Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = AL thickening rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 9367 KiB  
Article
Effect of Elemental Iron Containing Bauxite Residue Obtained After Electroreduction on High-Pressure Alkaline Leaching of Boehmitic Bauxite and Subsequent Thickening Rate
by Andrei Shoppert, Irina Loginova, Malal Mamodou Diallo and Dmitrii Valeev
Materials 2025, 18(2), 224; https://doi.org/10.3390/ma18020224 - 7 Jan 2025
Viewed by 451
Abstract
The use of reduction leaching in the production of alumina from bauxite by the Bayer process in order to decrease the amount of waste (bauxite residue) by adding elemental iron or aluminum, as well as Fe2+ salts and organic compounds in the [...] Read more.
The use of reduction leaching in the production of alumina from bauxite by the Bayer process in order to decrease the amount of waste (bauxite residue) by adding elemental iron or aluminum, as well as Fe2+ salts and organic compounds in the stage of high-pressure leaching, requires the purchase of relatively expensive reagents in large quantities. The aim of this study was to investigate the possibility of the use of electrolytically reduced bauxite residue (BR) as a substitute for these reagents. Reduced BR was obtained from Al-goethite containing BR using a bulk cathode in alkaline suspension. The degree of deoxidation of Fe3+ compounds was 55% after 2 h of electrolysis with a current yield of more than 73%. The addition of reduced BR according to the shrinking core model leads to a change in the limiting stage of the high-pressure boehmitic bauxite leaching from a surface chemical reaction to internal diffusion. The activation energy decreased from 32.9 to 17.2 kJ/mol by adding reduced red mud. It was also shown that the addition of reduced BR increased the rate of thickening of the slurry after leaching by a factor of 1.5 and decreased the Na2O losses by 15% without the addition of lime. The solid residue was examined by means of X-ray diffraction analysis and scanning electron microscopy to confirm the presence of magnetite and elemental iron. A preliminary techno-economic analysis was carried out to assess the applicability of the proposed process. Full article
(This article belongs to the Special Issue Metallurgical Process Simulation and Optimization2nd Volume)
Show Figures

Figure 1

9 pages, 2392 KiB  
Proceeding Paper
Experimental Evaluation of Thermal Performance in Shell and Tube Heat Exchangers Using Al₂O₃-γ Nanofluids
by Shahid Iqbal, Muhammad Faisal Naveed, Manzar Masud, Adnan Tariq, Taimoor Kausar, Zohaib Nasir and Moazzam Ali Babar
Eng. Proc. 2024, 75(1), 13; https://doi.org/10.3390/engproc2024075013 - 24 Sep 2024
Viewed by 860
Abstract
Shell and tube heat exchangers (H.Xs) are being used broadly in the generation of power, refrigeration, nuclear, chemical, and petroleum industries due to their high cooling and heating capacity. In this research paper, an experimental test bench for a shell and tube H.X [...] Read more.
Shell and tube heat exchangers (H.Xs) are being used broadly in the generation of power, refrigeration, nuclear, chemical, and petroleum industries due to their high cooling and heating capacity. In this research paper, an experimental test bench for a shell and tube H.X was fabricated according to the standard. This study aimed to test the thermal performance of shell and tube H.Xs using Al2O3-γ nanofluid with different concentrations in counter flow configurations. Nanoparticles of 12 nm of size and 99% purity were used in this investigation. These nanoparticles were dispersed in distilled water to prepare nanofluids at three different concentrations: 0.11%, 0.22%, and 0.34%. Nanofluids of different concentrations were heated and passed through H.X tubes while water was passed through the shell side. The experiments were performed at three different flow rates: 6, 8, and 10 L per minute (L/min). It was observed from the experimentation that nanofluid has higher efficiency as compared to simple distilled water. Experimental investigations showed higher values of overall heat transfer coefficient (U), convective heat transfer coefficient (h), and heat transfer rate (Q˙) at 0.22%, noted as 33.33%, 48%, and 30%, respectively. The lowest value for U was noted 47% for distilled water. The hydrodynamic and thermal boundary layers were also determined, and when the flow rate increased it led to thinning of the thermal boundary layer and improved heat transfer; however, increased concentrations of nanoparticles thickened the boundary layer by increasing viscosity and boosting thermal conductivity (k) simultaneously. It was revealed that the best concentration for maximizing heat transfer was 0.22%. The findings show that heat transmission efficiency was improved at both 0.11% and 0.22% of nanofluids compared to simple distilled water; when the concentration was raised to 0.34%, the results decreased due to increasing viscosity. Therefore, there is a need to precisely adjust the nanoparticle loading rate for maximum heat transfer enhancement without affecting fluid properties. Full article
Show Figures

Figure 1

14 pages, 1347 KiB  
Article
Sequential Induction of Drug Resistance and Characterization of an Initial Candida albicans Drug-Sensitive Isolate
by Setrida El Hachem, Nour Fattouh, Christy Chedraoui, Marc Finianos, Ibrahim Bitar and Roy A. Khalaf
J. Fungi 2024, 10(5), 347; https://doi.org/10.3390/jof10050347 - 13 May 2024
Cited by 2 | Viewed by 1781
Abstract
Background: The pathogenic fungus Candida albicans is a leading agent of death in immunocompromised individuals with a growing trend of antifungal resistance. Methods: The purpose is to induce resistance to drugs in a sensitive C. albicans strain followed by whole-genome sequencing to determine [...] Read more.
Background: The pathogenic fungus Candida albicans is a leading agent of death in immunocompromised individuals with a growing trend of antifungal resistance. Methods: The purpose is to induce resistance to drugs in a sensitive C. albicans strain followed by whole-genome sequencing to determine mechanisms of resistance. Strains will be assayed for pathogenicity attributes such as ergosterol and chitin content, growth rate, virulence, and biofilm formation. Results: We observed sequential increases in ergosterol and chitin content in fluconazole-resistant isolates by 78% and 44%. Surface thickening prevents the entry of the drug, resulting in resistance. Resistance imposed a fitness trade-off that led to reduced growth rates, biofilm formation, and virulence in our isolates. Sequencing revealed mutations in genes involved in resistance and pathogenicity such as ERG11, CHS3, GSC2, CDR2, CRZ2, and MSH2. We observed an increase in the number of mutations in key genes with a sequential increase in drug-selective pressures as the organism increased its odds of adapting to inhospitable environments. In ALS4, we observed two mutations in the susceptible strain and five mutations in the resistant strain. Conclusion: This is the first study to induce resistance followed by genotypic and phenotypic analysis of isolates to determine mechanisms of drug resistance. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

17 pages, 3859 KiB  
Article
Modeling of Particle Size Distribution in the Presence of Flocculant
by Elmira Fedorova, Elena Pupysheva and Vladimir Morgunov
Symmetry 2024, 16(1), 114; https://doi.org/10.3390/sym16010114 - 18 Jan 2024
Viewed by 1619
Abstract
This study presents a mathematical description of the solid fraction aggregation process in the presence of a flocculant and its result. The basis is a population balance equation. The model is realized in Python language. Verification was carried out using red mud from [...] Read more.
This study presents a mathematical description of the solid fraction aggregation process in the presence of a flocculant and its result. The basis is a population balance equation. The model is realized in Python language. Verification was carried out using red mud from the investigated enterprise; Flomin AL P 99 VHM was used as a flocculant. The mean square deviation for the parameter “mean aggregate diameter” is equal to 19.88 μm. The time required for the model calculation is about 3 min. The time spent on modeling depends on the number of calculation channels. In this study, 40 channels (20 with PSD source data, and 20 with empty values required for the calculation) were used for the calculation. The time spent on the model calculation is much shorter than the inertia via each of the communication channels for the studied symmetric radial type thickener. A user interface is developed, where the input parameters are the initial pulp particle size distribution, viscosity and density of pulp in the thickener, particle surface area, concentration and flow rate of flocculant, concentration of solid particles, inner diameter and height of the feed well, and simulation time. The result of the simulation is particle size distribution in the feed well of the washer and the mean flocculus diameter. Full article
Show Figures

Figure 1

12 pages, 8955 KiB  
Article
Wrinkling and Strengthening Behaviors in the Two-Layer-Sheet Hot-Forming–Quenching Integrated Process for an Al–Cu–Mg-Alloy Thin-Walled Curved-Surface Shell
by Xiaobo Fan, Baoshan Sun, Wenliang Qu, Xianshuo Chen and Xugang Wang
Materials 2023, 16(13), 4766; https://doi.org/10.3390/ma16134766 - 1 Jul 2023
Cited by 2 | Viewed by 1350
Abstract
The thin-walled curved-surface component is an important structural element in aerospace. Wrinkling, springback and thermal distortion occur easily when forming these components. To form thin-walled components with high precision and strength, a two-layer-sheet hot-forming–quenching integrated process was proposed, in which wrinkling is prevented [...] Read more.
The thin-walled curved-surface component is an important structural element in aerospace. Wrinkling, springback and thermal distortion occur easily when forming these components. To form thin-walled components with high precision and strength, a two-layer-sheet hot-forming–quenching integrated process was proposed, in which wrinkling is prevented by thickening the upper sheet and springback is reduced by solution and die quenching. Selecting an appropriate upper sheet is crucial to suppress wrinkling and accomplish effective die quenching. The effect of the upper sheet on the wrinkling and strengthening behaviors of an Al–Cu–Mg-alloy melon-petal shell was thus studied in detail. The anti-wrinkle mechanism was analyzed through numerical simulation. The forming quality, including forming precision, deformation uniformity and strength, were further evaluated. The wrinkle gradually decreased with the increasing thickness of the upper sheet, resulting from the depressed compressive stress at the edge of the target sheet. A defect-free specimen with a smooth surface was finally formed when the thickness of the upper sheet reached three times that of the target sheet. The profile deviation was ±0.5 mm. Excellent thickness uniformity in a specimen can be obtained with a maximum thinning rate of 6%. The full strength, ranging from 455 to 466 MPa, can be obtained in all regions of the specimen, indicating that effective strengthening can be accomplished with the two-layer-sheet die quenching. The results indicated that high forming quality and full strength can be obtained in a two-layer-sheet hot-forming–quenching integrated process. This research has great potential for engineering applications using aluminum-alloy curved-surface thin-walled components. Full article
Show Figures

Figure 1

16 pages, 5960 KiB  
Article
Development of the Al12SiCuFe Alloy Foam Composites with ZrSiO4 Reinforcements at Different Foaming Temperatures
by Suresh Kumar, Sanjeev Kumar, Pardeep Kumar Nagpal, Sharad Ramdas Gawade, Sachin Salunkhe, Udayagiri Chandrasekhar and João Paulo Davim
Metals 2023, 13(4), 685; https://doi.org/10.3390/met13040685 - 30 Mar 2023
Cited by 1 | Viewed by 1667
Abstract
Lightweight aluminum composite is a class of foam material that finds many applications. These properties make it suitable for many industries, such as the transportation, aerospace and sports industries. In the present work, closed-cell foams of an Al-Si12CuFe alloy and its composite are [...] Read more.
Lightweight aluminum composite is a class of foam material that finds many applications. These properties make it suitable for many industries, such as the transportation, aerospace and sports industries. In the present work, closed-cell foams of an Al-Si12CuFe alloy and its composite are developed by a stir casting process. The optimization of the foaming temperature for the alloy and composite foams was conducted in terms of the ligament and node size of the alloy and also the volatility of the zircon with the melt, to provide strength to the cell walls. CaCO3 as a blowing agent was homogeneously distributed in the molten metal without adding any thickener to develop the metal foam. The decomposition rate of CaCO3 is temperature-dependent, which is attributed to the formation of gas bubbles in the molten alloy. Cell structure, such as cell size and cell wall thickness, is controlled by manufacturing process parameters, and both the physical and mechanical properties are dependent on the foam cell structure, with cell size being the major variable. The results show that the increase in cell wall thickness with higher temperature leads to a decrease in cell size. By adding the zircon to the melt, the cell size of the composite foam first increases, and then the thickening of the wall occurs as the temperature is increased. The uniform distribution of the blowing agent in molten metal helps in the formation of a uniform cell structure. In this work, a comparative structural study of alloy foam and composite foam is presented regarding cell size, cell shape and foam stability at different temperatures. Full article
Show Figures

Figure 1

15 pages, 11287 KiB  
Article
Production of Refined and Modified Closed-Cell Aluminum Foams by Melt-Foaming Method
by Alberto Jesús Poot Manzanilla, Alejandro Cruz Ramírez, Eduardo Colin García, José Antonio Romero Serrano, Ricardo Gerardo Sánchez Alvarado and Miguel Ángel Suárez Rosales
Metals 2023, 13(3), 622; https://doi.org/10.3390/met13030622 - 20 Mar 2023
Cited by 4 | Viewed by 2157
Abstract
Closed-cell A356 aluminum alloy foams refined and modified were successfully fabricated by using barite and calcium carbonate as thickening and foaming agents, respectively. A melt treatment consisting of adding master alloys of Al-5Ti-1B and Al-10Sr for refining the dendritic microstructure and modifying the [...] Read more.
Closed-cell A356 aluminum alloy foams refined and modified were successfully fabricated by using barite and calcium carbonate as thickening and foaming agents, respectively. A melt treatment consisting of adding master alloys of Al-5Ti-1B and Al-10Sr for refining the dendritic microstructure and modifying the primary eutectic silicon, respectively, were included in the foaming process. The microstructure and mechanical properties of the foams manufactured were analyzed and compared with foams produced without the refining and modifying treatments. The secondary dendritic arm spacing (SDAS) was determined by optical measurements. Lower SDAS values were obtained in foam regions closer to the mold walls due to the high solidification rate imposed during the cooling step and a decrease in the SDAS values for the foams produced with the addition of the Al-5Ti-1B master alloy was evident. Additionally, the addition of the Al-10Sr master alloy caused the formation of solid solution dendrites and a fine irregular fibrous form of silicon. Foams produced with the melt treatment exhibit a good combination of structure and mechanical properties. Therefore, the melt route established is a feasible way to improve foam performance where the lowest SDAS and the highest mechanical properties were obtained for the closed-cell foams produced. Full article
(This article belongs to the Special Issue Advanced Metallic Foams)
Show Figures

Figure 1

14 pages, 3346 KiB  
Article
Tailoring of AlAs/InAs/GaAs QDs Nanostructures via Capping Growth Rate
by Nazaret Ruiz, Daniel Fernandez, Esperanza Luna, Lazar Stanojević, Teresa Ben, Sara Flores, Verónica Braza, Alejandro Gallego-Carro, Guillermo Bárcena-González, Andres Yañez, José María Ulloa and David González
Nanomaterials 2022, 12(14), 2504; https://doi.org/10.3390/nano12142504 - 21 Jul 2022
Cited by 1 | Viewed by 1843
Abstract
The use of thin AlA capping layers (CLs) on InAs quantum dots (QDs) has recently received considerable attention due to improved photovoltaic performance in QD solar cells. However, there is little data on the structural changes that occur during capping and their relation [...] Read more.
The use of thin AlA capping layers (CLs) on InAs quantum dots (QDs) has recently received considerable attention due to improved photovoltaic performance in QD solar cells. However, there is little data on the structural changes that occur during capping and their relation to different growth conditions. In this work, we studied the effect of AlA capping growth rate (CGR) on the structural features of InAs QDs in terms of shape, size, density, and average content. As will be shown, there are notable differences in the characteristics of the QDs upon changing CGR. The Al distribution analysis in the CL around the QDs was revealed to be the key. On the one hand, for the lowest CGR, Al has a homogeneous distribution over the entire surface, but there is a large thickening of the CL on the sides of the QD. As a result, the QDs are lower, lenticular in shape, but richer in In. On the other hand, for the higher CGRs, Al accumulates preferentially around the QD but with a more uniform thickness, resulting in taller QDs, which progressively adopt a truncated pyramidal shape. Surprisingly, intermediate CGRs do not improve either of these behaviors, resulting in less enriched QDs. Full article
Show Figures

Graphical abstract

17 pages, 5617 KiB  
Article
Effects of Rapid Cooling on Properties of Aluminum-Steel Friction Stir Welded Joint
by Hamed Aghajani Derazkola, Eduardo García, Arameh Eyvazian and Mohammad Aberoumand
Materials 2021, 14(4), 908; https://doi.org/10.3390/ma14040908 - 14 Feb 2021
Cited by 42 | Viewed by 3316
Abstract
In this study, dissimilar sheets including AA3003 aluminum and A441 AISI steel were welded via cooling-assisted friction stir welding (FSW). Three different cooling mediums including forced CO2, forced water, and forced air were employed, and a non-cooled sample was processed to [...] Read more.
In this study, dissimilar sheets including AA3003 aluminum and A441 AISI steel were welded via cooling-assisted friction stir welding (FSW). Three different cooling mediums including forced CO2, forced water, and forced air were employed, and a non-cooled sample was processed to compare the cooling-assisted condition with the traditional FSW condition. The highest cooling rate belongs to CO2 and the lowest cooling rate belongs to the non-cooled sample as FSW. The best macrograph without any segregation at interface belongs to the water-cooled sample and the poorest joint with notable segregation belongs to the CO2 cooling FSW sample. The CO2 cooling FSW sample exhibits the smallest grain size due to the suppression of grain growth during dynamic recrystallization (DRX). The intermetallic compound (IMC) thickening was suppressed by a higher cooling rate in CO2 cooling sample and just Al-rich phase was formed in this joint. The lowest cooling rate in the FSW sample exhibits formation of the Fe rich phase. The IMC layers were thicker at the top of the weld due to closeness with the heat generation source. The water cooling sample exhibits the highest tensile strength due to proper mechanical bonding simultaneously with optimum IMC thickness to provide appropriate metallurgical bonding. Fractography observation indicates that there is a semi-ductile fracture in the water cooling sample and CO2 cooling sample exhibits more brittle fracture. Hardness evaluation reveals that the higher the cooling rate formed, the higher the hardness in stir zone, and hardness changes in the aluminum side were higher than the steel side. Full article
Show Figures

Figure 1

10 pages, 3428 KiB  
Article
Voltage-Controlled Anodic Oxidation of Porous Fluorescent SiC for Effective Surface Passivation
by Kosuke Yanai, Weifang Lu, Yoma Yamane, Dong-Pyo Han, Haiyan Ou, Motoaki Iwaya, Tetsuya Takeuchi, Satoshi Kamiyama and Isamu Akasaki
Nanomaterials 2020, 10(10), 2075; https://doi.org/10.3390/nano10102075 - 21 Oct 2020
Cited by 3 | Viewed by 2199
Abstract
This study investigated the fabrication of porous fluorescent SiC using a constant voltage-controlled anodic oxidation process. The application of a high, constant voltage resulted in a spatial distinction between the porous structures formed inside the fluorescent SiC substrates, due to the different etching [...] Read more.
This study investigated the fabrication of porous fluorescent SiC using a constant voltage-controlled anodic oxidation process. The application of a high, constant voltage resulted in a spatial distinction between the porous structures formed inside the fluorescent SiC substrates, due to the different etching rates at the terrace and the large step bunches. Large, dendritic porous structures were formed as the etching process continued and the porous layer thickened. Under the conditions of low hydrofluoric acid (HF) concentration, the uniformity of the dendritic porous structures through the entire porous layer was considerably improved compared with the conditions of high HF concentration. The resulting large uniform structure offered a sizable surface area, and promoted the penetration of atomic layer-deposited (ALD) Al2O3 films (ALD–Al2O3). The emission intensity in the porous fluorescent SiC was confirmed via photoluminescence (PL) measurements to be significantly improved by a factor of 128 after ALD passivation. With surface passivation, there was a clear blueshift in the emission wavelength, owing to the effective suppression of the non-radiative recombination rate in the porous structures. Furthermore, the spatial uniformity of emitted light was examined via PL mapping using three different excitation lasers, which resulted in the observation of uniform and distinctive emissions in the fluorescent SiC bulk and porous areas. Full article
Show Figures

Figure 1

14 pages, 6821 KiB  
Article
Research on the Flame Retardancy Properties and Mechanism of Modified Asphalt with Halloysite Nanotubes and Conventional Flame Retardant
by Yangwei Tan, Zhaoyi He, Xiang Li, Bin Jiang, Jiaqi Li and Yonggang Zhang
Materials 2020, 13(20), 4509; https://doi.org/10.3390/ma13204509 - 12 Oct 2020
Cited by 22 | Viewed by 3235
Abstract
The inflammability of asphalt road will promote fire spread in the tunnel and produce lots of toxic smoke. To improve the fire resistance of asphalt pavement, mineral powder flame retardants are generally replaced by flame retardants in equal amounts. In this study, the [...] Read more.
The inflammability of asphalt road will promote fire spread in the tunnel and produce lots of toxic smoke. To improve the fire resistance of asphalt pavement, mineral powder flame retardants are generally replaced by flame retardants in equal amounts. In this study, the effects of the synergistic flame retardancy system of halloysite nanotubes (HNTs) and conventional flame retardants (CFR) on the flame retardancy performance and mechanism of asphalt were investigated. Firstly, the flame retardancy properties of the HNTs and CFR composite modified asphalt were investigated based on the Cleveland open cup method (COC), Limiting oxygen index meter (LOI), and Cone calorimeter tests (CCTs). Then, the flame retardancy mechanism of the modified asphalt was studied based on Thermogravimetric analyzer (TGA), Fourier-transform infrared (FTIR), and Scanning electron microscopy (SEM). The results show that adding HNTs could improve the flame retardancy of the CFR modified asphalt binder. When 1 wt % HNTs and 8 wt % CFR were used, the limiting oxygen index of asphalt increased by 40.1%, the ignition temperature increased by 40 °C, while the heat release rate, total heat release, the smoke production rate, total smoke release, and other parameters decreased with varying degrees. Based on TG, FTIR, and SEM, the targeted flame retardancy mechanism and synergistic effect of HNTs/CFR flame retardancy system were revealed and summarized as three stages: (1) Stage 1, aluminum hydroxide (ATH) absorbs heat through thermal decomposition and inhibits the decomposition of lightweight components in asphalt; (2) Stage 2, aluminum diethyl phosphate (ADP) decomposes and produces organic phosphoric acid, which catalyzes crosslinking and ring thickening of asphalt and the quenching effect of phosphorus free radicals to block the combustion; and (3) Stage 3, HNTs plays an important role in increasing the integrity and density of the barrier layer. In addition, the Al2O3 produced by the decomposition of ATH, the carbon layer formed by the ADP catalyzed pitch, and HNTs play a significant synergistic effect in the formation of the barrier layer. Thus, the combination of HNTs and CFR has been proved to be a prospective flame retardancy system for asphalt. Full article
(This article belongs to the Special Issue The Impact of Nanomaterials in Smart Construction Materials)
Show Figures

Figure 1

11 pages, 8209 KiB  
Article
Formation of Interfacial Reaction Layers in Al2O3/SS 430 Brazed Joints Using Cu-7Al-3.5Zr Alloys
by Hoejun Heo, Hyeonim Joung, Keeyoung Jung and Chung-Yun Kang
Metals 2018, 8(12), 990; https://doi.org/10.3390/met8120990 - 25 Nov 2018
Cited by 3 | Viewed by 3055
Abstract
The formation of interfacial reaction layers was investigated in an α-Al2O3/430 stainless steel (SS430) joint brazed using a Cu-7Al-3.5Zr active brazing alloy. Brazing was conducted at above its eutectic temperature of 945 °C and below liquidus 1045 °C, where [...] Read more.
The formation of interfacial reaction layers was investigated in an α-Al2O3/430 stainless steel (SS430) joint brazed using a Cu-7Al-3.5Zr active brazing alloy. Brazing was conducted at above its eutectic temperature of 945 °C and below liquidus 1045 °C, where liquid and solid phases of the brazing alloys coexists. At 1000 °C, the liquid phase of the brazing alloy was wet onto the α-Al2O3 surface. Zr in the liquid phase reduced α-Al2O3 to form a continuous ZrO2 layer. As the dwell time increased, Zr in the liquid phases near α-Al2O3 interface was used up to thicken the reaction layers. The growth kinetics of the layer obeys the parabolic rate law with a rate constant of 9.25 × 10−6 cm·s−1/2. It was observed that a number of low yield strength Cu-rich particles were dispersed over the reaction layer, which can release the residual stress of the joint resulting in reduction of crack occurrence. Full article
Show Figures

Figure 1

22756 KiB  
Article
Characterization of Active Layer Thickening Rate over the Northern Qinghai-Tibetan Plateau Permafrost Region Using ALOS Interferometric Synthetic Aperture Radar Data, 2007–2009
by Yuanyuan Jia, Jin-Woo Kim, C. K. Shum, Zhong Lu, Xiaoli Ding, Lei Zhang, Kamil Erkan, Chung-Yen Kuo, Kun Shang, Kuo-Hsin Tseng and Yuchan Yi
Remote Sens. 2017, 9(1), 84; https://doi.org/10.3390/rs9010084 - 17 Jan 2017
Cited by 46 | Viewed by 6494
Abstract
The Qinghai-Tibetan plateau (QTP), also known as the Third Pole and the World Water Tower, is the largest and highest plateau with distinct and competing surface and subsurface processes. It is covered by a large layer of discontinuous and sporadic alpine permafrost which [...] Read more.
The Qinghai-Tibetan plateau (QTP), also known as the Third Pole and the World Water Tower, is the largest and highest plateau with distinct and competing surface and subsurface processes. It is covered by a large layer of discontinuous and sporadic alpine permafrost which has degraded 10% during the past few decades. The average active layer thickness (ALT) increase rate is approximately 7.5 cm·yr−1 from 1995 to 2007, based on soil temperature measurements from 10 borehole sites along Qinghai-Tibetan Highway, and approximately 6.3 cm·yr−1, 2006–2010, using soil temperature profiles for 27 monitoring sites along Qinghai-Tibetan railway. In this study, we estimated the ALT and its AL thickening rate in the northern QTP near the railway using ALOS PALSAR L-band small baseline subset interferometric synthetic aperture radar (SBAS-InSAR) data observed land subsidence and the corresponding ALT modeling. The InSAR estimated ALT and AL thickening rate were validated with ground-based observations from the borehole site WD4 within our study region, indicating excellent agreement. We concluded that we have generated high spatial resolution (30 m) and spatially-varying ALT and AL thickening rates, 2007–2009, over approximately an area of 150 km2 of permafrost-covered region in the northern QTP. Full article
(This article belongs to the Special Issue Remote Sensing in Tibet and Siberia)
Show Figures

Graphical abstract

1004 KiB  
Article
Microstructure and Tensile Behavior of Laser Arc Hybrid Welded Dissimilar Al and Ti Alloys
by Ming Gao, Cong Chen, Yunze Gu and Xiaoyan Zeng
Materials 2014, 7(3), 1590-1602; https://doi.org/10.3390/ma7031590 - 28 Feb 2014
Cited by 71 | Viewed by 8035
Abstract
Fiber laser-cold metal transfer arc hybrid welding was developed to welding-braze dissimilar Al and Ti alloys in butt configuration. Microstructure, interface properties, tensile behavior, and their relationships were investigated in detail. The results show the cross-weld tensile strength of the joints is up [...] Read more.
Fiber laser-cold metal transfer arc hybrid welding was developed to welding-braze dissimilar Al and Ti alloys in butt configuration. Microstructure, interface properties, tensile behavior, and their relationships were investigated in detail. The results show the cross-weld tensile strength of the joints is up to 213 MPa, 95.5% of same Al weld. The optimal range of heat input for accepted joints was obtained as 83–98 J·mm−1. Within this range, the joint is stronger than 200 MPa and fractures in weld metal, or else, it becomes weaker and fractures at the intermetallic compounds (IMCs) layer. The IMCs layer of an accepted joint is usually thin and continuous, which is about 1μm-thick and only consists of TiAl2 due to fast solidification rate. However, the IMCs layer at the top corner of fusion zone/Ti substrate is easily thickened with increasing heat input. This thickened IMCs layer consists of a wide TiAl3 layer close to FZ and a thin TiAl2 layer close to Ti substrate. Furthermore, both bead shape formation and interface growth were discussed by laser-arc interaction and melt flow. Tensile behavior was summarized by interface properties. Full article
(This article belongs to the Special Issue Light Alloys and Their Applications)
Show Figures

Back to TopTop