Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,070)

Search Parameters:
Journal = Micromachines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 791 KiB  
Article
Large Range Curvature Measurement Using FBGs in Two-Core Fiber with Protective Coating
by Ruibin Chen, Lutian Li, Qianqing Yu, Zhijun Luo, Zhenggang Lian, Chuanxin Teng, Hang Qu and Xuehao Hu
Micromachines 2024, 15(11), 1310; https://doi.org/10.3390/mi15111310 (registering DOI) - 28 Oct 2024
Abstract
In this work, we propose a fiber Bragg grating (FBG)-based sensor for curvature measurements. Two gratings are inscribed through the protective coating in a specialty optical fiber using focused femtosecond laser pulses and point-by-point direct writing technology. One grating is inscribed on the [...] Read more.
In this work, we propose a fiber Bragg grating (FBG)-based sensor for curvature measurements. Two gratings are inscribed through the protective coating in a specialty optical fiber using focused femtosecond laser pulses and point-by-point direct writing technology. One grating is inscribed on the central core adjacent to an air channel, while the other is inscribed on the eccentric core. The bending characteristics of the two-core fiber strongly depend on the bending direction due to the asymmetry of the fiber cores. A bending sensitivity of 58 pm/m−1  is achieved by the FBG in the eccentric fiber core over the curvature range of 0–50 m−1 . Temperature and humidity cross-sensitivity could be significantly reduced by analyzing the differences in peak shifts between the two gratings. The sensor features a large sensing range and good robustness due to the presence of its protective buffer coating, which makes it a good candidate for curvature sensing in engineering fields. Full article
11 pages, 4383 KiB  
Article
Fabrication and Characterization of Biocompatible Multilayered Elastomer Hybrid with Enhanced Water Permeation Resistance for Packaging of Implantable Biomedical Devices
by Dae Hyeok An, Hee Cheol Kang, Jun Woo Lim, Junho Kim, Hojin Lee, Jae Hyun Jeong, Sung-Min Park and Jae Woo Chung
Micromachines 2024, 15(11), 1309; https://doi.org/10.3390/mi15111309 - 28 Oct 2024
Abstract
This study presents the synthesis and characterization of hexadecyl-modified SiO2 (HD-SiO2) nanoparticles and their application in the fabrication of a multilayered elastomer hybrid sheet to enhance water resistance in implantable biomedical devices. The surface modification of SiO2 nanoparticles was [...] Read more.
This study presents the synthesis and characterization of hexadecyl-modified SiO2 (HD-SiO2) nanoparticles and their application in the fabrication of a multilayered elastomer hybrid sheet to enhance water resistance in implantable biomedical devices. The surface modification of SiO2 nanoparticles was confirmed via FT-IR and TGA analyses, showing the successful grafting of hydrophobic hexadecyl groups. FE-SEM and DLS analyses revealed spherical HD-SiO2 nanoparticles with an average size of 360 nm. A multilayered elastomer hybrid sheet, consisting of a PDMS-based circuit-protecting body, a water resistance layer of HD-SiO2, a planarization layer, and a biocompatible layer of polydopamine, was fabricated and characterized. The water resistance layer exhibited superhydrophobic properties, with a water contact angle of 154.7° and a 27% reduction in water vapor transmission rate (WVTR) compared to the circuit-protecting body alone. The device packaged with both the circuit-protecting body and water resistance layer demonstrated a tenfold increase in operational lifespan in water medium compared to the device without the water resistance layer. Cytotoxicity and cell proliferation tests on human dermal fibroblast cells (HDFn) confirmed the biocompatibility of the multilayered sheet, with no significant cytotoxicity observed over 48 h. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Figure 1

20 pages, 3017 KiB  
Article
A Novel PCR-Free Ultrasensitive GQD-Based Label-Free Electrochemical DNA Sensor for Sensitive and Rapid Detection of Francisella tularensis 
by Sumeyra Savas and Melike Sarıçam
Micromachines 2024, 15(11), 1308; https://doi.org/10.3390/mi15111308 - 28 Oct 2024
Abstract
Biological warfare agents are infectious microorganisms or toxins capable of harming or killing humans. Francisella tularensis is a potential bioterrorism agent that is highly infectious, even at very low doses. Biosensors for biological warfare agents are simple yet reliable point-of-care analytical tools. Developing [...] Read more.
Biological warfare agents are infectious microorganisms or toxins capable of harming or killing humans. Francisella tularensis is a potential bioterrorism agent that is highly infectious, even at very low doses. Biosensors for biological warfare agents are simple yet reliable point-of-care analytical tools. Developing highly sensitive, reliable, and cost-effective label-free DNA biosensors poses significant challenges, particularly when utilizing traditional techniques such as fluorescence, electrochemical methods, and others. These challenges arise primarily due to the need for labeling, enzymes, or complex modifications, which can complicate the design and implementation of biosensors. In this study, we fabricated Graphene Quantum dot (GQD)-functionalized biosensors for highly sensitive label-free DNA detection. GQDs were immobilized on the surface of screen-printed gold electrodes via mercaptoacetic acid with a thiol group. The single-stranded DNA (ssDNA) probe was also immobilized on GQDs through strong π−π interactions. The ssDNA probe can hybridize with the ssDNA target and form double-stranded DNA, leading to a decrease in the effect of GQD but a positive shift associated with the increase in DNA concentration. The specificity of the developed system was observed with different microorganism target DNAs and up to three-base mismatches in the target DNA, effectively distinguishing the target DNA. The response time for the target DNA molecule is approximately 1010 s (17 min). Experimental steps were monitored using UV/Vis spectroscopy, Atomic Force Microscopy (AFM), and electrochemical techniques to confirm the successful fabrication of the biosensor. The detection limit can reach 0.1 nM, which is two–five orders of magnitude lower than previously reported methods. The biosensor also exhibits a good linear range from 105 to 0.01 nM and has good specificity. The biosensor’s detection limit (LOD) was evaluated as 0.1 nM from the standard calibration curve, with a correlation coefficient of R2 = 0.9712, showing a good linear range and specificity. Here, we demonstrate a cost-effective, GQD-based SPGE/F. tularensis DNA test suitable for portable electrochemical devices. This application provides good perspectives for point-of-care portable electrochemical devices that integrate sample processing and detection into a single cartridge without requiring a PCR before detection. Based on these results, it can be concluded that this is the first enzyme-free electrochemical DNA biosensor developed for the rapid and sensitive detection of F. tularensis, leveraging the nanoenzyme and catalytic properties of GQDs. Full article
(This article belongs to the Special Issue Biosensors for Pathogen Detection 2024)
Show Figures

Figure 1

10 pages, 2792 KiB  
Article
Simultaneously Detecting the Power and Temperature of a Microwave Sensor via the Quantum Technique
by Zhenrong Zhang, Yuchong Jin, Jun Tang and Jun Liu
Micromachines 2024, 15(11), 1305; https://doi.org/10.3390/mi15111305 - 28 Oct 2024
Abstract
This study introduces a novel method for the simultaneous detection of microwave sensor power and temperature, leveraging nitrogen-vacancy (NV) centers as a robust quantum system. Through precise measurement of the optical detection magnetic resonance contrast in NV centers, the microwave power is accurately [...] Read more.
This study introduces a novel method for the simultaneous detection of microwave sensor power and temperature, leveraging nitrogen-vacancy (NV) centers as a robust quantum system. Through precise measurement of the optical detection magnetic resonance contrast in NV centers, the microwave power is accurately determined. Furthermore, the temperature of the sensor is obtained by monitoring the variations in zero-field splitting and thorough spectral analysis. This method enables the efficient real-time acquisition of synchronized data on both microwave power and temperature from the sensor, facilitating concurrent monitoring without the necessity of additional sensing devices. Finally, we verified that the magnetic sensitivity of the system is approximately 1.2 nT/Hz1/2, and the temperature sensitivity is around 0.38 mK/Hz1/2. The minimum resolution of microwave power is about 20 nW. The experimental results demonstrate that this quantum measurement technique provides stable and accurate data across a wide range of microwave power and temperature conditions. These findings indicate substantial potential for this technique in advanced applications such as aerospace, medical diagnostics, and high-frequency communications. Future studies will aim to extend the industrial applicability of this method by refining quantum control techniques within NV center systems. Full article
Show Figures

Figure 1

14 pages, 2641 KiB  
Article
Vacuum Filtration-Coated Silver Electrodes Coupled with Stacked Conductive Multi-Walled Carbon Nanotubes/Mulberry Paper Sensing Layers for a Highly Sensitive and Wide-Range Flexible Pressure Sensor
by Guanhai Yan, Dongrui Dang, Sheng Chang, Xuefeng Zhang, Jinhua Zhang and Zhengdong Wang
Micromachines 2024, 15(11), 1306; https://doi.org/10.3390/mi15111306 - 28 Oct 2024
Abstract
Flexible pressure sensors based on paper have attracted considerable attention owing to their good performance, low cost, and environmental friendliness. However, effectively expanding the detection range of paper-based sensors with high sensitivities is still a challenge. Herein, we present a paper-based resistive pressure [...] Read more.
Flexible pressure sensors based on paper have attracted considerable attention owing to their good performance, low cost, and environmental friendliness. However, effectively expanding the detection range of paper-based sensors with high sensitivities is still a challenge. Herein, we present a paper-based resistive pressure sensor with a sandwich structure consisting of two electrodes and three sensing layers. The silver nanowires were dispersed deposited on a filter paper substrate using the vacuum filtration coating method to prepare the electrode. And the sensing layer was fabricated by coating carbon nanotubes onto a mulberry paper substrate. Waterborne polyurethane was introduced in the process of preparing the sensing layers to enhance the strength of the interface between the carbon nanotubes and the mulberry paper substrate. Therefore, the designed sensor exhibits a good sensing performance by virtue of the rational structure design and proper material selection. Specifically, the rough surfaces of the sensing layers, porous conductive network of silver nanowires on the electrodes, and the multilayer stacked structure of the sensor collaboratively increase the change in the surface contact area under a pressure load, which improves the sensitivity and extends the sensing range simultaneously. Consequently, the designed sensor exhibits a high sensitivity (up to 6.26 kPa−1), wide measurement range (1000 kPa), low detection limit (~1 Pa), and excellent stability (1000 cycles). All these advantages guarantee that the sensor has potential for applications in smart wearable devices and the Internet of Things. Full article
Show Figures

Figure 1

12 pages, 2983 KiB  
Article
Investigation of an Innovative Roll-to-Plate (R2P) Hot-Embossing Process for Microstructure Arrays of Infrared Glass
by Qinjun Li, Kangsen Li, Jinyu Lv, Linglong Tao and Feng Gong
Micromachines 2024, 15(11), 1307; https://doi.org/10.3390/mi15111307 - 28 Oct 2024
Abstract
The roller-to-plate (R2P) hot-embossing process is an effective, low-cost method for producing high-quality micro-/nano-optical components. In the field of night vision applications, the fabrication of chalcogenide glass microstructures is emerging as a promising alternative to traditional infrared glass. This trend is driven by [...] Read more.
The roller-to-plate (R2P) hot-embossing process is an effective, low-cost method for producing high-quality micro-/nano-optical components. In the field of night vision applications, the fabrication of chalcogenide glass microstructures is emerging as a promising alternative to traditional infrared glass. This trend is driven by the potential of chalcogenide glass to surpass conventional materials in terms of performance. However, the development of R2P hot embossing faces challenges, such as the high cost of curved mold manufacturing, the reliance on roll-to-roll processes for nano hot embossing, the limitations of plastic materials, and the unclear viscoelastic properties of infrared glass. In this study, a novel R2P hot-embossing process was developed to fabricate flat chalcogenide glass structures. The key parameters, such as roller temperature, speed, and embossing pressure, were investigated to understand their impact on the glass-filling performance. The deformation mechanism of the glass microstructures was also analyzed. The experimental results show that the R2P hot-embossing method offers excellent reproducibility, achieving a maximum filling rate of 96% and an average roughness deviation of 8.36 nm. The increase in the roller temperature and embossing force increased the filling height of the glass microstructure arrays, while an increase in the roller speed decreased the filling height. Different embossing methods, including variations in speed, temperature, and force, are summarized to analyze the structural changes during embossing. This study provides a foundation and a basis for future research on the roller-to-plate hot embossing process. Full article
(This article belongs to the Special Issue Functional Materials and Microdevices)
Show Figures

Figure 1

14 pages, 6787 KiB  
Article
Hierarchical Micro/Nanostructures with Anti-Reflection and Superhydrophobicity on the Silicon Surface Fabricated by Femtosecond Laser
by Junyu Duan, Gui Long, Xu Xu, Weiming Liu, Chuankun Li, Liang Chen, Jianguo Zhang and Junfeng Xiao
Micromachines 2024, 15(11), 1304; https://doi.org/10.3390/mi15111304 - 27 Oct 2024
Abstract
In this paper, hierarchical micro/nano structures composed of periodic microstructures, laser-induced periodic surface structures (LIPSS), and nanoparticles were fabricated by femtosecond laser processing (LP). A layer of hydrophobic species was formed on the micro/nano structures through perfluorosilane modification (PM). The reflectivity and hydrophobicity’s [...] Read more.
In this paper, hierarchical micro/nano structures composed of periodic microstructures, laser-induced periodic surface structures (LIPSS), and nanoparticles were fabricated by femtosecond laser processing (LP). A layer of hydrophobic species was formed on the micro/nano structures through perfluorosilane modification (PM). The reflectivity and hydrophobicity’s influence mechanisms of structural height, duty cycle, and size are experimentally elucidated. The average reflectivity of the silicon surface in the visible light band is reduced to 3.0% under the optimal parameters, and the surface exhibits a large contact angle of 172.3 ± 0.8° and a low sliding angle of 4.2 ± 1.4°. Finally, the durability of the anti-reflection and superhydrophobicity is also confirmed. This study deepens our understanding of the principles of anti-reflection and superhydrophobicity and expands the design and preparation methods for self-cleaning and anti-reflective surfaces. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nano-Fabrication)
Show Figures

Figure 1

6 pages, 470 KiB  
Editorial
Editorial for the Special Issue on Fundamentals and Applications of Micro/Nanorobotics
by Chunyun Wei, Zhuoran Zhang, Xian Wang, Haojian Lu and Jiangfan Yu
Micromachines 2024, 15(11), 1303; https://doi.org/10.3390/mi15111303 - 27 Oct 2024
Abstract
In recent years, microrobots have drawn extensive attention due to their promising potential in biomedical applications [...] Full article
(This article belongs to the Special Issue Fundamentals and Applications of Micro-Nanorobotics)
10 pages, 1280 KiB  
Article
Flowing Liquid Crystal Torons Around Obstacles
by Júlio P. A. Santos, Mahmoud Sedahmed, Rodrigo C. V. Coelho and Margarida M. Telo da Gama
Micromachines 2024, 15(11), 1302; https://doi.org/10.3390/mi15111302 - 26 Oct 2024
Abstract
Liquid crystal torons, localized topological structures, are known for their stability and dynamic behaviour in response to external stimuli, making them attractive for advanced material applications. In this study, we investigate the flow of torons in chiral nematic liquid crystals around obstacles. We [...] Read more.
Liquid crystal torons, localized topological structures, are known for their stability and dynamic behaviour in response to external stimuli, making them attractive for advanced material applications. In this study, we investigate the flow of torons in chiral nematic liquid crystals around obstacles. We simulate the fluid flow and director field interactions using a hybrid numerical method combining lattice Boltzmann and finite difference techniques. Our results reveal that the toron dynamical behaviour depends strongly on the impact parameter from the obstacle. At impact parameters smaller than half cholesteric pitch, the flowing toron is destabilized by the interaction with the obstacle; otherwise, the flowing toron follows a trajectory with a deflection which decays exponentially with the impact parameter. Additionally, we explore the scattering of torons by multiple obstacles, providing insights into how the dynamics of these structures respond to complex environments. Full article
(This article belongs to the Special Issue Complex Fluid Flows in Microfluidics)
Show Figures

Figure 1

12 pages, 1634 KiB  
Article
A Highly Sensitive Strain Sensor with Self-Assembled MXene/Multi-Walled Carbon Nanotube Sliding Networks for Gesture Recognition
by Fei Wang, Hongchen Yu, Xingyu Ma, Xue Lv, Yijian Liu, Hanning Wang, Zhicheng Wang and Da Chen
Micromachines 2024, 15(11), 1301; https://doi.org/10.3390/mi15111301 - 25 Oct 2024
Abstract
Flexible electronics is pursuing a new generation of electronic skin and human–computer interaction. However, effectively detecting large dynamic ranges and highly sensitive human movements remains a challenge. In this study, flexible strain sensors with a self-assembled PDMS/MXene/MWCNT structure are fabricated, in which MXene [...] Read more.
Flexible electronics is pursuing a new generation of electronic skin and human–computer interaction. However, effectively detecting large dynamic ranges and highly sensitive human movements remains a challenge. In this study, flexible strain sensors with a self-assembled PDMS/MXene/MWCNT structure are fabricated, in which MXene particles are wrapped and bridged by dense MWCNTs, forming complex sliding conductive networks. Therefore, the strain sensor possesses an impressive sensitivity (gauge factor = 646) and 40% response range. Moreover, a fast response time of 280 ms and detection limit of 0.05% are achieved. The high performance enables good prospects in human detection, like human movement and pulse signals for healthcare. It is also applied to wearable smart data gloves, in which the CNN algorithm is utilized to identify 15 gestures, and the final recognition rate is up to 95%. This comprehensive performance strain sensor is designed for a wide array of human body detection applications and wearable intelligent systems. Full article
(This article belongs to the Special Issue 2D-Materials Based Fabrication and Devices)
Show Figures

Figure 1

14 pages, 3669 KiB  
Article
A Normal Displacement Model and Compensation Method of Polishing Tool for Precision CNC Polishing of Aspheric Surface
by Yongjie Shi, Min Su, Qianqian Cao and Di Zheng
Micromachines 2024, 15(11), 1300; https://doi.org/10.3390/mi15111300 - 25 Oct 2024
Abstract
The position accuracy of the polishing tool affects the surface quality of the polished aspheric surface. The contact deformation among the polishing tool, abrasives, and aspheric part can cause a displacement, which, in turn, will cause a position error of the polishing tool, [...] Read more.
The position accuracy of the polishing tool affects the surface quality of the polished aspheric surface. The contact deformation among the polishing tool, abrasives, and aspheric part can cause a displacement, which, in turn, will cause a position error of the polishing tool, which will lead to a significant change in the polishing force. In order to resolve this error, this paper proposed a method of normal displacement compensation for a computer numerical controlled (CNC) polishing system by controlling the polishing force. Firstly, the coupling principle between the polishing force and the position of the polishing tool is expounded, and the relationship between normal displacement and deformation is analyzed. Based on Hertz’s theory, a model of normal displacement is established. Then, on the basis of the decoupled polishing system developed, a normal displacement compensation method was proposed. Finally, a group of comparative experiments was carried out to verify the effectiveness of the proposed method. Compared with no displacement compensation, when the part was polished with the normal displacement compensation method, the value of roughness decreased from 0.4 µm to 0.21 µm, and the unevenness coefficient of surface roughness decreased from 112.5% to 19%. The experimental results show that the polishing quality is improved greatly, and the aspheric surfaces can be polished more uniformly with the method proposed in this paper. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nano-Fabrication)
Show Figures

Figure 1

14 pages, 3014 KiB  
Article
High-Performance Triboelectric Nanogenerator with Double-Side Patterned Surfaces Prepared by CO2 Laser for Human Motion Energy Harvesting
by Dong-Yi Lin and Chen-Kuei Chung
Micromachines 2024, 15(11), 1299; https://doi.org/10.3390/mi15111299 - 25 Oct 2024
Abstract
The triboelectric nanogenerator (TENG) has demonstrated exceptional efficiency in harvesting diverse forms of mechanical energy and converting it into electrical energy. This technology is particularly valuable for powering low-energy electronic devices and self-powered sensors. Most traditional TENGs use single-sided patterned friction pairs, which [...] Read more.
The triboelectric nanogenerator (TENG) has demonstrated exceptional efficiency in harvesting diverse forms of mechanical energy and converting it into electrical energy. This technology is particularly valuable for powering low-energy electronic devices and self-powered sensors. Most traditional TENGs use single-sided patterned friction pairs, which restrict their effective contact area and overall performance. Here, we propose a novel TENG that incorporates microwave patterned aluminum (MC-Al) foil and microcone structured polydimethylsiloxane (MC-PDMS). This innovative design utilizes two PMMA molds featuring identical micro-hole arrays ablated by a CO2 laser, making it both cost-effective and easy to fabricate. A novel room imprinting technique has been employed to create the micromorphology of aluminum (Al) foil using the PMMA mold with shallower micro-hole arrays. Compared to TENGs with flat friction layers and single-side-patterned friction layers, the double-side-patterned MW-MC-TENG demonstrates superior output performance due to increased cone deformation and contact area. The open-circuit voltage of the MW-MC-TENG can reach 141 V, while the short-circuit current can attain 71.5 μA, corresponding to a current density of 2.86 µA/cm2. The power density reaches 1.4 mW/cm2 when the resistance is 15 MΩ, and it can charge a 0.1 μF capacitor to 2.01 V in 2.28 s. In addition, the MW-MC-TENG can function as an insole device to harvest walking energy, power 11 LED bulbs, monitor step speed, and power a timer device. Therefore, the MW-MC-TENG has significant application potential in micro-wearable devices. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in Physics 2024)
Show Figures

Figure 1

13 pages, 8829 KiB  
Article
A Scalable Digital Light Processing 3D Printing Method
by Junjie Huang, Jiangkun Cai, Chenhao Huangfu, Shikai Li, Guoqiang Chen, Hao Yun and Junfeng Xiao
Micromachines 2024, 15(11), 1298; https://doi.org/10.3390/mi15111298 - 25 Oct 2024
Abstract
The 3D printing method based on digital light processing (DLP) technology can transform liquid resin materials into complex 3D models. However, due to the limitations of digital micromirror device (DMD) specifications, the normal DLP 3D printing method (NDPM) cannot simultaneously process large-size and [...] Read more.
The 3D printing method based on digital light processing (DLP) technology can transform liquid resin materials into complex 3D models. However, due to the limitations of digital micromirror device (DMD) specifications, the normal DLP 3D printing method (NDPM) cannot simultaneously process large-size and small-feature parts. Therefore, a scalable DLP 3D printing method (SDPM) was proposed. Different printing resolutions for a part were designed by changing the distance between the projector and the molding liquid level. A scalable DLP printer was built to realize the printing resolution requirements at different sizes. A series of experiments were performed. Firstly, the orthogonal experimental method was used, and the minimum and maximum projection distances were obtained as 20.5 cm and 30.5 cm, respectively. Accordingly, the layer thickness, exposure time, and waiting leveling time were 0.08 mm, 3 s, and 6 s and 0.08 mm, 7 s, and 10 s. Secondly, single-layer column feature printing was finished, which was shown to have two minimum printing resolutions of 101 μm and 157 μm at a projection distance of 20.5 cm and 30.5 cm. Thirdly, a shape accuracy test was conducted by using the SDPM. Compared with the NDPM, the shape accuracy of the small-feature round, diamond, and square parts was improved by 49%, 42%, and 2%, respectively. This study verified that the SDPM can build models with features demonstrating high local shape accuracy. Full article
Show Figures

Figure 1

10 pages, 4107 KiB  
Article
Inverted Red Quantum Dot Light-Emitting Diodes with ZnO Nanoparticles Synthesized Using Zinc Acetate Dihydrate and Potassium Hydroxide in Open and Closed Systems
by Se-Hoon Jang, Go-Eun Kim, Sang-Uk Byun, Kyoung-Ho Lee and Dae-Gyu Moon
Micromachines 2024, 15(11), 1297; https://doi.org/10.3390/mi15111297 - 25 Oct 2024
Abstract
We developed inverted red quantum dot light-emitting diodes (QLEDs) with ZnO nanoparticles synthesized in open and closed systems. Wurtzite-structured ZnO nanoparticles were synthesized using potassium hydroxide and zinc acetate dihydrate at various temperatures in the open and closed systems. The particle size increases [...] Read more.
We developed inverted red quantum dot light-emitting diodes (QLEDs) with ZnO nanoparticles synthesized in open and closed systems. Wurtzite-structured ZnO nanoparticles were synthesized using potassium hydroxide and zinc acetate dihydrate at various temperatures in the open and closed systems. The particle size increases with increasing synthesis temperature. The ZnO nanoparticles synthesized at 50, 60, and 70 °C in the closed system have an average particle size of 3.2, 4.0, and 5.4 nm, respectively. The particle size is larger in the open system compared to the closed system as the methanol solvent evaporates during the synthesis process. The surface defect-induced emission in ZnO nanoparticles shifts to a longer wavelength and the emission intensity decreases as the synthesis temperature increases. The inverted red QLEDs were fabricated with a synthesized ZnO nanoparticle electron transport layer. The driving voltage of the inverted QLEDs decreases as the synthesis temperature increases. The current efficiency is higher in the inverted red QLEDs with the ZnO nanoparticles synthesized in the closed system compared to the devices with the nanoparticles synthesized in the open system. The device with the ZnO nanoparticles synthesized at 60 °C in the closed system exhibits the maximum current efficiency of 5.8 cd/A. Full article
Show Figures

Figure 1

12 pages, 3222 KiB  
Article
Effects of Laser Irradiation in High-Speed Gas Flow for Surface Treatments of Copper
by Mohamed Ezzat, Constantin Aniculaesei, Joong Wook Lee and Seong Ku Lee
Micromachines 2024, 15(11), 1296; https://doi.org/10.3390/mi15111296 - 25 Oct 2024
Abstract
In this study, the impacts of laser irradiation on the surface morphology and hardness of copper (Cu) are investigated under various environments, including air, vacuum, and high-pressure gas flow through a supersonic nozzle. After irradiating Cu targets with laser pulses with energy of [...] Read more.
In this study, the impacts of laser irradiation on the surface morphology and hardness of copper (Cu) are investigated under various environments, including air, vacuum, and high-pressure gas flow through a supersonic nozzle. After irradiating Cu targets with laser pulses with energy of 30, 60, and 90 mJ/pulse, the surface structures of the targets are analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The SEM analysis reveals diverse surface morphologies, including micro-cones, cavities, droplets, ripples, and island-like structures, depending on laser energy and environments. The XRD analysis provides insights into the structural changes induced by laser irradiation. The results indicate a significant enhancement in microhardness by a factor of 2.77, which is attributed to the surface and structural modifications incurred under various environments. In addition, the XRD analysis reveals a shift in the residual stress in the surface layers of copper from tensile before laser irradiation to compressive afterwards, highlighting the effectiveness of laser surface treatment in inducing favorable mechanical properties. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing)
Show Figures

Figure 1

Back to TopTop