Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,631)

Search Parameters:
Journal = Genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1023 KiB  
Article
Patterns in Genome-Wide Codon Usage Bias in Representative Species of Lycophytes and Ferns
by Piaoran Xu, Lijuan Zhang, Liping Lu, Yanli Zhu, Dandan Gao and Shanshan Liu
Genes 2024, 15(7), 887; https://doi.org/10.3390/genes15070887 (registering DOI) - 5 Jul 2024
Viewed by 78
Abstract
The latest research shows that ferns and lycophytes have distinct evolutionary lineages. The codon usage patterns of lycophytes and ferns have not yet been documented. To investigate the gene expression profiles across various plant lineages with respect to codon usage, analyze the disparities [...] Read more.
The latest research shows that ferns and lycophytes have distinct evolutionary lineages. The codon usage patterns of lycophytes and ferns have not yet been documented. To investigate the gene expression profiles across various plant lineages with respect to codon usage, analyze the disparities and determinants of gene evolution in primitive plant species, and identify appropriate exogenous gene expression platforms, the whole-genome sequences of four distinct species were retrieved from the NCBI database. The findings indicated that Ceratopteris richardii, Adiantum capillus-veneris, and Selaginella moellendorffii exhibited an elevated A/U content in their codon base composition and a tendency to end with A/U. Additionally, S. capillus-veneris had more C/G in its codons and a tendency to end with C/G. The ENC values derived from both ENC-plot and ENC-ratio analyses deviated significantly from the standard curves, suggesting that the codon usage preferences of these four species were primarily influenced by genetic mutations and natural selection, with natural selection exerting a more prominent influence. This finding was further supported by PR2-Plot, neutrality plot analysis, and COA. A combination of RSCU and ENC values was used as a reference criterion to rank the codons and further identify the optimal codons. The study identified 24 high-frequency codons in C. richardii, A. capillus-veneris, and Diphasiastrum complanatum, with no shared optimal codons among the four species. Arabidopsis thaliana and Ginkgo biloba exhibited similar codon preferences to the three species, except for S. moellendorffii. This research offers a theoretical framework at the genomic codon level for investigating the phylogenetic relationships between lycophytes and ferns, shedding light on gene codon optimization and its implications for genetic engineering in breeding. Full article
(This article belongs to the Special Issue Advances in Genetics and Genomics of Plants)
18 pages, 1803 KiB  
Article
Complete Chloroplast Genome of Megacarpaea megalocarpa and Comparative Analysis with Related Species from Brassicaceae
by Zhuo Zhang, Xiaojun Shi, Haowen Tian, Juan Qiu, Hanze Ma and Dunyan Tan
Genes 2024, 15(7), 886; https://doi.org/10.3390/genes15070886 (registering DOI) - 5 Jul 2024
Viewed by 97
Abstract
Megacarpaea megalocarpa, a perennial herbaceous species belonging to the Brassicaceae family, has potential medicinal value. We isolated and characterized the chloroplast (cp) genome of M. megalocarpa and compared it with closely related species. The chloroplast genome displayed a typical quadripartite structure, spanning [...] Read more.
Megacarpaea megalocarpa, a perennial herbaceous species belonging to the Brassicaceae family, has potential medicinal value. We isolated and characterized the chloroplast (cp) genome of M. megalocarpa and compared it with closely related species. The chloroplast genome displayed a typical quadripartite structure, spanning 154,877 bp, with an overall guanine–cytosine (GC) content of 36.20%. Additionally, this genome contained 129 genes, 105 simple sequence repeats (SSRs), and 48 long repeat sequences. Significantly, the ycf1 gene exhibited a high degree of polymorphism at the small single copy (SSC) region and the inverted repeat a (IRa) boundary. Despite this polymorphism, relative synonymous codon usage (RSCU) values were found to be similar across species, and no large segment rearrangements or inversions were detected. The large single copy (LSC) and SSC regions showed higher sequence variations and nucleotide polymorphisms compared to the IR region. Thirteen distinct hotspot regions were identified as potential molecular markers. Our selection pressure analysis revealed that the protein-coding gene rpl20 is subjected to different selection pressures in various species. Phylogenetic analysis positioned M. megalocarpa within the expanded lineage II of the Brassicaceae family. The estimated divergence time suggests that M. megalocarpa diverged approximately 4.97 million years ago. In summary, this study provides crucial baseline information for the molecular identification, phylogenetic relationships, conservation efforts, and utilization of wild resources in Megacarpaea. Full article
(This article belongs to the Section Plant Genetics and Genomics)
20 pages, 5461 KiB  
Article
The Development of a Fluorescent Microsatellite Marker Assay for the Pitaya Canker Pathogen (Neoscytalidium dimidiatum)
by Rui Li, Xi Li, Jingcheng Tang, Changping Xie and Jianan Wang
Genes 2024, 15(7), 885; https://doi.org/10.3390/genes15070885 (registering DOI) - 5 Jul 2024
Viewed by 74
Abstract
Pitaya canker, caused by Neoscytalidium dimidiatum, is a destructive disease that significantly threatens the safety of the pitaya industry. The authors of previous studies have mainly focused on its biological characteristics and chemical control. However, there are no molecular markers available thus [...] Read more.
Pitaya canker, caused by Neoscytalidium dimidiatum, is a destructive disease that significantly threatens the safety of the pitaya industry. The authors of previous studies have mainly focused on its biological characteristics and chemical control. However, there are no molecular markers available thus far that can be used for the population genetics study of this pathogen. In the present study, a draft genome of N. dimidiatum with a total length of 41.46 MB was assembled in which 9863 coding genes were predicted and annotated. In particular, the microsatellite sequences in the draft genome were investigated. To improve the successful screening rate of potentially polymorphic microsatellite makers, another five N. dimidiatum isolates were resequenced and assembled. A total of eight pairs of polymorphic microsatellite primers were screened out based on the polymorphic microsatellite loci after investigating the sequencing and resequencing assemblies of the six isolates. A total of thirteen representative isolates sampled from different pitaya plantations were genotyped in order to validate the polymorphism of the resulting eight markers. The results indicated that these markers were able to distinguish the isolates well. Lastly, a neighbor-joining tree of 35 isolates, sampled from different pitaya plantations located in different regions, was constructed according to the genotypes of the eight molecular markers. The developed tree indicated that these molecular markers had sufficient genotyping capabilities for our test panel of isolates. In summary, we developed a set of polymorphic microsatellite markers in the following study that can effectively genotype and distinguish N. dimidiatum isolates and be utilized in the population genetics study of N. dimidiatum. Full article
(This article belongs to the Section Population and Evolutionary Genetics and Genomics)
12 pages, 669 KiB  
Article
Somatic Variants Acquired Later in Life Associated with Thoracic Aortic Aneurysms: JAK2 V617F
by Christina Waldron, Mohammad A. Zafar, Deqiong Ma, Hui Zhang, Daniel Dykas, Bulat A. Ziganshin, Andreea Popa, Alokkumar Jha, Jennifer M. Kwan and John A. Elefteriades
Genes 2024, 15(7), 883; https://doi.org/10.3390/genes15070883 (registering DOI) - 5 Jul 2024
Viewed by 155
Abstract
The JAK2 V617F somatic variant is a well-known driver of myeloproliferative neoplasms (MPN) associated with an increased risk for athero-thrombotic cardiovascular disease. Recent studies have demonstrated its role in the development of thoracic aortic aneurysm (TAA). However, limited clinical information and level of [...] Read more.
The JAK2 V617F somatic variant is a well-known driver of myeloproliferative neoplasms (MPN) associated with an increased risk for athero-thrombotic cardiovascular disease. Recent studies have demonstrated its role in the development of thoracic aortic aneurysm (TAA). However, limited clinical information and level of JAK2 V617F burden have been provided for a comprehensive evaluation of potential confounders. A retrospective genotype-first study was conducted to identify carriers of the JAK2 V617F variant from an internal exome sequencing database in Yale DNA Diagnostics Lab. Additionally, the overall incidence of somatic variants in the JAK2 gene across various tissue types in the healthy population was carried out based on reanalysis of SomaMutDB and data from the UK Biobank (UKBB) cohort to compare our dataset to the population prevalence of the variant. In our database of 12,439 exomes, 594 (4.8%) were found to have a thoracic aortic aneurysm (TAA), and 12 (0.049%) were found to have a JAK2 V617F variant. Among the 12 JAK2 V617F variant carriers, five had a TAA (42%), among whom four had an ascending TAA and one had a descending TAA, with a variant allele fraction ranging from 11.2% to 20%. Among these five patients, 60% were female, and average age at diagnosis was 70 (49–79). The mean ascending aneurysm size was 5.05 cm (range 4.6–5.5 cm), and four patients had undergone surgical aortic replacement or repair. UKBB data revealed a positive correlation between the JAK2 V617F somatic variant and aortic valve disease (effect size 0.0086, p = 0.85) and TAA (effect size = 0.004, p = 0.92), although not statistically significant. An unexpectedly high prevalence of TAA in our dataset (5/594, 0.84%) is greater than the prevalence reported before for the general population, supporting its association with TAA. JAK2 V617F may contribute a meaningful proportion of otherwise unexplained aneurysm patients. Additionally, it may imply a potential JAK2-specific disease mechanism in the developmental of TAA, which suggests a possible target of therapy that warrants further investigation. Full article
(This article belongs to the Special Issue Genetic and Genomic Research of Cardiovascular Diseases)
Show Figures

Graphical abstract

15 pages, 5797 KiB  
Article
Comparative Analysis and Phylogeny of the Complete Chloroplast Genomes of Nine Cynanchum (Apocynaceae) Species
by Erdong Zhang, Xueling Ma, Ting Guo, Yujie Wu and Lei Zhang
Genes 2024, 15(7), 884; https://doi.org/10.3390/genes15070884 (registering DOI) - 5 Jul 2024
Viewed by 125
Abstract
Cynanchum belongs to the Apocynaceae family and is a morphologically diverse genus that includes around 200 shrub or perennial herb species. Despite the utilization of CPGs, few molecular phylogenetic studies have endeavored to elucidate infrafamilial relationships within Cynanchum through extensive taxon sampling. In [...] Read more.
Cynanchum belongs to the Apocynaceae family and is a morphologically diverse genus that includes around 200 shrub or perennial herb species. Despite the utilization of CPGs, few molecular phylogenetic studies have endeavored to elucidate infrafamilial relationships within Cynanchum through extensive taxon sampling. In this research, we constructed a phylogeny and estimated divergence time based on the chloroplast genomes (CPGs) of nine Cynanchum species. We sequenced and annotated nine chloroplast (CP) genomes in this study. The comparative analysis of these genomes from these Cynanchum species revealed a typical quadripartite structure, with a total sequence length ranging from 158,283 to 161,241 base pairs (bp). The CP genome (CPG) was highly conserved and moderately differentiated. Through annotation, we identified a total of 129–132 genes. Analysis of the boundaries of inverted repeat (IR) regions showed consistent positioning: the rps19 gene was located in the IRb region, varying from 46 to 50 bp. IRb/SSC junctions were located between the trnN and ndhF genes. We did not detect major expansions or contractions in the IR region or rearrangements or insertions in the CPGs of the nine Cynanchum species. The results of SSR analysis revealed a variation in the number of SSRs, ranging from 112 to 150. In five types of SSRs, the largest number was mononucleotide repeats, and the smallest number was hexanucleotide repeats. The number of long repeats in the cp genomes of nine Cynanchum species was from 35 to 80. In nine species of Cynanchum, the GC3s values ranged from 26.80% to 27.00%, indicating a strong bias towards A/U-ending codons. Comparative analyses revealed four hotspot regions in the CPG, ndhA-ndhH, trnI-GAU-rrn16, psbI-trnS-GCU, and rps7-ndhB, which could potentially serve as molecular markers. In addition, phylogenetic tree construction based on the CPG indicated that the nine Cynanchum species formed a monophyletic group. Molecular dating suggested that Cynanchum diverged from its sister genus approximately 18.87 million years ago (Mya) and species diversification within the Cynanchum species primarily occurred during the recent Miocene epoch. The divergence time estimation presented in this study will facilitate future research on Cynanchum, aid in species differentiation, and facilitate diverse investigations into this economically and ecologically important genus. Full article
(This article belongs to the Section Genes & Environments)
Show Figures

Figure 1

13 pages, 2603 KiB  
Article
CrossMP: Enabling Cross-Modality Translation between Single-Cell RNA-Seq and Single-Cell ATAC-Seq through Web-Based Portal
by Zhen Lyu, Sabin Dahal, Shuai Zeng, Juexin Wang, Dong Xu and Trupti Joshi
Genes 2024, 15(7), 882; https://doi.org/10.3390/genes15070882 (registering DOI) - 5 Jul 2024
Viewed by 191
Abstract
In recent years, there has been a growing interest in profiling multiomic modalities within individual cells simultaneously. One such example is integrating combined single-cell RNA sequencing (scRNA-seq) data and single-cell transposase-accessible chromatin sequencing (scATAC-seq) data. Integrated analysis of diverse modalities has helped researchers [...] Read more.
In recent years, there has been a growing interest in profiling multiomic modalities within individual cells simultaneously. One such example is integrating combined single-cell RNA sequencing (scRNA-seq) data and single-cell transposase-accessible chromatin sequencing (scATAC-seq) data. Integrated analysis of diverse modalities has helped researchers make more accurate predictions and gain a more comprehensive understanding than with single-modality analysis. However, generating such multimodal data is technically challenging and expensive, leading to limited availability of single-cell co-assay data. Here, we propose a model for cross-modal prediction between the transcriptome and chromatin profiles in single cells. Our model is based on a deep neural network architecture that learns the latent representations from the source modality and then predicts the target modality. It demonstrates reliable performance in accurately translating between these modalities across multiple paired human scATAC-seq and scRNA-seq datasets. Additionally, we developed CrossMP, a web-based portal allowing researchers to upload their single-cell modality data through an interactive web interface and predict the other type of modality data, using high-performance computing resources plugged at the backend. Full article
(This article belongs to the Collection Feature Papers in Bioinformatics)
Show Figures

Figure 1

9 pages, 496 KiB  
Article
Comparing Cancer Risk Management between Females with Truncating CHEK2 1100delC versus Missense CHEK2 I157T Variants
by Diego Garmendia, Anne Weidner, Lindsay Venton and Tuya Pal
Genes 2024, 15(7), 881; https://doi.org/10.3390/genes15070881 (registering DOI) - 5 Jul 2024
Viewed by 181
Abstract
Breast cancer (BC) risks imparted by CHEK2 c.1100delC (“1100delC”) germline pathogenic/likely pathogenic variant (GPV) are 20–30%, compared to CHEK2 c.470T>C (“I157T”) GPV with <20%, leading to different breast screening recommendations through MRI. We compared cancer risk management (CRM) across these two GPVs. Study [...] Read more.
Breast cancer (BC) risks imparted by CHEK2 c.1100delC (“1100delC”) germline pathogenic/likely pathogenic variant (GPV) are 20–30%, compared to CHEK2 c.470T>C (“I157T”) GPV with <20%, leading to different breast screening recommendations through MRI. We compared cancer risk management (CRM) across these two GPVs. Study participants were adult females with an 1100delC or I157T GPV drawn from the Inherited Cancer Registry (ICARE) across the United States. Cancer history, clinical characteristics, and CRM were compared using chi-squared tests, t-tests, and logistic regression. Of 150 CHEK2 carriers, 40.7% had BC, with a mean age of 50. Comparing 1100delC and I157T GPVs, there were no differences in rates of (1) breast MRI among those with (65.2% versus 55.6% of 23 and 9; p = 0.612) and without (44.0% versus 44.8% of 50 and 29; p = 0.943) BC; (2) risk-reducing mastectomy among those with (50% versus 38.9% of 46 and 15; p = 0.501) and without (13.8% versus 6.5% of 58 and 31; p = 0.296) BC; and (3) risk-reducing salpingo-oophorectomy among those with (24.2% versus 22.2% of 45 and 18; p = 0.852) and without (17.5% versus 16.7% of 57 and 30; p = 0.918) BC. The results suggest over-screening with breast MRI among CHEK2 I157T GPV carriers and possible overuse of risk-reducing surgeries among CHEK2 carriers. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

23 pages, 10209 KiB  
Article
Ubiquitination-Related Gene Signature, Nomogram and Immune Features for Prognostic Prediction in Patients with Head and Neck Squamous Cell Carcinoma
by Huiwen Yang, Liuqing Zhou, Mengwen Shi, Jintao Yu, Yi Xie and Yu Sun
Genes 2024, 15(7), 880; https://doi.org/10.3390/genes15070880 - 4 Jul 2024
Viewed by 290
Abstract
The objective of this research was to create a prognostic model focused on genes related to ubiquitination (UbRGs) for evaluating their clinical significance in head and neck squamous cell carcinoma (HNSCC) patients. The transcriptome expression data of UbRGs were obtained from The Cancer [...] Read more.
The objective of this research was to create a prognostic model focused on genes related to ubiquitination (UbRGs) for evaluating their clinical significance in head and neck squamous cell carcinoma (HNSCC) patients. The transcriptome expression data of UbRGs were obtained from The Cancer Genome Atlas (TCGA) database, and weighted gene co-expression network analysis (WGCNA) was used to identify specific UbRGs within survival-related hub modules. A multi-gene signature was formulated using LASSO Cox regression analysis. Furthermore, various analyses, including time-related receiver operating characteristics (ROCs), Kaplan–Meier, Cox regression, nomogram prediction, gene set enrichment, co-expression, immune, tumor mutation burden (TMB), and drug sensitivity, were conducted. Ultimately, a prognostic signature consisting of 11 gene pairs for HNSCC was established. The Kaplan–Meier curves indicated significantly improved overall survival (OS) in the low-risk group compared to the high-risk group (p < 0.001), suggesting its potential as an independent and dependable prognostic factor. Additionally, a nomogram with AUC values of 0.744, 0.852, and 0.861 at 1-, 3-, and 5-year intervals was developed. Infiltration of M2 macrophages was higher in the high-risk group, and the TMB was notably elevated compared to the low-risk group. Several chemotherapy drugs targeting UbRGs were recommended for low-risk and high-risk patients, respectively. The prognostic signature derived from UbRGs can effectively predict prognosis and provide new personalized therapeutic targets for HNSCC. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

11 pages, 7472 KiB  
Case Report
Myopic Macular Hole and Detachment after Gene Therapy in Atypical RPE65 Retinal Dystrophy: A Case Report
by Fabrizio Giansanti, Cristina Nicolosi, Dario Giorgio, Andrea Sodi, Dario Pasquale Mucciolo, Laura Pavese, Liliana Pollazzi, Gianni Virgili, Giulio Vicini, Ilaria Passerini, Elisabetta Pelo and Vittoria Murro
Genes 2024, 15(7), 879; https://doi.org/10.3390/genes15070879 - 4 Jul 2024
Viewed by 176
Abstract
Purpose: To report a case of macular hole and detachment occurring after the subretinal injection of Voretigene Neparvovec (VN) in a patient affected by atypical RPE65 retinal dystrophy with high myopia and its successful surgical management. Case description: We report a case of [...] Read more.
Purpose: To report a case of macular hole and detachment occurring after the subretinal injection of Voretigene Neparvovec (VN) in a patient affected by atypical RPE65 retinal dystrophy with high myopia and its successful surgical management. Case description: We report a case of a 70-year-old man treated with VN in both eyes. The best corrected visual acuity (BCVA) was 0.7 LogMar in the right eye (RE) and 0.92 LogMar in the left eye (LE). Axial length was 29.60 mm in the RE and 30.28 mm in the LE. Both eyes were pseudophakic. In both eyes, fundus examination revealed high myopia, posterior staphyloma, and extended retinal atrophy areas at the posterior pole, circumscribing a central island of surviving retina. Both eyes were treated with VN subretinal injection, but a full-thickness macular hole and retinal detachment occurred in the LE three weeks after surgery. The patient underwent 23-gauge vitrectomy with internal limiting membrane (ILM) peeling and the inverted flap technique with sulfur hexafluoride (SF6) 20% tamponade. Postoperative follow-up showed that the macular hole was closed and the BCVA was maintained. Conclusions: Our experience suggests that patients with atypical RPE65 retinal dystrophy and high myopia undergoing VN subretinal injection require careful management to minimize the risk of macular hole and detachment occurrence and promptly detect and address these potential complications. Full article
(This article belongs to the Special Issue Molecular Diagnosis and Disease Mechanisms in Eye Disorders)
Show Figures

Figure 1

11 pages, 656 KiB  
Article
The Evolution of Genetic Variability at the LRRK2 Locus
by Dylan T. Guenther, Jordan Follett, Rim Amouri, Samia Ben Sassi, Faycel Hentati and Matthew J. Farrer
Genes 2024, 15(7), 878; https://doi.org/10.3390/genes15070878 - 3 Jul 2024
Viewed by 275
Abstract
Leucine-rich repeat kinase 2 (LRRK2) c.6055G>A (p.G2019S) is a frequent cause of Parkinson’s disease (PD), accounting for >30% of Tunisian Arab-Berber patients. LRRK2 is widely expressed in the immune system and its kinase activity confers a survival advantage against infection in [...] Read more.
Leucine-rich repeat kinase 2 (LRRK2) c.6055G>A (p.G2019S) is a frequent cause of Parkinson’s disease (PD), accounting for >30% of Tunisian Arab-Berber patients. LRRK2 is widely expressed in the immune system and its kinase activity confers a survival advantage against infection in animal models. Here, we assess haplotype variability in cis and in trans of the LRRK2 c.6055G>A mutation, define the age of the pathogenic allele, explore its relationship to the age of disease onset (AOO), and provide evidence for its positive selection. Full article
(This article belongs to the Section Genes & Environments)
14 pages, 6343 KiB  
Article
Characterization and Phylogenetic Analysis of the Chloroplast Genomes of Stephania japonica var. timoriensis and Stephania japonica var. discolor
by Li-Li Wu, Ying-Min Geng and Lan-Ping Zheng
Genes 2024, 15(7), 877; https://doi.org/10.3390/genes15070877 - 3 Jul 2024
Viewed by 285
Abstract
This study sequenced the complete chloroplast genomes of Stephania japonica var. timoriensis and Stephania japonica var. discolor using the Illumina NovaSeq and PacBio RSII platforms. Following sequencing, the genomes were assembled, annotated, comparatively analyzed, and used to construct a phylogenetic tree to explore [...] Read more.
This study sequenced the complete chloroplast genomes of Stephania japonica var. timoriensis and Stephania japonica var. discolor using the Illumina NovaSeq and PacBio RSII platforms. Following sequencing, the genomes were assembled, annotated, comparatively analyzed, and used to construct a phylogenetic tree to explore their phylogenetic positions. Results indicated that the chloroplast genomes of S. japonica var. timoriensis and S. japonica var. discolor both displayed a typical double-stranded circular tetrameric structure, measuring 157,609 and 157,748 bp in length, respectively. Each genome contained 130 annotated genes, with similar total GC content and relative codon usage patterns, showing a distinct preference for A/U at the third codon position. Simple sequence repeat analysis identified 207 and 211 repeats in S. japonica var. timoriensis and S. japonica var. discolor, respectively, primarily the A/T type. Boundary condition analysis indicated no significant expansion or contraction in the inverted repeat regions with consistent gene types and locations across both varieties. Nucleotide polymorphism analysis highlighted greater variation in the intergenic regions than in the coding sequences of Stephania chloroplast genomes. Phylogenetic analyses demonstrated that the species Stephania clustered into a distinct, well-supported clade. Notably, Stephania japonica, along with S. japonica var. discolor and S. japonica var. timoriensis, established a monophyletic lineage. Within this lineage, S. japonica and S. japonica var. discolor were closely related, with S. japonica var. timoriensis serving as their sister taxon. Full article
(This article belongs to the Section Plant Genetics and Genomics)
17 pages, 1008 KiB  
Review
SARS-CoV-2 Genomic Epidemiology Dashboards: A Review of Functionality and Technological Frameworks for the Public Health Response
by Nikita Sitharam, Houriiyah Tegally, Danilo de Castro Silva, Cheryl Baxter, Tulio de Oliveira and Joicymara S. Xavier
Genes 2024, 15(7), 876; https://doi.org/10.3390/genes15070876 - 3 Jul 2024
Viewed by 467
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, the number and types of dashboards produced increased to convey complex information using digestible visualizations. The pandemic saw a notable increase in genomic surveillance data, which genomic epidemiology dashboards presented in an easily interpretable manner. These [...] Read more.
During the coronavirus disease 2019 (COVID-19) pandemic, the number and types of dashboards produced increased to convey complex information using digestible visualizations. The pandemic saw a notable increase in genomic surveillance data, which genomic epidemiology dashboards presented in an easily interpretable manner. These dashboards have the potential to increase the transparency between the scientists producing pathogen genomic data and policymakers, public health stakeholders, and the public. This scoping review discusses the data presented, functional and visual features, and the computational architecture of six publicly available SARS-CoV-2 genomic epidemiology dashboards. We found three main types of genomic epidemiology dashboards: phylogenetic, genomic surveillance, and mutational. We found that data were sourced from different databases, such as GISAID, GenBank, and specific country databases, and these dashboards were produced for specific geographic locations. The key performance indicators and visualization used were specific to the type of genomic epidemiology dashboard. The computational architecture of the dashboards was created according to the needs of the end user. The genomic surveillance of pathogens is set to become a more common tool used to track ongoing and future outbreaks, and genomic epidemiology dashboards are powerful and adaptable resources that can be used in the public health response. Full article
(This article belongs to the Special Issue Genomics and Bioinformatics in Microbial Science)
Show Figures

Figure 1

15 pages, 3363 KiB  
Review
The Function and Mechanism of Long Noncoding RNAs in Adipogenic Differentiation
by Junhao Chen, Yi Pan, Yunhui Lu, Xue Fang, Tianyi Ma, Xi Chen, Yanhong Wang, Xingtang Fang, Chunlei Zhang and Chengchuang Song
Genes 2024, 15(7), 875; https://doi.org/10.3390/genes15070875 - 3 Jul 2024
Viewed by 227
Abstract
Adipocytes are crucial for maintaining energy balance. Adipocyte differentiation involves distinct stages, including the orientation stage, clone amplification stage, clone amplification termination stage, and terminal differentiation stage. Understanding the regulatory mechanisms governing adipogenic differentiation is essential for comprehending the physiological processes and identifying [...] Read more.
Adipocytes are crucial for maintaining energy balance. Adipocyte differentiation involves distinct stages, including the orientation stage, clone amplification stage, clone amplification termination stage, and terminal differentiation stage. Understanding the regulatory mechanisms governing adipogenic differentiation is essential for comprehending the physiological processes and identifying potential biomarkers and therapeutic targets for metabolic diseases, ultimately improving glucose and fat metabolism. Adipogenic differentiation is influenced not only by key factors such as hormones, the peroxisome proliferator-activated receptor (PPAR) family, and the CCATT enhancer-binding protein (C/EBP) family but also by noncoding RNA, including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA). Among these, lncRNA has been identified as a significant regulator in adipogenic differentiation. Research has demonstrated various ways in which lncRNAs contribute to the molecular mechanisms of adipogenic differentiation. Throughout the adipogenesis process, lncRNAs modulate adipocyte differentiation and development by influencing relevant signaling pathways and transcription factors. This review provides a brief overview of the function and mechanism of lncRNAs in adipogenic differentiation. Full article
(This article belongs to the Special Issue Advances in Cattle, Sheep, and Goats Molecular Genetics and Breeding)
Show Figures

Figure 1

17 pages, 3923 KiB  
Article
Sequencing and Description of the Mitochondrial Genome of Orthopodomyia fascipes (Diptera: Culicidae)
by Fábio Silva da Silva, Bruna Laís Sena do Nascimento, Ana Cecília Ribeiro Cruz, Sandro Patroca da Silva, Carine Fortes Aragão, Daniel Damous Dias, Lucas Henrique da Silva e Silva, Lúcia Aline Moura Reis, Hanna Carolina Farias Reis, Liliane Leal das Chagas, José Wilson Rosa Jr., Durval Bertram Rodrigues Vieira, Roberto Carlos Feitosa Brandão, Daniele Barbosa de Almeida Medeiros and Joaquim Pinto Nunes Neto
Genes 2024, 15(7), 874; https://doi.org/10.3390/genes15070874 - 3 Jul 2024
Viewed by 308
Abstract
The genus Orthopodomyia Theobald, 1904 (Diptera: Culicidae) comprises 36 wild mosquito species, with distribution largely restricted to tropical and temperate areas, most of which are not recognized as vectors of epidemiological importance due to the lack of information related to their bionomy and [...] Read more.
The genus Orthopodomyia Theobald, 1904 (Diptera: Culicidae) comprises 36 wild mosquito species, with distribution largely restricted to tropical and temperate areas, most of which are not recognized as vectors of epidemiological importance due to the lack of information related to their bionomy and involvement in the cycle transmission of infectious agents. Furthermore, their evolutionary relationships are not completely understood, reflecting the scarcity of genetic information about the genus. Therefore, in this study, we report the first complete description of the mitochondrial genome of a Neotropical species representing the genus, Orthopodomyia fascipes Coquillet, 1906, collected in the Brazilian Amazon region. Using High Throughput Sequencing, we obtained a mitochondrial sequence of 15,598 bp, with an average coverage of 418.5×, comprising 37 functional subunits and a final portion rich in A + T, corresponding to the control region. The phylogenetic analysis, using Maximum Likelihood and Bayesian Inference based on the 13 protein-coding genes, corroborated the monophyly of Culicidae and its two subfamilies, supporting the proximity between the tribes Orthopodomyiini and Mansoniini, partially disagreeing with previous studies based on the use of molecular and morphological markers. The information generated in this study contributes to a better understanding of the taxonomy and evolutionary history of the genus and other groups of Culicidae. Full article
(This article belongs to the Special Issue Genetics, Phylogeny, and Evolution of Insects)
Show Figures

Figure 1

11 pages, 1032 KiB  
Article
Chronic Adolescent Restraint Stress Downregulates miRNA-200a Expression in Male and Female C57BL/6J and BALB/cJ Mice
by Helen M. Kamens, Emma K. Anziano, William J. Horton and Sonia A. Cavigelli
Genes 2024, 15(7), 873; https://doi.org/10.3390/genes15070873 - 3 Jul 2024
Viewed by 314
Abstract
Adolescence is a critical developmental period when the brain is plastic, and stress exposure can have lasting physiological consequences. One mechanism through which adolescent stress may have lasting effects is by altering microRNAs (miRNAs), leading to wide-scale gene expression changes. Three prior independent [...] Read more.
Adolescence is a critical developmental period when the brain is plastic, and stress exposure can have lasting physiological consequences. One mechanism through which adolescent stress may have lasting effects is by altering microRNAs (miRNAs), leading to wide-scale gene expression changes. Three prior independent studies used unbiased approaches (RNA sequencing or microarray) to identify miRNAs differentially expressed by chronic variable stress in male rodents. In all three studies, miRNA-200a was differentially expressed in areas of the brain associated with emotion regulation. The current study extends this research to determine if chronic non-variable adolescent stress downregulates miRNA-200a expression by looking at two strains (BALB/cJ and C57BL/6J) of male and female mice. We utilized a 14-day (2 h/day) restraint stress protocol and verified stress effects on adolescent body weight gain and circulating corticosterone concentrations relative to non-restraint controls. Mice were then left undisturbed until they were euthanized in adulthood, at which time brains were collected to measure miRNA-200a in the ventral hippocampus. Three weeks after adolescent stress ended, differences in body weight between groups were no longer significant; however, animals exposed to stress had less miRNA-200a expression in the ventral hippocampus than control animals. These data implicate miRNA-200a expression as a potential mechanism by which adolescent stress can have persistent impacts on multiple outcomes in both male and female mice. Full article
(This article belongs to the Section Neurogenomics)
Show Figures

Figure 1

Back to TopTop