Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (364)

Search Parameters:
Keywords = AERONET

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 11457 KiB  
Article
From Polar Day to Polar Night: A Comprehensive Sun and Star Photometer Study of Trends in Arctic Aerosol Properties in Ny-Ålesund, Svalbard
by Sandra Graßl, Christoph Ritter, Jonas Wilsch, Richard Herrmann, Lionel Doppler and Roberto Román
Remote Sens. 2024, 16(19), 3725; https://doi.org/10.3390/rs16193725 - 7 Oct 2024
Viewed by 788
Abstract
The climate impact of Arctic aerosols, like the Arctic Haze, and their origin are not fully understood. Therefore, long-term aerosol observations in the Arctic are performed. In this study, we present a homogenised data set from a sun and star photometer operated in [...] Read more.
The climate impact of Arctic aerosols, like the Arctic Haze, and their origin are not fully understood. Therefore, long-term aerosol observations in the Arctic are performed. In this study, we present a homogenised data set from a sun and star photometer operated in the European Arctic, in Ny-Ålesund, Svalbard, of the 20 years from 2004–2023. Due to polar day and polar night, it is crucial to use observations of both instruments. Their data is evaluated in the same way and follows the cloud-screening procedure of AERONET. Additionally, an improved method for the calibration of the star photometer is presented. We found out, that autumn and winter are generally more polluted and have larger particles than summer. While the monthly median Aerosol Optical Depth (AOD) decreases in spring, the AOD increases significantly in autumn. A clear signal of large particles during the Arctic Haze can not be distinguished from large aerosols in winter. With autocorrelation analysis, we found that AOD events usually occur with a duration of several hours. We also compared AOD events with large-scale processes, like large-scale oscillation patterns, sea ice, weather conditions, or wildfires in the Northern Hemisphere but did not find one single cause that clearly determines the Arctic AOD. Therefore the observed optical depth is a superposition of different aerosol sources. Full article
Show Figures

Figure 1

19 pages, 3356 KiB  
Article
The First Validation of Aerosol Optical Parameters Retrieved from the Terrestrial Ecosystem Carbon Inventory Satellite (TECIS) and Its Application
by Yijie Ren, Binglong Chen, Lingbing Bu, Gen Hu, Jingyi Fang and Pasindu Liyanage
Remote Sens. 2024, 16(19), 3689; https://doi.org/10.3390/rs16193689 - 3 Oct 2024
Viewed by 360
Abstract
In August 2022, China successfully launched the Terrestrial Ecosystem Carbon Inventory Satellite (TECIS). The primary payload of this satellite is an onboard multi-beam lidar system, which is capable of observing aerosol optical parameters on a global scale. This pioneering study used the Fernald [...] Read more.
In August 2022, China successfully launched the Terrestrial Ecosystem Carbon Inventory Satellite (TECIS). The primary payload of this satellite is an onboard multi-beam lidar system, which is capable of observing aerosol optical parameters on a global scale. This pioneering study used the Fernald forward integration method to retrieve aerosol optical parameters based on the Level 2 data of the TECIS, including the aerosol depolarization ratio, aerosol backscatter coefficient, aerosol extinction coefficient, and aerosol optical depth (AOD). The validation of the TECIS-retrieved aerosol optical parameters was conducted using CALIPSO Level 1 and Level 2 data, with relative errors within 30%. A comparison of the AOD retrieved from the TECIS with the AERONET and MODIS AOD products yielded correlation coefficients greater than 0.7 and 0.6, respectively. The relative error of aerosol optical parameter profiles compared with ground-based measurements for CALIPSO was within 40%. Additionally, the correlation coefficients R2 with MODIS and AERONET AOD were approximately between 0.5 and 0.7, indicating the high accuracy of TECIS retrievals. Utilizing the TECIS retrieval results, combined with ground air quality monitoring data and HYSPLIT outcomes, a typical dust transport event was analyzed from 2 to 7 April 2023. The results indicate that dust was transported from the Taklamakan Desert in Xinjiang, China, to Henan and Anhui provinces, with a gradual decrease in the aerosol depolarization ratio and backscatter coefficient during the transport process, causing varying degrees of pollution in the downstream regions. This research verifies the accuracy of the retrieval algorithm through multi-source data comparison and demonstrates the potential application of the TECIS in the field of aerosol science for the first time. It enables the fine-scale regional monitoring of atmospheric aerosols and provides reliable data support for the three-dimensional distribution of global aerosols and related scientific applications. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

23 pages, 5167 KiB  
Article
Optical Characterization of Coastal Waters with Atmospheric Correction Errors: Insights from SGLI and AERONET-OC
by Hiroto Higa, Masataka Muto, Salem Ibrahim Salem, Hiroshi Kobayashi, Joji Ishizaka, Kazunori Ogata, Mitsuhiro Toratani, Kuniaki Takahashi, Fabrice Maupin and Stephane Victori
Remote Sens. 2024, 16(19), 3626; https://doi.org/10.3390/rs16193626 - 28 Sep 2024
Viewed by 745
Abstract
This study identifies the characteristics of water regions with negative normalized water-leaving radiance (nLw(λ)) values in the satellite observations of the Second-generation Global Imager (SGLI) sensor aboard the Global Change Observation Mission–Climate (GCOM-C) satellite. SGLI Level-2 [...] Read more.
This study identifies the characteristics of water regions with negative normalized water-leaving radiance (nLw(λ)) values in the satellite observations of the Second-generation Global Imager (SGLI) sensor aboard the Global Change Observation Mission–Climate (GCOM-C) satellite. SGLI Level-2 data, along with atmospheric and in-water optical properties measured by the sun photometers in the AErosol RObotic NETwork-Ocean Color (AERONET-OC) from 26 sites globally, are utilized in this study. The focus is particularly on Tokyo Bay and the Ariake Sea, semi-enclosed water regions in Japan where previous research has pointed out the occurrence of negative nLw(λ) values due to atmospheric correction with SGLI. The study examines the temporal changes in atmospheric and in-water optical properties in these two regions, and identifies the characteristics of regions prone to negative nLw(λ) values due to atmospheric correction by comparing the optical properties of these regions with those of 24 other AERONET-OC sites. The time series results of nLw(λ) and the single-scattering albedo (ω(λ)) obtained by the sun photometers at the two sites in Tokyo Bay and Ariake Sea, along with SGLI nLw(λ), indicate the occurrence of negative values in SGLI nLw(λ) in blue band regions, which are mainly attributed to the inflow of absorptive aerosols. However, these negative values are not entirely explained by ω(λ) at 443 nm alone. Additionally, a comparison of in situ nLw(λ) measurements in Tokyo Bay and the Ariake Sea with nLw(λ) values obtained from 24 other AERONET-OC sites, as well as the inherent optical properties (IOPs) estimated through the Quasi-Analytical Algorithm version 5 (QAA_v5), identified five sites—Gulf of Riga, Long Island Sound, Lake Vanern, the Tokyo Bay, and Ariake Sea—as regions where negative nLw(λ) values are more likely to occur. These regions also tend to have lower nLw(λ)  values at shorter wavelengths. Furthermore, relatively high light absorption by phytoplankton and colored dissolved organic matter, plus non-algal particles, was confirmed in these regions. This occurs because atmospheric correction processing excessively subtracts aerosol light scattering due to the influence of aerosol absorption, increasing the probability of the occurrence of negative nLw(λ) values. Based on the analysis of atmospheric and in-water optical measurements derived from AERONET-OC in this study, it was found that negative nLw(λ)  values due to atmospheric correction are more likely to occur in water regions characterized by both the presence of absorptive aerosols in the atmosphere and high light absorption by in-water substances. Full article
Show Figures

Figure 1

13 pages, 1886 KiB  
Article
Changes in Anthropogenic Aerosols during the First Wave of COVID-19 Lockdowns in the Context of Long-Term Historical Trends at 51 AERONET Stations
by Robert Blaga, Delia Calinoiu and Gavrila Trif-Tordai
Remote Sens. 2024, 16(19), 3618; https://doi.org/10.3390/rs16193618 - 28 Sep 2024
Viewed by 346
Abstract
A quasi-consensus has steadily formed in the scientific literature on the fact that the prevention measures implemented by most countries to curb the 2020 COVID-19 pandemic have led to significant reductions in pollution levels around the world, especially in urban environments. Fewer studies [...] Read more.
A quasi-consensus has steadily formed in the scientific literature on the fact that the prevention measures implemented by most countries to curb the 2020 COVID-19 pandemic have led to significant reductions in pollution levels around the world, especially in urban environments. Fewer studies have looked at how these reductions at the ground level translate into variations in the whole atmosphere. In this study, we examine the columnar values of aerosols at 51 mainland European stations of the Aerosol Robotic Network (AERONET). We show that when considered in the context of the long-term trend over the last decade, the columnar aerosol levels for 2020, at the regional level, do not appear exceptional. Both the yearly means and the number of episodes with extreme values for this period are within one standard deviation of the long-term trends. We conclude that the spatially and temporally localized reductions do not add up to statistically significant reductions at the global levels of aerosols. Furthermore, considering that pandemic lockdowns can be thought of as a simulation of a climate change mitigation scenario, we conclude that such lifestyle-based changes present a very low potential as a global climate change mitigation strategy. Full article
Show Figures

Figure 1

18 pages, 4496 KiB  
Article
Estimation of Aerosol Characteristics from Broadband Solar Radiation Measurements Carried Out in Southern Algeria
by Mohamed Zaiani, Abdanour Irbah and Julien Delanoë
Remote Sens. 2024, 16(18), 3365; https://doi.org/10.3390/rs16183365 - 10 Sep 2024
Viewed by 607
Abstract
Aerosols in the atmosphere significantly reduce the solar radiation reaching the Earth’s surface through scattering and absorption processes. Knowing their properties becomes essential when we are interested in measuring solar radiation at a given location on the ground. The commonly used parameters that [...] Read more.
Aerosols in the atmosphere significantly reduce the solar radiation reaching the Earth’s surface through scattering and absorption processes. Knowing their properties becomes essential when we are interested in measuring solar radiation at a given location on the ground. The commonly used parameters that characterize their effects are the Aerosol Optical Depth τ, the Angstrom exponent α, and the Angstrom coefficient β. One method for estimating these parameters is to fit ground-based measurements of clear-sky direct solar radiation using a model on which it depends. However, the choice of model depends on its suitability to the atmospheric conditions of the site considered. Eleven empirical solar radiation models depending on α and β were thus chosen and tested with solar radiation measurements recorded between 2005 and 2014 in Tamanrasset in southern Algeria. The results obtained were compared to measurements made with the AERONET solar photometer on the same site during the same period. Among the 11 models chosen, the best performing ones are REST2 and CPCR2. They proved to be the best suited to estimate β with approximately the same RMSE of 0.05 and a correlation coefficient R with respect to AERONET of 0.95. The results also highlighted good performances of these models for the estimation of τ with an RMSE of 0.05 and 0.04, and an R of 0.95 and 0.96, respectively. The values of α obtained from the fitting of these models were, however, less good, with R around 0.38. Additional treatments based on a Recurrent Neural Network (RNN) were necessary to improve its estimation. They provided promising results showing a significant improvement in α estimates with R reaching 0.7 when referring to AERONET data. Furthermore, this parameter made it possible to identify different types of aerosols in Tamanrasset such as the presence of maritime, dust, and mixed aerosols representing, respectively, 31.21%, 3.25%, and 65.54%, proportions calculated over the entire period studied. The seasonal analysis showed that maritime aerosols are predominant in the winter in Tamanrasset but decrease with the seasons to reach a minimum in the summer (JJA). Dust aerosols appear in February and persist mainly in the spring (MAM) and summer (JJA), then disappear in September. These results are also consistent with those obtained from AERONET. Full article
(This article belongs to the Special Issue Assessment of Solar Energy Based on Remote Sensing Data)
Show Figures

Figure 1

19 pages, 4074 KiB  
Article
Spatiotemporal Variation in Absorption Aerosol Optical Depth over China
by Mao Mao, Huan Jiang and Xiaolin Zhang
Atmosphere 2024, 15(9), 1099; https://doi.org/10.3390/atmos15091099 - 9 Sep 2024
Viewed by 608
Abstract
Absorbing aerosols can absorb solar radiation, affect the atmospheric radiation balance, and further have a profound influence on the global and regional climates. The absorption aerosol optical depth (AAOD) as well as the absorption Angstrom exponent (AAE) across China over 2005–2018 were systematically [...] Read more.
Absorbing aerosols can absorb solar radiation, affect the atmospheric radiation balance, and further have a profound influence on the global and regional climates. The absorption aerosol optical depth (AAOD) as well as the absorption Angstrom exponent (AAE) across China over 2005–2018 were systematically studied through the Ozone Monitoring Instrument (OMI) dataset. The monthly AAOD samples from the OMI generally showed a good correlation (~0.55) compared to the monthly data from AERONET at four typical sites (North: Xianghe, East: Taihu, South: Hongkong Polytechnic Univ; Northwest: Sacol) across China. The ensemble annual average of the OMI AAOD at 388 and 500 nm is 0.046 and 0.022, with minor changes during 2005–2015, and a relatively fast increase after that. The winter and spring seasons depict the maximum mean AAODs, followed by autumn, whereas summer shows minimum levels. On the contrary, the high AAE values appear in summer and low values in winter. The order of the annual average AAOD500 from 2005 to 2018 is the Tarim Basin (TB, 0.041) > the Yellow River Basin (YRB, 0.023) > Beijing and Tianjin (BT, 0.026) > the Sichuan Basin (SB, 0.023) > Nanjing and Shanghai (NS, 0.021) > the Pearl River Delta (PRD, 0.017), whereas the AAE388–500 exhibits the opposite trend except for the TB (3.058). From 2005 to 2018, the AAOD rises by nearly 1.5–2.0 fold in the six typical regions, implying a severe situation of dust and/or BC aerosol pollution in the last several years. The monthly mean AAOD388 over the TB, the SB, the YRB, BT, the PRD, and NS is estimated to be smallest at 0.072, 0.024, 0.026, and 0.027 in July, 0.024 in June, and 0.025 in September, respectively, whilst largest in January for NS, the YRB and BT, April for the TB, February for the SB, and March for the PRD with 0.055, 0.077 and 0.067, 0.123, and 0.073 and 0.075, respectively. The monthly averaged AAOD500 in each region is consistently about half of the AAOD388. The highest AAE appears in June while the lowest values are in December and January, and the daily AAE values in episode days slightly decrease as compared to non-episode days. Our study indicates that northwestern China plays an important role in the overall AAOD as a result of dust aerosols stemming from desert areas. Moreover, the meteorological conditions in winter and early spring are associated with more energy consumption conducive to the accumulation of high black carbon (BC) aerosol pollution, causing high alert levels of AAOD from November to the following March. Full article
(This article belongs to the Special Issue Development in Carbonaceous Aerosols)
Show Figures

Figure 1

23 pages, 24947 KiB  
Article
Quality Assessment and Application Scenario Analysis of AGRI Land Aerosol Product from the Geostationary Satellite Fengyun-4B in China
by Nan Wang, Bingqian Li, Zhili Jin and Wei Wang
Sensors 2024, 24(16), 5309; https://doi.org/10.3390/s24165309 - 16 Aug 2024
Viewed by 447
Abstract
The Advanced Geostationary Radiation Imager (AGRI) sensor on board the geostationary satellite Fengyun-4B (FY-4B) is capable of capturing particles in different phases in the atmospheric environment and acquiring aerosol observation data with high spatial and temporal resolution. To understand the quality of the [...] Read more.
The Advanced Geostationary Radiation Imager (AGRI) sensor on board the geostationary satellite Fengyun-4B (FY-4B) is capable of capturing particles in different phases in the atmospheric environment and acquiring aerosol observation data with high spatial and temporal resolution. To understand the quality of the Land Aerosol (LDA) product of AGRI and its application prospects, we conducted a comprehensive evaluation of the AGRI LDA AOD. Using the 550 nm AGRI LDA AOD (550 nm) of nearly 1 year (1 October 2022 to 30 September 2023) to compare with the Aerosol Robotic Network (AERONET), MODIS MAIAC, and Himawari-9/AHI AODs. Results show the erratic algorithmic performance of AGRI LDA AOD, the correlation coefficient (R), mean error (Bias), root mean square error (RMSE), and the percentage of data with errors falling within the expected error envelope of ±(0.05+0.15×AODAERONET) (within EE15) of the LDA AOD dataset are 0.55, 0.328, 0.533, and 34%, respectively. The LDA AOD appears to be overestimated easily in the southern and western regions of China and performs poorly in the offshore areas, with an R of 0.43, a Bias of 0.334, a larger RMSE of 0.597, and a global climate observing system fraction (GCOSF) percentage of 15% compared to the inland areas (R = 0.60, Bias = 0.163, RMSE = 0.509, GCOSF = 17%). Future improvements should focus on surface reflectance calculation, water vapor attenuation, and more suitable aerosol model selection to improve the algorithm’s accuracy. Full article
(This article belongs to the Special Issue Recent Trends in Air Quality Sensing)
Show Figures

Figure 1

25 pages, 6444 KiB  
Article
Long-Term Evaluation of Aerosol Optical Properties in the Levantine Region: A Comparative Analysis of AERONET and Aqua/MODIS
by Ayse Gokcen Isik, S. Yeşer Aslanoğlu and Gülen Güllü
Remote Sens. 2024, 16(14), 2651; https://doi.org/10.3390/rs16142651 - 20 Jul 2024
Viewed by 824
Abstract
The focus on aerosol analysis in the Levantine Region is driven by climate-change impacts, the region’s increasing urban development and industrial activities, and its geographical proximity to major dust-source areas. This study conducts a comparative analysis of aerosol optical depth data from Aqua/MODIS [...] Read more.
The focus on aerosol analysis in the Levantine Region is driven by climate-change impacts, the region’s increasing urban development and industrial activities, and its geographical proximity to major dust-source areas. This study conducts a comparative analysis of aerosol optical depth data from Aqua/MODIS and AERONET during different periods between 2003 and 2023 at four stations: IMS-METU-ERDEMLI (Mersin/Türkiye) (2004–2019), CUT-TEPAK (Limassol/Cyprus) (2010–2023), Cairo_EMA_2 (Cairo/Egypt) (2010–2023), and SEDE_BOKER (Sede Boker/Israel) (2003–2023). The objective is to evaluate the variability and reliability of AOD measurements between satellite and ground-based observations and to determine how well they represent regional climatology. The highest percentage of measurements within the expected error envelope was observed at the IMS-METU-ERDEMLI station, indicating the best agreement between MODIS and AERONET data at this location. The Seasonal-Trend Decomposition using Loess (STL) method revealed consistent spring and summer peaks influenced by dust transport from the Sahara and the Middle East, with lower values in winter. The study also considers the influence of cloud fraction on MODIS measurements and includes aerosol classification. A statistically significant slight positive trend in AOD values was identified at the IMS-METU-ERDEMLI station. Conversely, no significant trends were detected at the other stations. The results of this study agree with those of previous research on the impact of long-range dust transport on regional aerosol loadings, emphasizing the importance of integrating satellite and ground-based observations. Full article
Show Figures

Figure 1

25 pages, 8775 KiB  
Article
Analysis of Atmospheric Aerosol Changes in the Qinghai-Tibetan Plateau Region during 2009–2019 Using a New Fusion Algorithm
by Zhijian Zhao and Hideyuki Tonooka
Atmosphere 2024, 15(6), 712; https://doi.org/10.3390/atmos15060712 - 14 Jun 2024
Viewed by 653
Abstract
The Qinghai-Tibetan Plateau (QTP) is the largest permafrost-covered area in the world, and it is critical to understand accurately and dynamically the cyclical changes in atmospheric aerosols in the region. However, due to the scarcity of researchers in this field and the complexity [...] Read more.
The Qinghai-Tibetan Plateau (QTP) is the largest permafrost-covered area in the world, and it is critical to understand accurately and dynamically the cyclical changes in atmospheric aerosols in the region. However, due to the scarcity of researchers in this field and the complexity of analyzing the spatial and temporal dynamics of aerosols, there is a gap in research in this area, which we hope to fill. In this study, we constructed a new fusion algorithm based on the V5.2 algorithm and the second-generation deep blue algorithm through the introduced weight factor of light and dark image elements. We used the algorithm to analyze the spatial and temporal changes in aerosols from 2009–2019. Seasonal changes and the spatial distribution of aerosol optical depth (AOD) were analyzed in comparison with the trend of weight factor, which proved the stability of the fusion algorithm. Spatially, the AOD values in the northeastern bare lands and southeastern woodland decreased most significantly, and combined with the seasonal pattern of change, the AOD values in this region were higher in the spring and fall. In these 11 years, the AOD values in the spring and fall decreased the most, and the aerosol in which the AOD decreases occurred should be the cooling-type sulfate aerosol. In order to verify the accuracy of the algorithm, we compared the AOD values obtained by the algorithm at different time intervals with the measured AOD values of several AERONET stations, in which the MAE, RMSE, and R between the AOD values obtained by the algorithm and the measured averages of the 12 nearest AERONET stations in the QTP area were 0.309, 0.094, and 0.910, respectively. In addition, this study also compares the AOD results obtained from the fusion algorithm when dynamically weighted and mean-weighted, and the results show that the error value is smaller in the dynamic weighting approach in this study. Full article
(This article belongs to the Special Issue Climate Dynamics and Variability Over the Tibetan Plateau)
Show Figures

Figure 1

6 pages, 1874 KiB  
Proceeding Paper
Synergy of CALIOP and Ground-Based Solar Radiometer Data to Study Statistical Characteristics of Aerosols in Regions with a Low Aerosol Load
by Anatoli Chaikovsky, Andrey Bril, Philippe Goloub, Zhengqiang Li, Vladislav Peshcherenkov, Fiodar Asipenka, Luc Blarel, Gael Dubois, Mikhail Korol, Aliaksandr Lapionak, Aleksey Malinka, Natallia Miatselskaya, Thierry Podvin and Ying Zhang
Environ. Sci. Proc. 2024, 29(1), 70; https://doi.org/10.3390/ECRS2023-16860 - 6 Jun 2024
Viewed by 616
Abstract
The statistical characteristics of combined lidar and radiometric measurements obtained from satellite lidar CALIOP and ground-based sun-radiometer stations were used as input datasets to retrieve the altitude profiles of aerosol parameters (LRS-C technique). The signal-to-noise ratio of the input satellite lidar signals increased [...] Read more.
The statistical characteristics of combined lidar and radiometric measurements obtained from satellite lidar CALIOP and ground-based sun-radiometer stations were used as input datasets to retrieve the altitude profiles of aerosol parameters (LRS-C technique). The signal-to-noise ratio of the input satellite lidar signals increased when averaging over a large array of measured data. An algorithm and software package for processing the input dataset of the LRS-C sounding of atmospheric aerosol in regions with medium and low aerosol loads was developed. This paper presents the results of studying long-term changes in the concentration profiles of aerosol modes in regions of East Europe (AERONET site Minsk, 53.92° N, 27.60° E) and East Antarctic (AERONET site Vechernaya Hill, 67.66° S, 46.16° E). Full article
(This article belongs to the Proceedings of ECRS 2023)
Show Figures

Figure 1

20 pages, 32718 KiB  
Article
Characterizing Dust and Biomass Burning Events from Sentinel-2 Imagery
by Simone Lolli, Luciano Alparone, Alberto Arienzo and Andrea Garzelli
Atmosphere 2024, 15(6), 672; https://doi.org/10.3390/atmos15060672 - 31 May 2024
Viewed by 625
Abstract
The detection and evaluation of biomass burning and dust events are critical for understanding their impact on air quality, climate, and human health, particularly in the Mediterranean region. This research pioneers an innovative methodology that uses Sentinel-2 multispectral (MS) imagery to meticulously pinpoint [...] Read more.
The detection and evaluation of biomass burning and dust events are critical for understanding their impact on air quality, climate, and human health, particularly in the Mediterranean region. This research pioneers an innovative methodology that uses Sentinel-2 multispectral (MS) imagery to meticulously pinpoint and analyze long-transport dust outbreaks and biomass burning phenomena, originating both locally and transported from remote areas. We developed the dust/biomass burning (DBB) composite normalized differential index, a tool that identifies clear, dusty, and biomass burning scenarios in the selected region. The DBB index jointly employs specific Sentinel-2 bands: B2-B3-B4 for visible light analysis, and B11 and B12 for short-wave infrared (SWIR), exploiting the specificity of each wavelength to assess the presence of different aerosols. A key feature of the DBB index is its normalization by the surface reflectance of the scene, which ensures independence from the underlying texture, such as streets and buildings, for urban areas. The differentiation involves the comparison of the top-of-atmosphere (TOA) reflectance values from aerosol events with those from clear-sky reference images, thereby constituting a sort of calibration. The index is tailored for urban settings, where Sentinel-2 imagery provides a decametric spatial resolution and revisit time of 5 days. The average values of DBB achieve a 96% match with the coarse-mode aerosol optical depths (AOD), measured by a local station of the AERONET network of sun-photometers. In future studies, the map of DBB could be integrated with that achieved from Sentinel-3 images, which offer similar spectral bands, albeit with much less fine spatial resolution, yet benefit from daily coverage. Full article
(This article belongs to the Special Issue Haze and Related Aerosol Air Pollution in Remote and Urban Areas)
Show Figures

Figure 1

23 pages, 6735 KiB  
Article
A Bayesian Framework to Quantify Uncertainty in Aerosol Optical Model Selection Applied to TROPOMI Measurements
by Anu Kauppi, Antti Kukkurainen, Antti Lipponen, Marko Laine, Antti Arola, Hannakaisa Lindqvist and Johanna Tamminen
Remote Sens. 2024, 16(11), 1945; https://doi.org/10.3390/rs16111945 - 28 May 2024
Cited by 1 | Viewed by 685
Abstract
This article presents a method within a Bayesian framework for quantifying uncertainty in satellite aerosol remote sensing when retrieving aerosol optical depth (AOD). By using a Bayesian model averaging technique, we take into account uncertainty in aerosol optical model selection and also obtain [...] Read more.
This article presents a method within a Bayesian framework for quantifying uncertainty in satellite aerosol remote sensing when retrieving aerosol optical depth (AOD). By using a Bayesian model averaging technique, we take into account uncertainty in aerosol optical model selection and also obtain a shared inference about AOD based on the best-fitting optical models. In particular, uncertainty caused by forward-model approximations has been taken into account in the AOD retrieval process to obtain a more realistic uncertainty estimate. We evaluated a model discrepancy, i.e., forward-model uncertainty, empirically by exploiting the residuals of model fits and using a Gaussian process to characterise the discrepancy. We illustrate the method with examples using observations from the TROPOspheric Monitoring Instrument (TROPOMI) on the Sentinel-5 Precursor satellite. We evaluated the results against ground-based remote sensing aerosol data from the Aerosol Robotic Network (AERONET). Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

39 pages, 5859 KiB  
Article
The Recovery and Re-Calibration of a 13-Month Aerosol Extinction Profiles Dataset from Searchlight Observations from New Mexico, after the 1963 Agung Eruption
by Juan-Carlos Antuña-Marrero, Graham W. Mann, John Barnes, Abel Calle, Sandip S. Dhomse, Victoria E. Cachorro, Terry Deshler, Zhengyao Li, Nimmi Sharma and Louis Elterman
Atmosphere 2024, 15(6), 635; https://doi.org/10.3390/atmos15060635 - 24 May 2024
Cited by 1 | Viewed by 691
Abstract
The recovery and re-calibration of a dataset of vertical aerosol extinction profiles of the 1963/64 stratospheric aerosol layer measured by a searchlight at 32° N in New Mexico, US, is reported. The recovered dataset consists of 105 aerosol extinction profiles at 550 nm [...] Read more.
The recovery and re-calibration of a dataset of vertical aerosol extinction profiles of the 1963/64 stratospheric aerosol layer measured by a searchlight at 32° N in New Mexico, US, is reported. The recovered dataset consists of 105 aerosol extinction profiles at 550 nm that cover the period from December 1963 to December 1964. It is a unique record of the portion of the aerosol cloud from the March 1963 Agung volcanic eruption that was transported into the Northern Hemisphere subtropics. The data-recovery methodology involved re-digitizing the 105 original aerosol extinction profiles from individual Figures within a research report, followed by the re-calibration. It involves inverting the original equation used to compute the aerosol extinction profile to retrieve the corresponding normalized detector response profile. The re-calibration of the original aerosol extinction profiles used Rayleigh extinction profiles calculated from local soundings. Rayleigh and aerosol slant transmission corrections are applied using the MODTRAN code in transmission mode. Also, a best-estimate aerosol phase function was calculated from observations and applied to the entire column. The tropospheric aerosol phase function from an AERONET station in the vicinity of the searchlight location was applied between 2.76 to 11.7 km. The stratospheric phase function, applied for a 12.2 to 35.2 km altitude range, is calculated from particle-size distributions measured by a high-altitude aircraft in the vicinity of the searchlight in early 1964. The original error estimate was updated considering unaccounted errors. Both the re-calibrated aerosol extinction profiles and the re-calibrated stratospheric aerosol optical depth magnitudes showed higher magnitudes than the original aerosol extinction profiles and the original stratospheric aerosol optical depth, respectively. However, the magnitudes of the re-calibrated variables show a reasonable agreement with other contemporary observations. The re-calibrated stratospheric aerosol optical depth demonstrated its consistency with the tropics-to-pole decreasing trend, associated with the major volcanic eruption stratospheric aerosol pattern when compared to the time-coincident stratospheric aerosol optical depth lidar observations at Lexington at 42° N. Full article
(This article belongs to the Special Issue Ozone in Stratosphere and Its Relation to Stratospheric Dynamics)
Show Figures

Figure 1

19 pages, 2941 KiB  
Article
Using HawkEye Level-2 Satellite Data for Remote Sensing Tasks in the Presence of Dust Aerosol
by Anna Papkova, Darya Kalinskaya and Evgeny Shybanov
Atmosphere 2024, 15(5), 617; https://doi.org/10.3390/atmos15050617 - 20 May 2024
Viewed by 843
Abstract
This paper is the first to examine the operation of the HawkEye satellite in the presence of dust aerosol. The study region is the Black Sea. Dust transport dates were identified using visual inspection of satellite imagery, back-kinematic HYSPLIT trajectory analysis, CALIPSO aerosol [...] Read more.
This paper is the first to examine the operation of the HawkEye satellite in the presence of dust aerosol. The study region is the Black Sea. Dust transport dates were identified using visual inspection of satellite imagery, back-kinematic HYSPLIT trajectory analysis, CALIPSO aerosol stratification and typing maps, and the global forecasting model SILAM. In a comparative analysis of in-situ and satellite measurements of the remote sensing reflectance, an error in the atmospheric correction of HawkEye measurements was found both for a clean atmosphere and in the presence of an absorbing aerosol. It is shown that, on average, the dependence of the atmospheric correction error on wavelength has the form of a power function of the form from λ−3 to λ−9. The largest errors are in the short-wavelength region of the spectrum (412–443 nm) for the dust and dusty marine aerosol domination dates. A comparative analysis of satellite and in situ measurements of the optical characteristics of the atmosphere, namely the AOD and the Ångström parameter, was carried out. It is shown that the aerosol model used by HawkEye underestimates the Angström parameter and, most likely, large errors and outliers in satellite measurements are associated with this. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

14 pages, 13233 KiB  
Communication
Radiometric Calibration of the Near-Infrared Bands of GF-5-02/DPC for Water Vapor Retrieval
by Yanqing Xie, Qingyu Zhu, Sifeng Zhu, Weizhen Hou, Liguo Zhang, Xuefeng Lei, Miaomiao Zhang, Yunduan Li, Zhenhai Liu, Yuan Wen and Zhengqiang Li
Remote Sens. 2024, 16(10), 1806; https://doi.org/10.3390/rs16101806 - 20 May 2024
Viewed by 722
Abstract
The GaoFen (GF)-5-02 satellite is one of the new generations of hyperspectral observation satellites launched by China in 2021. The directional polarimetric camera (DPC) is an optical sensor onboard the GF-5-02 satellite. The precipitable water vapor (PWV) is a key detection parameter of [...] Read more.
The GaoFen (GF)-5-02 satellite is one of the new generations of hyperspectral observation satellites launched by China in 2021. The directional polarimetric camera (DPC) is an optical sensor onboard the GF-5-02 satellite. The precipitable water vapor (PWV) is a key detection parameter of DPC. However, the existing PWV data developed using DPC data have significant errors due to the lack of the timely calibration of the two bands (865, 910 nm) of DPC used for PWV retrieval. In order to acquire DPC PWV data with smaller errors, a calibration method is developed for these two bands. The method consists of two parts: (1) calibrate the 865 nm band of the DPC using the cross-calibration method, (2) calibrate the 910 nm band of the DPC according to the calibrated 865 nm band of the DPC. This method effectively addresses the issue of the absence of a calibration method for the water vapor absorption band (910 nm) of the DPC. Regardless of whether AERONET PWV data or SuomiNET PWV data are used as the reference data, the accuracy of the DPC PWV data developed using calibrated DPC data is significantly superior to that of the DPC PWV data retrieved using data before recalibration. This means that the calibration method for the NIR bands of the DPC can effectively enhance the quality of DPC PWV data. Full article
Show Figures

Graphical abstract

Back to TopTop