gene and exhibit leukotoxic activity. J. Med. Microbiol. 2008, 57, 225–231. [Google Scholar] [CrossRef]
- Ballesté, E.; Blanch, A.R.; Muniesa, M.; García-Aljaro, C.; Rodríguez-Rubio, L.; Martín-Díaz, J.; Pascual-Benito, M.; Jofre, J. Bacteriophages in sewage: Abundance, roles, and applications. FEMS Microbes 2022, 17, xtac009. [Google Scholar] [CrossRef]
Sample | Sample Collection Date | No. Positive Isolation/No. of F. necrophorum Strains | Relative Frequency, % |
---|---|---|---|
Ruminal fluid | 7/29/2019 | 15/59 | 25.4 |
8/12/2019 | 9/54 | 16.7 | |
8/26/2019 | 2/53 | 3.8 | |
9/9/2019 | 0/51 | 0 | |
10/28/2019 | 3/47 | 6.4 | |
City sewage a | 10/21/2019 | 13/52 | 25.0 |
12/2/2019 | 13/51 | 25.5 | |
12/9/2019 | 7/51 | 13.7 | |
12/16/2019 | 16/50 | 32.0 | |
2/17/2020 | 11/53 | 20.8 |
Sample | No. of F. necrophorum Strains | Frequency of Phage Isolation |
---|---|---|
Bovine ruminal fluid | 43 | 0 |
15 | 1 | |
7 | 2 | |
City sewage | 26 | 0 |
19 | 1 | |
1 | 2 | |
5 | 3 | |
3 | 5 |
F. necrophorum Subsp. necrophorum Strains 1 | Bovine Ruminal Fluid | City Sewage | ||
---|---|---|---|---|
No. Positive/Sampling Date | Relative Frequency, % | No. Positive/Sampling Date | Relative Frequency, % | |
2016-13-12 | 1/4 | 25.0 | - | - |
2016-13-15 | 0/5 | 0 | 1/5 | 20.0 |
2016-13-17 | 0/4 | 0 | 1/3 | 33.3 |
2016-13-28 | 1/5 | 20.0 | - | - |
2016-13-58 | 0/2 | 0 | 1/4 | 25.0 |
2016-13-67 | 0/5 | 0 | 1/4 | 25.0 |
2016-13-68 | 1/4 | 25.0 | 0/5 | 0.0 |
2016-13-75 | 0/5 | 0 | 1/5 | 20.0 |
2016-13-77 | 0/5 | 0 | 1/5 | 20.0 |
2016-13-89 | 1/5 | 20.0 | 0/5 | 0 |
2016-13-91 | 0/5 | 0 | 1/5 | 20.0 |
2016-13-92 | 0/3 | 0 | 1/4 | 25.0 |
2016-13-102 | 1/5 | 20.0 | 0/5 | 0 |
2016-13-890 | 1/4 | 25.0 | 0/5 | 0 |
2016-13-8 | 1/5 | 20.0 | 1/5 | 20.0 |
2016-13-10 | 1/5 | 20.0 | 1/5 | 20.0 |
2016-13-14 | 1/5 | 20.0 | 1/3 | 33.3 |
2016-13-36 | 2/5 | 40.00 | 0/5 | 0 |
2016-13-46 | 2/5 | 40.0 | 0/5 | 0 |
2016-13-49 | 0/5 | 0 | 3/5 | 60.0 |
2016-13-62 | 1/5 | 20.0 | 1/4 | 25.0 |
2016-13-66 | 0/2 | 0 | 2/5 | 40.0 |
2016-13-76 | 1/4 | 25.0 | 1/5 | 20.0 |
2016-13-88 | 2/5 | 40.0 | 0/4 | 0 |
2016-13-148 | 0/5 | 0 | 1/5 | 20.0 |
2016-13-9 | 2/5 | 40.0 | 1/5 | 20.0 |
2016-13-10 | 0/4 | 0 | 1/5 | 20.0 |
2016-13-41 | 0/5 | 0 | 3/5 | 60.0 |
2016-13-54 | 0/5 | 0 | 3/5 | 60.0 |
2016-13-57 | 2/5 | 40.0 | 1/3 | 33.3 |
2016-13-61 | 2/5 | 40.0 | 1/5 | 20.0 |
2016-13-63 | 1/4 | 25.0 | 1/5 | 20.0 |
2016-13-83 | 0/4 | 0 | 3/5 | 60.0 |
2016-13-98 | 2/5 | 40.0 | 1/5 | 20.0 |
2016-13-882 | 0/1 | 0 | 3/5 | 60.0 |
2016-13-51 | 0/1 | 0 | 4/5 | 80.0 |
2016-13-84 | - | - | 4/5 | 80.0 |
2016-13-11 | 1/5 | 20.0 | 5/5 | 100.0 |
2016-13-29 | 1/5 | 20.0 | 5/5 | 100.0 |
2016-13-69 | 1/2 | 50.0 | 5/5 | 100.0 |
F. necrophorum Strains | No. of Bacteriophages Isolated | |
---|---|---|
Bovine Ruminal Fluid | CITY Sewage | |
2016-13-8, 2016-13-10, 2016-13-14, 2016-13-62, 2016-13-76, 2016-13-9, 2016-13-57, 2016-13-61, 2016-13-63, 2016-13-98, 2016-13-11, 2016-13-29, 2016-13-69 | 17 | 25 |
2016-13-12, 2016-13-28, 2016-13-68, 2016-13-89, 2016-13-102, 2016-13-890, 2016-13-36, 2016-13-46, 2016-13-88 | 12 | 0 |
2016-13-15, 2016-13-17, 2016-13-58, 2016-13-67, 2016-13-75, 2016-13-77, 2016-13-91, 2016-13-92, 2016-13-49, 2016-13-66, 2016-13-148, 2016-13-10, 2016-13-41, 2016-13-54, 2016-13-83, 2016-13-882, 2016-13-51, 2016-13-84 | 0 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schnur, S.E.; Deters, A.; Gaire, T.; Volkova, V.; Biswas, B.; Thomson, D.U.; Nagaraja, T.G. Isolation of Bacteriophages Lytic to Fusobacterium necrophorum Subspecies necrophorum from Bovine Ruminal Fluid and City Sewage. Appl. Biosci. 2025, 4, 10. https://doi.org/10.3390/applbiosci4010010
Schnur SE, Deters A, Gaire T, Volkova V, Biswas B, Thomson DU, Nagaraja TG. Isolation of Bacteriophages Lytic to Fusobacterium necrophorum Subspecies necrophorum from Bovine Ruminal Fluid and City Sewage. Applied Biosciences. 2025; 4(1):10. https://doi.org/10.3390/applbiosci4010010
Chicago/Turabian StyleSchnur, Sydney E., Alyssa Deters, Tara Gaire, Victoriya Volkova, Biswajit Biswas, Daniel U. Thomson, and Tiruvoor G. Nagaraja. 2025. "Isolation of Bacteriophages Lytic to Fusobacterium necrophorum Subspecies necrophorum from Bovine Ruminal Fluid and City Sewage" Applied Biosciences 4, no. 1: 10. https://doi.org/10.3390/applbiosci4010010
APA StyleSchnur, S. E., Deters, A., Gaire, T., Volkova, V., Biswas, B., Thomson, D. U., & Nagaraja, T. G. (2025). Isolation of Bacteriophages Lytic to Fusobacterium necrophorum Subspecies necrophorum from Bovine Ruminal Fluid and City Sewage. Applied Biosciences, 4(1), 10. https://doi.org/10.3390/applbiosci4010010