Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,259)

Search Parameters:
Keywords = 3D-printing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3427 KiB  
Article
Utilisation of By-Product Phosphogypsum Through Extrusion-Based 3D Printing
by Maris Sinka, Danutė Vaičiukynienė, Dalia Nizevičienė, Alise Sapata, Ignacio Villalón Fornés, Vitoldas Vaitkevičius and Evaldas Šerelis
Materials 2024, 17(22), 5570; https://doi.org/10.3390/ma17225570 - 14 Nov 2024
Abstract
Phosphogypsum (PG) is a phosphate fertiliser by-product. This by-product has a low level of utilisation. Calcium sulphate is dominated in PG similar to gypsum and, therefore, has good binding properties (similar to natural gypsum). However, the presence of water-soluble phosphates and fluorides, an [...] Read more.
Phosphogypsum (PG) is a phosphate fertiliser by-product. This by-product has a low level of utilisation. Calcium sulphate is dominated in PG similar to gypsum and, therefore, has good binding properties (similar to natural gypsum). However, the presence of water-soluble phosphates and fluorides, an unwanted acidic impurity in PG, makes PG unsuitable for the manufacture of gypsum-based products. In this study, the binding material of PG (β-CaSO4·0.5H2O) was produced from β-CaSO4·2H2O by calcination. To neutralise the acidic PG impurities, 0.5 wt% quicklime was added to the PG. In the construction sector, 3D-printing technology is developing rapidly as this technology has many advantages. The current study is focused on creating a 3D-printable PG mixture. The 3D-printing paste was made using sand as the fine aggregate and a binder based on PG. The results obtained show that, despite the low degree of densification, 3D printing improves the mechanical properties of this material compared to cast samples. The 3D-printed specimens tested in [u] direction reached the highest compressive strength of 950 kPa. The cast specimens showed a 17% lower compressive strength of 810 kPa. The 3D-printed specimens tested in the [v] and [w] directions reached a compressive strength of 550 kPa and 710 kPa, respectively. Full article
Show Figures

Figure 1

13 pages, 2412 KiB  
Article
Preparation and Study of Poly(Vinylidene Fluoride-Co-Hexafluoropropylene)-Based Composite Solid Electrolytes
by Meihong Huang, Lingxiao Lan, Pengcheng Shen, Zhiyong Liang, Feng Wang, Yuling Zhong, Chaoqun Wu, Fanxiao Kong and Qicheng Hu
Crystals 2024, 14(11), 982; https://doi.org/10.3390/cryst14110982 - 14 Nov 2024
Abstract
Solid-state electrolytes are widely anticipated to revitalize lithium-ion batteries with high energy density and safety. However, low ionic conductivity and high interfacial resistance at room temperature pose challenges for practical applications. This study combines the rigid oxide electrolyte LLZTO with the flexible polymer [...] Read more.
Solid-state electrolytes are widely anticipated to revitalize lithium-ion batteries with high energy density and safety. However, low ionic conductivity and high interfacial resistance at room temperature pose challenges for practical applications. This study combines the rigid oxide electrolyte LLZTO with the flexible polymer electrolyte poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) to achieve effective coupling of rigidity and flexibility. The semi-interpenetrating network structure endows the PEL composite solid electrolyte with excellent lithium-ion transport capabilities, resulting in an ionic conductivity of up to 5.1 × 10−4 S cm−1 and lithium-ion transference number of 0.41. The assembled LiFePO4/PEL/Li solid-state battery demonstrates an initial discharge capacity of 132 mAh g−1 at a rate of 0.1 C. After 100 charge–discharge cycles, the capacity retention is 81%. This research provides a promising strategy for preparing composite solid electrolytes in solid-state lithium-ion batteries. Full article
(This article belongs to the Special Issue Research on Electrolytes and Energy Storage Materials)
20 pages, 1132 KiB  
Review
Spheroid-Exosome-Based Bioprinting Technology in Regenerative Medicine
by Hwa-Yong Lee and Jin Woo Lee
J. Funct. Biomater. 2024, 15(11), 345; https://doi.org/10.3390/jfb15110345 - 14 Nov 2024
Abstract
Since the discovery that exosomes can exchange genes, their potential use as tools for tissue regeneration, disease diagnosis, and therapeutic applications has drawn significant attention. Emerging three-dimensional (3D) printing technologies, such as bioprinting, which allows the printing of cells, proteins, DNA, and other [...] Read more.
Since the discovery that exosomes can exchange genes, their potential use as tools for tissue regeneration, disease diagnosis, and therapeutic applications has drawn significant attention. Emerging three-dimensional (3D) printing technologies, such as bioprinting, which allows the printing of cells, proteins, DNA, and other biological materials, have demonstrated the potential to create complex body tissues or personalized 3D models. The use of 3D spheroids in bioprinting facilitates volumetric tissue reconstruction and accelerates tissue regeneration via exosome secretion. In this review, we discussed a convergence approach between two promising technologies for bioprinting and exosomes in regenerative medicine. Among the various 3D cell culture methods used for exosome production, we focused on spheroids, which are suitable for mass production by bioprinting. We then summarized the research results on cases of bioprinting applications using the spheroids and exosomes produced. If a large number of spheroids can be supplied through bioprinting, the spheroid-exosome-based bioprinting technology will provide new possibilities for application in tissue regeneration, disease diagnosis, and treatment. Full article
(This article belongs to the Special Issue Advanced Technologies for Processing Functional Biomaterials)
16 pages, 9416 KiB  
Article
An Image Processing Approach to Quality Control of Drop-on-Demand Electrohydrodynamic (EHD) Printing
by Yahya Tawhari, Charchit Shukla and Juan Ren
Micromachines 2024, 15(11), 1376; https://doi.org/10.3390/mi15111376 - 14 Nov 2024
Abstract
Droplet quality in drop-on-demand (DoD) Electrohydrodynamic (EHD) inkjet printing plays a crucial role in influencing the overall performance and manufacturing quality of the operation. The current approach to droplet printing analysis involves manually outlining/labeling the printed dots on the substrate under a microscope [...] Read more.
Droplet quality in drop-on-demand (DoD) Electrohydrodynamic (EHD) inkjet printing plays a crucial role in influencing the overall performance and manufacturing quality of the operation. The current approach to droplet printing analysis involves manually outlining/labeling the printed dots on the substrate under a microscope and then using microscope software to estimate the dot sizes by assuming the dots have a standard circular shape. Therefore, it is prone to errors. Moreover, the dot spacing information is missing, which is also important for EHD DoD printing processes, such as manufacturing micro-arrays. In order to address these issues, the paper explores the application of feature extraction methods aimed at identifying characteristics of the printed droplets to enhance the detection, evaluation, and delineation of significant structures and edges in printed images. The proposed method involves three main stages: (1) image pre-processing, where edge detection techniques such as Canny filtering are applied for printed dot boundary detection; (2) contour detection, which is used to accurately quantify the dot sizes (such as dot perimeter and area); and (3) centroid detection and distance calculation, where the spacing between neighboring dots is quantified as the Euclidean distance of the dot geometric centers. These stages collectively improve the precision and efficiency of EHD DoD printing analysis in terms of dot size and spacing. Edge and contour detection strategies are implemented to minimize edge discrepancies and accurately delineate droplet perimeters for quality analysis, enhancing measurement precision. The proposed image processing approach was first tested using simulated EHD printed droplet arrays with specified dot sizes and spacing, and the achieved quantification accuracy was over 98% in analyzing dot size and spacing, highlighting the high precision of the proposed approach. This approach was further demonstrated through dot analysis of experimentally EHD-printed droplets, showing its superiority over conventional microscope-based measurements. Full article
Show Figures

Figure 1

17 pages, 6623 KiB  
Article
Laser-Induced Silver Nanowires/Polymer Composites for Flexible Electronics and Electromagnetic Compatibility Application
by Il’ya Bril’, Anton S. Voronin, Yuri Fadeev, Alexander Pavlikov, Ilya Govorun, Ivan Podshivalov, Bogdan Parshin, Mstislav Makeev, Pavel Mikhalev, Kseniya Afanasova, Mikhail Simunin and Stanislav Khartov
Polymers 2024, 16(22), 3174; https://doi.org/10.3390/polym16223174 - 14 Nov 2024
Abstract
Nowadays, the Internet of Things (IOT), electronics, and neural interfaces are becoming an integral part of our life. These technologies place unprecedentedly high demands on materials in terms of their mechanical and electrical properties. There are several strategies for forming conductive layers in [...] Read more.
Nowadays, the Internet of Things (IOT), electronics, and neural interfaces are becoming an integral part of our life. These technologies place unprecedentedly high demands on materials in terms of their mechanical and electrical properties. There are several strategies for forming conductive layers in such composites, e.g., volume blending to achieve a percolation threshold, inkjet printing, lithography, and laser processing. The latter is a low-cost, environmentally friendly, scalable way to produce composites. In our work, we synthesized AgNW and characterized them using Ultraviolet-visible spectroscopy (UV-vis), Transmission electron microscopy (TEM), and Selective area electron diffraction (SAED). We found that our AgNW absorbed in the UV-vis range of 345 to 410 nm. This is due to the plasmon resonance phenomenon of AgNW. Then, we applied the dispersion of AgNW on the surface of the polymer substrate, dried them and we got the films of AgNW.. We irradiated these films with a 432 nm laser. As a result of the treatment, we observed two processes. The first one was the sintering and partial melting of nanowires under the influence of laser radiation, as a consequence of which, the sheet resistance dropped more than twice. The second was the melting of the polymer at the interface and the subsequent integration of AgNW into the substrate. This allowed us to improve the adhesion from 0–1 B to 5 B, and to obtain a composite capable of bending, with radius of 0.5 mm. We also evaluated the shielding efficiency of the obtained composites. The shielding efficiency for 500–600 nm thick porous film samples were 40 dB, and for 3.5–4.5 µm porous films the shielding efficiency was about 85–90 dB in a frequency range of 0.01–40 GHz. The data obtained by us are the basis for producing flexible electronic components based on AgNW/PET composite for various applications using laser processing methods. Full article
(This article belongs to the Special Issue Multifunctional Polymer Composite Materials)
Show Figures

Graphical abstract

16 pages, 4136 KiB  
Article
Enhancing the Mechanical Strength of a Photocurable 3D Printing Material Using Potassium Titanate Additives for Craniofacial Applications
by Yura Choi, Jinyoung Kim, Choongjae Lee, Geonho Lee, Jayoung Hyeon, Soon-ki Jeong and Namchul Cho
Biomimetics 2024, 9(11), 698; https://doi.org/10.3390/biomimetics9110698 - 14 Nov 2024
Abstract
Photopolymerization-based three-dimensional (3D) printing techniques such as stereolithography (SLA) attract considerable attention owing to their superior resolution, low cost, and relatively high printing speed. However, the lack of studies on improving the mechanical properties of 3D materials highlights the importance of delving deeper [...] Read more.
Photopolymerization-based three-dimensional (3D) printing techniques such as stereolithography (SLA) attract considerable attention owing to their superior resolution, low cost, and relatively high printing speed. However, the lack of studies on improving the mechanical properties of 3D materials highlights the importance of delving deeper into additive manufacturing research. These materials possess considerable potential in the medical field, particularly for applications such as anatomical models, medical devices, and implants. In this study, we investigated the enhancement of mechanical strength in 3D-printed photopolymers through the incorporation of potassium titanate powder (K2Ti8O17), with a particular focus on potential applications in medical devices. The mechanical strength of the photopolymer containing potassium titanate was analyzed by measuring its flexural strength, hardness, and tensile strength. Additionally, poly(ethylene glycol) (PEG) was used as a stabilizer to optimize the dispersion of potassium titanate in the photopolymer. The flexural strengths of the printed specimens were in the range of 15–39 MPa (Megapascals), while the measured surface hardness and tensile strength were in the range of 41–80 HDD (Hardness shore D) and 2.3–15 MPa, respectively. Furthermore, the output resolution was investigated by testing it with a line-patterned structure. The 3D-printing photopolymer without PEG stabilizers produced line patterns with a thickness of 0.3 mm, whereas the 3D-printed resin containing a PEG stabilizer produced line patterns with a thickness of 0.2 mm. These findings demonstrate that the composite materials not only exhibit improved mechanical performance but also allow for high-resolution printing. Furthermore, this composite material was successfully utilized to print implants for pre-surgical inspection. This process ensures the precision and quality of medical device production, emphasizing the material’s practical value in advanced medical applications. Full article
Show Figures

Graphical abstract

15 pages, 1457 KiB  
Article
Signal Enhancement of Selected Norepinephrine Metabolites Extracted from Artificial Urine Samples by Capillary Electrophoretic Separation
by Piotr Kowalski, Natalia Hermann, Dagmara Kroll, Mariusz Belka, Tomasz Bączek and Ilona Olędzka
Int. J. Mol. Sci. 2024, 25(22), 12227; https://doi.org/10.3390/ijms252212227 - 14 Nov 2024
Viewed by 55
Abstract
The measurement of selected norepinephrine metabolites, such as 3,4-dihydroxyphenylglycol (DHPG), 3-methoxy-4-hydroxyphenylethylenglycol (MHPG), and vanillylmandelic acid (VMA), in biological matrices—including urine—is of great clinical importance for the diagnosis and monitoring of diseases. This fact has forced researchers to evaluate new analytical methodologies for their [...] Read more.
The measurement of selected norepinephrine metabolites, such as 3,4-dihydroxyphenylglycol (DHPG), 3-methoxy-4-hydroxyphenylethylenglycol (MHPG), and vanillylmandelic acid (VMA), in biological matrices—including urine—is of great clinical importance for the diagnosis and monitoring of diseases. This fact has forced researchers to evaluate new analytical methodologies for their isolation and preconcentration from biological samples. In this study, the three most popular extraction techniques—liquid-liquid extraction (LLE), solid-phase extraction (SPE), and a new 3D-printed system for dispersive solid-phase extraction (3D-DSPE)—were investigated. Micellar electrokinetic chromatography (MEKC) with a diode array detector (DAD) at 200 nm wavelength was applied to the separation of analytes, allowing for the assessment of the extraction efficiency (R) and enrichment factor (EF) for the tested extraction types. The separation buffer (BGE) consisted of 5 mM sodium tetraborate decahydrate, 50 mM SDS, 15% (v/v) MeOH, 150 mM boric acid, and 1 mM of 1-hexyl-3-methylimidazolium chloride (the apparent pH of the BGE equaled 7.3). The EF for each extraction procedure was calculated with respect to standard mixtures of the analytes at the same concentration levels. The 3D-DSPE procedure, using DVB sorbent and acetone as the desorption solvent, proved to be the most effective approach for the simultaneous extraction and determination of the chosen compounds, achieving over 3-fold signal amplification for DHPG and MHPG and over 2-fold for VMA. Moreover, all extraction protocols used for the selected norepinephrine metabolites were estimated and discussed. It was also confirmed that the 3D-DSPE-MEKC approach could be considered an effective tool for sample pretreatment and separation of chosen endogenous analytes in urine samples. Full article
Show Figures

Figure 1

13 pages, 12590 KiB  
Article
Stainless Steel 316L Fabricated by Fused Deposition Modeling Process: Microstructure, Geometrical and Mechanical Properties
by Maria Zaitceva, Anton Sotov, Anatoliy Popovich and Vadim Sufiiarov
J. Manuf. Mater. Process. 2024, 8(6), 259; https://doi.org/10.3390/jmmp8060259 - 14 Nov 2024
Viewed by 74
Abstract
Additive manufacturing (AM) methods are widely used to produce metal products. However, the cost of equipment for processes based on material melting is high. In this paper, a promising, less expensive method of producing metal products from metal-filled Ultrafuse 316L filament by FDM [...] Read more.
Additive manufacturing (AM) methods are widely used to produce metal products. However, the cost of equipment for processes based on material melting is high. In this paper, a promising, less expensive method of producing metal products from metal-filled Ultrafuse 316L filament by FDM was investigated. The aim of this work was to compare the debinding methods and investigate the microstructure, phase composition, and geometric and mechanical properties. The results showed that catalytic debinding can be replaced by thermal debinding as no significant effect on the structure and properties was found. In addition, a filament study was performed and data on the particle size distribution, morphology, and phase composition of the metal particles were obtained. Thermodynamic modeling was performed to better understand the phase distribution at the sintering stage. The δ-Fe fraction influencing the corrosion properties of the material was estimated. The conformity of geometric dimensions to the original 3D models was evaluated using 3D scanning. The applied printing and post-processing parameters allowed us to obtain a density of 98%. The material and technology represent a promising direction for applications in the field of lightweight engineering in the manufacturing of parts with bioinspired designs, shells, and sparse filler structures with useful porosity designs (like helicoidal structures). Full article
Show Figures

Figure 1

26 pages, 19332 KiB  
Article
Polylactide Composites Reinforced with Pre-Impregnated Natural Fibre and Continuous Cellulose Yarns for 3D Printing Applications
by Lakshmi Priya Muthe, Kim Pickering and Christian Gauss
Materials 2024, 17(22), 5554; https://doi.org/10.3390/ma17225554 - 14 Nov 2024
Viewed by 176
Abstract
Achieving high-performance 3D printing composite filaments requires addressing challenges related to fibre wetting and uniform fibre/polymer distribution. This study evaluates the effectiveness of solution (solvent-based) and emulsion (water-based) impregnation techniques to enhance fibre wetting in bleached flax yarns by polylactide (PLA). For the [...] Read more.
Achieving high-performance 3D printing composite filaments requires addressing challenges related to fibre wetting and uniform fibre/polymer distribution. This study evaluates the effectiveness of solution (solvent-based) and emulsion (water-based) impregnation techniques to enhance fibre wetting in bleached flax yarns by polylactide (PLA). For the first time, continuous viscose yarn composites were also produced using both impregnation techniques. All the composites were carefully characterised throughout each stage of production. Initially, single yarns were impregnated and consolidated to optimise formulations and processing parameters. Solution impregnation resulted in the highest tensile strength (356 MPa) for PLA/bleached flax filaments, while emulsion impregnation yielded the highest tensile strength for PLA/viscose filaments (255 MPa) due to better fibre wetting and fibre distribution. Impregnated single yarns were then combined, with additional polymer added to produce filaments compatible with standard material extrusion 3D printers. Despite a reduction in the mechanical performance of the 3D-printed composites due to additional polymer impregnation, relatively high tensile and bending strengths were achieved, and the Charpy impact strength (>127 kJ/m2) for the viscose-based composite exceeded the reported values for bio-derived fibre reinforced composites. The robust mechanical performance of these filaments offers new opportunities for the large-scale additive manufacturing of structural components from bio-derived and renewable resources. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Graphical abstract

16 pages, 3160 KiB  
Article
Effect of Part Size, Displacement Rate, and Aging on Compressive Properties of Elastomeric Parts of Different Unit Cell Topologies Formed by Vat Photopolymerization Additive Manufacturing
by Lindsey B. Bezek, Sushan Nakarmi, Alexander C. Pantea, Jeffery A. Leiding, Nitin P. Daphalapurkar and Kwan-Soo Lee
Polymers 2024, 16(22), 3166; https://doi.org/10.3390/polym16223166 - 13 Nov 2024
Viewed by 159
Abstract
Due to its ability to achieve geometric complexity at high resolution and low length scales, additive manufacturing (AM) has increasingly been used for fabricating cellular structures (e.g., foams and lattices) for a variety of applications. Specifically, elastomeric cellular structures offer tunability of compliance [...] Read more.
Due to its ability to achieve geometric complexity at high resolution and low length scales, additive manufacturing (AM) has increasingly been used for fabricating cellular structures (e.g., foams and lattices) for a variety of applications. Specifically, elastomeric cellular structures offer tunability of compliance as well as energy absorption and dissipation characteristics. However, there are limited data available on compression properties for printed elastomeric cellular structures of different designs and testing parameters. In this work, the authors evaluate how unit cell topology, part size, the rate of compression, and aging affect the compressive response of polyurethane-based simple cubic, body-centered, and gyroid structures formed by vat photopolymerization AM. Finite element simulations incorporating hyperelastic and viscoelastic models were used to describe the data, and the simulated results compared well with the experimental data. Of the designs tested, only the parts with the body-centered unit cell exhibited differences in stress–strain responses at different part sizes. Of the compression rates tested, the highest displacement rate (1000 mm/min) often caused stiffer compressive behavior, indicating deviation from the quasi-static assumption and approaching the intermediate rate response. The cellular structures did not change in compression properties across five weeks of aging time, which is desirable for cushioning applications. This work advances knowledge on the structure–property relationships of printed elastomeric cellular materials, which will enable more predictable compressive properties that can be traced to specific unit cell designs. Full article
17 pages, 6130 KiB  
Article
Impact of Optimal Silane Concentration on the Rheological Properties and 3D Printing Performance of Al2O3-Acrylate Composite Slurries
by Kook-Hyun Ryu, Ung-Soo Kim, Jin-Ho Kim, Jung-Hoon Choi and Kyu-Sung Han
Materials 2024, 17(22), 5541; https://doi.org/10.3390/ma17225541 - 13 Nov 2024
Viewed by 207
Abstract
In this study, 3-trimethoxy-silylpropane-1-thiol (MPTMS) was used as a surface modifier for Al2O3 powder to systematically analyze the effects of MPTMS concentration on the rheological properties, photocuring characteristics, and 3D printing performance of photocurable composite slurries. MPTMS concentration significantly influenced [...] Read more.
In this study, 3-trimethoxy-silylpropane-1-thiol (MPTMS) was used as a surface modifier for Al2O3 powder to systematically analyze the effects of MPTMS concentration on the rheological properties, photocuring characteristics, and 3D printing performance of photocurable composite slurries. MPTMS concentration significantly influenced the rheological behavior of the slurry. Slurries containing 2 wt.% and 5 wt.% MPTMS exhibited a wide linear viscoelastic range (LVR). However, at concentrations of 10 wt.% and 20 wt.%, the LVR range narrowed, which led to reduced dispersion stability. In dispersion stability tests, the slurry with 2 wt.% MPTMS showed the most stable dispersion, while the 5 wt.% MPTMS concentration exhibited the highest photocuring rate. In 3D printing experiments, the 5 wt.% MPTMS concentration resulted in the most stable printed structures, whereas printing failures occurred with the 2 wt.% concentration. At 10 wt.% and 20 wt.%, internal cracking was observed, leading to structural defects. In conclusion, MPTMS forms silane bonds on the Al2O3 surface, significantly impacting the stability, rheological properties, and printing quality of Al2O3-acrylate composite slurries. An MPTMS concentration of 5 wt.% was found to be optimal, contributing to the formation of stable and robust structures. Full article
(This article belongs to the Special Issue Advanced Additive Manufacturing Processing of Ceramic Materials)
Show Figures

Figure 1

17 pages, 9213 KiB  
Article
Comparative Analysis of Modern 3D-Printed Hybrid Resin-Ceramic Materials for Indirect Restorations: An In Vitro Study
by Miriam Albrecht, Franziska Schmidt, Franziska Menzel, Jamila Yassine, Florian Beuer and Alexey Unkovskiy
Polymers 2024, 16(22), 3161; https://doi.org/10.3390/polym16223161 - 13 Nov 2024
Viewed by 235
Abstract
The study investigated the impact of aging on surface roughness, color stability, and biocompatibility of hybrid resin-ceramic materials. A total of 225 specimens were produced from three three-dimensional (3D)-printed (HarzLabs Dental Sand Pro (HL), BEGO VarseoSmile Crown plus (BV), Voco V-Print c&b temp [...] Read more.
The study investigated the impact of aging on surface roughness, color stability, and biocompatibility of hybrid resin-ceramic materials. A total of 225 specimens were produced from three three-dimensional (3D)-printed (HarzLabs Dental Sand Pro (HL), BEGO VarseoSmile Crown plus (BV), Voco V-Print c&b temp (VV)) and one milled material (Voco Grandio Blocs (VG)). Specimens were grouped into untreated, polished, and glazed surfaces. 5000 thermal cycles simulated aging. Surface roughness and color stability were analyzed, and surface topography was observed using scanning electron microscopy (SEM). Biocompatibility was evaluated with L929 cells. Surface roughness differed significantly between untreated and other groups, with no changes before and after artificial aging. Untreated milled samples were significantly smoother than 3D-printed ones. SEM analysis revealed roughest surfaces in untreated 3D-printed specimens. Polished and glazed specimens were smoother than untreated ones. Color values showed significant differences between untreated and treated/aged groups. No material showed cytotoxicity. In summary, untreated VG was smoother than 3D-printed materials, but polishing and glazing reduced roughness to levels comparable to VG. Surface treatments induced color changes, with glazing causing more changes than polishing. Aging affected color stability and biocompatibility but not surface roughness. All materials showed acceptable color changes and good biocompatibility. Full article
(This article belongs to the Special Issue 3D-Printed Polymer and Composite Materials for Dental Applications)
Show Figures

Figure 1

21 pages, 2634 KiB  
Article
Effect of the Ratio of Protein to Water on the Weak Gel Nonlinear Viscoelastic Behavior of Fish Myofibrillar Protein Paste from Alaska Pollock
by Timilehin Martins Oyinloye and Won Byong Yoon
Gels 2024, 10(11), 737; https://doi.org/10.3390/gels10110737 - 13 Nov 2024
Viewed by 243
Abstract
The linear and nonlinear rheological behaviors of fish myofibrillar protein (FMP) paste with 75%, 82%, and 90% moisture content were evaluated using small-amplitude oscillatory shear (SAOS) and large-amplitude oscillatory shear (LAOS) tests. SAOS revealed pastes with 75% and 82% moisture exhibited solid-like behavior, [...] Read more.
The linear and nonlinear rheological behaviors of fish myofibrillar protein (FMP) paste with 75%, 82%, and 90% moisture content were evaluated using small-amplitude oscillatory shear (SAOS) and large-amplitude oscillatory shear (LAOS) tests. SAOS revealed pastes with 75% and 82% moisture exhibited solid-like behavior, characterized by higher storage modulus (G′) than loss modulus (G″), indicative of weak gel properties with a strong protein interaction. In contrast, the 90% moisture content showed more viscous behavior due to weakened protein–protein entanglements. The frequency exponent (n′ and n″) from the power law equation varied slightly (0.24 to 0.36), indicating limited sensitivity to changes in deformation rate during SAOS. LAOS tests revealed significant structural changes, with Lissajous–Bowditch curves revealing early nonlinearities at 10% strain for 90% moisture content. Decomposed Chebyshev coefficients (e3/e1, v3/v1, S, and T) indicated strain stiffening at lower strains for the 75% and 82% moisture pastes (i.e., < 50% strain for 75% and < 10% strain for 82%), transitioning to strain thinning at higher strains. Additionally, numerical model confirmed the predictability of the 3D printing process from the nonlinear rheological data, confirmed the suitability of the 75% and 82% moisture pastes for applications requiring structural integrity. These insights are essential for optimizing processing conditions in industrial applications. The findings suggest that the 75% and 82% moisture pastes are suitable for applications requiring structural integrity, while the 90% moisture paste is ideal for flow-based processes. These insights are essential for optimizing processing conditions in industrial applications. Full article
(This article belongs to the Special Issue Food Gel-Based Systems: Gel-Forming and Food Applications)
Show Figures

Graphical abstract

26 pages, 5713 KiB  
Review
Three-Dimensionally-Printed Polymer and Composite Materials for Dental Applications with Focus on Orthodontics
by Daniela Tichá, Juraj Tomášik, Ľubica Oravcová and Andrej Thurzo
Polymers 2024, 16(22), 3151; https://doi.org/10.3390/polym16223151 - 12 Nov 2024
Viewed by 531
Abstract
Three-dimensional printing has transformed dentistry by enabling the production of customized dental restorations, aligners, surgical guides, and implants. A variety of polymers and composites are used, each with distinct properties. This review explores materials used in 3D printing for dental applications, focusing on [...] Read more.
Three-dimensional printing has transformed dentistry by enabling the production of customized dental restorations, aligners, surgical guides, and implants. A variety of polymers and composites are used, each with distinct properties. This review explores materials used in 3D printing for dental applications, focusing on trends identified through a literature search in PubMed, Scopus, and the Web of Science. The most studied areas include 3D-printed crowns, bridges, removable prostheses, surgical guides, and aligners. The development of new materials is still ongoing and also holds great promise in terms of environmentally friendly technologies. Modern manufacturing technologies have a promising future in all areas of dentistry: prosthetics, periodontology, dental and oral surgery, implantology, orthodontics, and regenerative dentistry. However, further studies are needed to safely introduce the latest materials, such as nanodiamond-reinforced PMMA, PLA reinforced with nanohydroxyapatite or magnesium, PLGA composites with tricalcium phosphate and magnesium, and PEEK reinforced with hydroxyapatite or titanium into clinical practice. Full article
(This article belongs to the Special Issue 3D-Printed Polymer and Composite Materials for Dental Applications)
Show Figures

Figure 1

31 pages, 3497 KiB  
Review
How 3D Printing Technology Makes Cities Smarter: A Review, Thematic Analysis, and Perspectives
by Lapyote Prasittisopin
Smart Cities 2024, 7(6), 3458-3488; https://doi.org/10.3390/smartcities7060135 - 12 Nov 2024
Viewed by 590
Abstract
This paper presents a comprehensive review of the transformative impacts of 3D printing technology on smart cities. As cities face rapid urbanization, resource shortages, and environmental degradation, innovative solutions such as additive manufacturing (AM) offer potential pathways for sustainable urban development. By synthesizing [...] Read more.
This paper presents a comprehensive review of the transformative impacts of 3D printing technology on smart cities. As cities face rapid urbanization, resource shortages, and environmental degradation, innovative solutions such as additive manufacturing (AM) offer potential pathways for sustainable urban development. By synthesizing 66 publications from 2015 to 2024, the study examines how 3D printing improves urban infrastructure, enhances sustainability, and fosters community engagement in city planning. Key benefits of 3D printing include reducing construction time and material waste, lowering costs, and enabling the creation of scalable, affordable housing solutions. The paper also addresses emerging areas such as the integration of 3D printing with digital twins (DTs), machine learning (ML), and AI to optimize urban infrastructure and predictive maintenance. It highlights the use of smart materials and soft robotics for structural health monitoring (SHM) and repairs. Despite the promising advancements, challenges remain in terms of cost, scalability, and the need for interdisciplinary collaboration among engineers, designers, urban planners, and policymakers. The findings suggest a roadmap for future research and practical applications of 3D printing in smart cities, contributing to the ongoing discourse on sustainable and technologically advanced urban development. Full article
Show Figures

Figure 1

Back to TopTop