Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = AMSU-A

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8012 KiB  
Article
Effects of Solar Intrusion on the Calibration of the Metop-C Advanced Microwave Sounding Unit-A2 Channels
by Banghua Yan, Changyong Cao and Ninghai Sun
Remote Sens. 2024, 16(5), 864; https://doi.org/10.3390/rs16050864 - 29 Feb 2024
Viewed by 721
Abstract
This study presents our first discovery about two abnormal problems in the blackbody calibration target associated with the antenna unit A2 in the Metop-C AMSU-A instrument. The problems include the anomalous patterns in both blackbody kinetic temperature Tw and radiative temperature (measured [...] Read more.
This study presents our first discovery about two abnormal problems in the blackbody calibration target associated with the antenna unit A2 in the Metop-C AMSU-A instrument. The problems include the anomalous patterns in both blackbody kinetic temperature Tw and radiative temperature (measured in warm count or Cw), and the time lag between orbital cycles of Tw and Cw. This study further determines solar intrusion as the root cause of the anomalous pattern problem. According to our analysis, solar illumination is constantly observed during each orbit near the satellite terminator, causing anomalous changes in Cw and Tw, characterized by sudden and abnormal increases typically for more than 16 min. The resultant maximum antenna temperature errors due to abnormal increases in Cw are approximately in the range from 0.15 K to 0.25 K, while the maximum errors due to the abnormal increase in Tw are in the range from 0.04 K to 0.07 K, varying with orbit, season, and channel. The time shift feature is characterized with a changeable time lag with the season in the Tw orbital cycle in comparison with the Cw cycle. The longest time lag up to about 18 min occurs in summer through early fall, while the time lag can be decreased down to about 9 min in winter through early spring. Hence, this study underscores the imperative need for future research to rectify radiance errors and reconstruct a more accurate long-term Metop-C AMSU-A radiance data set for channels 1 and 2, crucial for climate studies. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

18 pages, 9716 KiB  
Article
Primary Impact Evaluation of Surface Temperature Observations for Microwave Temperature Sounding Data Assimilation over Land
by Yibin Wu, Zhengkun Qin, Juan Li and Xuesong Bai
Remote Sens. 2024, 16(2), 395; https://doi.org/10.3390/rs16020395 - 19 Jan 2024
Viewed by 831
Abstract
Observations from the Advanced Microwave Sounding Unit-A (AMSU-A) onboard polar-orbiting satellites are considered to be the most effective satellite data in terms of obviously reducing operational prediction errors. However, there are still significant difficulties in the application of AMSU-A low-level channel data assimilation [...] Read more.
Observations from the Advanced Microwave Sounding Unit-A (AMSU-A) onboard polar-orbiting satellites are considered to be the most effective satellite data in terms of obviously reducing operational prediction errors. However, there are still significant difficulties in the application of AMSU-A low-level channel data assimilation over land. One of them is the inaccurate surface skin temperature (SKT) of the background on land areas, which leads to significant uncertainty in the accuracy of simulating brightness temperature (BT) in these channels. Therefore, improving the accuracy of SKT in the background field is a direct way to improve the assimilation effect of these low-level channel data over land. In this study, both high-spatio-temporal-resolution automatic weather station (AWS) observation data from China in September 2021 and the AMSU-A observation data from NOAA-15/18/19 and MetOp-A were used. Based on the Advanced Research version of the Weather Research and Forecast model (WRF-ARW) and Gridpoint Statistical Interpolation (GSI) assimilation system, we first analyzed the differences in SKT between AWS observations and model simulations and then attempted to directly replace the simulated SKT with the observation data. On this basis, the differences in BT simulation effects over the land area of Southwest China before and after replacement were meticulously analyzed and compared. In addition, the impacts of SKT replacement in areas with different terrain elevations and in cloudy areas were also evaluated. The results indicate that the SKTs of background fields were generally lower than the surface observations, whereas the diurnal variation in SKT was not well simulated. After replacing the SKT of the background field with station observations, the BT differences between the observation and background (O–B, observation minus background) were remarkably reduced, especially for channels 3–5 and 15 of the AMSU-A. The volume of data passing the GSI quality control significantly increased, and the standard deviation of O–B decreased. Further analysis showed that the improvement effect was better in areas at an elevation above 1600 m. Moreover, introducing SKT observations leads to a significant and stable improvement over BT simulations in cloudy areas over land. Full article
(This article belongs to the Special Issue Land Surface Temperature Estimation Using Remote Sensing II)
Show Figures

Graphical abstract

22 pages, 11086 KiB  
Article
Estimation of AMSU-A and MHS Antenna Emission from MetOp-A End-of-Life Deep Space View Test
by Yong Chen and Changyong Cao
Remote Sens. 2024, 16(2), 299; https://doi.org/10.3390/rs16020299 - 11 Jan 2024
Viewed by 726
Abstract
A unique End-of-Life (EOL) Deep Space View Test (DSVT) was performed on 27 November 2021 for the Advanced Microwave Sounding Unit-A (AMSU-A) and the Microwave Humidity Sounder (MHS) onboard the first EUMETSAT MetOp-A satellite in the deorbiting process. The purpose of this test [...] Read more.
A unique End-of-Life (EOL) Deep Space View Test (DSVT) was performed on 27 November 2021 for the Advanced Microwave Sounding Unit-A (AMSU-A) and the Microwave Humidity Sounder (MHS) onboard the first EUMETSAT MetOp-A satellite in the deorbiting process. The purpose of this test is to recalibrate the antenna sidelobe, to derive antenna emission, and to quantify the in-orbit asymmetric scan biases of AMSU-A and MHS to, ultimately, improve Near Real-Time (NRT) products for MetOp-B and -C and the entire Fundamental Climate Data Records (FCDR). In this study, MetOp-A AMSU-A and MHS EOL DSVT data on 27 November 2021 have been analyzed. The deep space scene antenna temperatures were first applied for the antenna pattern correction; then, the antenna reflector channel emissivity values were derived from the corrected temperatures. For the MHS, the observed scan-angle-dependent brightness temperatures (BTs) for all channels were well behaved after the antenna pattern correction, except for channel 1. The derived antenna reflector emissivity values from this test are 0.0016, 0.0036, 0.0036, and 0.0019 for channels 1, 3, 4, and 5, respectively. For AMSU-A, the deep space view counts were not homogeneous during the test period, exhibiting large variations in the along-track and cross-track directions, mainly due to the instrument temperature’s rapid change during the test period. The large relative noise in the deep space view observations negatively impacted the data quality and limits the value of this test. The large relative noise may contribute to the different emissivity values derived from the same frequency for channels 9 to 14. We also found unexpected scan-angle-dependent BT after antenna pattern correction for quasi-vertical (QV) channels 1 and 2 when compared to the emission model. Further investigation using a simulation confirmed that channels 1 and 2 are QV channels, as designed. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Graphical abstract

18 pages, 3041 KiB  
Article
Assimilating AMSU-A Radiance Observations with an Ensemble Four-Dimensional Variational (En4DVar) Hybrid Data Assimilation System
by Shujun Zhu, Bin Wang, Lin Zhang, Juanjuan Liu, Yongzhu Liu, Jiandong Gong, Shiming Xu, Yong Wang, Wenyu Huang, Li Liu, Yujun He, Xiangjun Wu, Bin Zhao and Fajing Chen
Remote Sens. 2023, 15(14), 3476; https://doi.org/10.3390/rs15143476 - 10 Jul 2023
Cited by 1 | Viewed by 1031
Abstract
Many ensemble-based data assimilation (DA) methods use observation space localization to mitigate the sampling errors due to the insufficient ensemble members. Observation space localization is simpler and more timesaving than model space localization in implementation, but more difficult to directly assimilate satellite radiance [...] Read more.
Many ensemble-based data assimilation (DA) methods use observation space localization to mitigate the sampling errors due to the insufficient ensemble members. Observation space localization is simpler and more timesaving than model space localization in implementation, but more difficult to directly assimilate satellite radiance observations, a kind of non-local observations. The vertical locations of radiance observations are undetermined and the transmission of observational information is thereby obstructed. To determine the vertical coordinates of radiance observations, a weighted average hypsometry is proposed. Using this hypsometry, AMSU-A radiance observations are directly assimilated with an ensemble four-dimensional variational (En4DVar) DA system. It consists of a four-dimensional ensemble-variational (4DEnVar) system providing ensemble covariance and a 4DVar system. Observing system simulation experiments show that the hypsometry alleviates the degradations in the late period of medium-range forecast in the Northern Extratropics that occur in the traditional peak-based hypsometry. It obviously improves the analysis qualities and forecast skills of the En4DVar system and its two components, especially in the Southern Extratropics, when incorporating AMSU-A radiance observations. The improvement in the En4DVar-initialized forecast is comparable to that in the 4DVar-initialized forecast in the Southern Extratropics and Tropics. It indicates that a proper hypsometry enables efficient extraction of useful information from AMSU-A radiance observations by 4DEnVar with observation space localization. Therefore, the 4DEnVar provides high-quality ensemble covariances for En4DVar. Full article
Show Figures

Figure 1

21 pages, 8177 KiB  
Article
A Cloud Detection Neural Network Approach for the Next Generation Microwave Sounder Aboard EPS MetOp-SG A1
by Salvatore Larosa, Domenico Cimini, Donatello Gallucci, Francesco Di Paola, Saverio Teodosio Nilo, Elisabetta Ricciardelli, Ermann Ripepi and Filomena Romano
Remote Sens. 2023, 15(7), 1798; https://doi.org/10.3390/rs15071798 - 28 Mar 2023
Cited by 4 | Viewed by 1644
Abstract
This work presents an algorithm based on a neural network (NN) for cloud detection to detect clouds and their thermodynamic phase using spectral observations from spaceborne microwave radiometers. A standalone cloud detection algorithm over the ocean and land has been developed to distinguish [...] Read more.
This work presents an algorithm based on a neural network (NN) for cloud detection to detect clouds and their thermodynamic phase using spectral observations from spaceborne microwave radiometers. A standalone cloud detection algorithm over the ocean and land has been developed to distinguish clear sky versus ice and liquid clouds from microwave sounder (MWS) observations. The MWS instrument—scheduled to be onboard the first satellite of the Eumetsat Polar System Second-Generation (EPS-SG) series, MetOp-SG A1—has a direct inheritance from advanced microwave sounding unit A (AMSU-A) and the microwave humidity sounder (MHS) microwave instruments. Real observations from the MWS sensor are not currently available as its launch is foreseen in 2024. Thus, a simulated dataset of atmospheric states and associated MWS synthetic observations have been produced through radiative transfer calculations with ERA5 real atmospheric profiles and surface conditions. The developed algorithm has been validated using spectral observations from the AMSU-A and MHS sounders. While ERA5 atmospheric profiles serve as references for the model development and its validation, observations from AVHRR cloud mask products provide references for the AMSU-A/MHS model evaluation. The results clearly show the NN algorithm’s high skills to detect clear, ice and liquid cloud conditions against a benchmark. In terms of overall accuracy, the NN model features 92% (88%) on the ocean and 87% (85%) on land, for the MWS (AMSU-A/MHS)-simulated dataset, respectively. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

16 pages, 3851 KiB  
Article
The Effect of Assimilating AMSU-A Radiance Data from Satellites and Large-Scale Flows from GFS on Improving Tropical Cyclone Track Forecast
by Zhijuan Lai and Shiqiu Peng
Atmosphere 2022, 13(12), 1988; https://doi.org/10.3390/atmos13121988 - 28 Nov 2022
Cited by 6 | Viewed by 1343
Abstract
This study aimed to investigate the effect of assimilating either AMSU-A radiance data from satellites, large-scale flows from the Global Forecast System (GFS), or both together, on improving the track forecast of tropical cyclone (TC). The scale-selective data assimilation (SSDA) approach was employed [...] Read more.
This study aimed to investigate the effect of assimilating either AMSU-A radiance data from satellites, large-scale flows from the Global Forecast System (GFS), or both together, on improving the track forecast of tropical cyclone (TC). The scale-selective data assimilation (SSDA) approach was employed for the assimilation of large-scale GFS flows, while the conventional 3D variational data assimilation (3DVAR) method was used for that of AMSU-A radiance data. The results show that assimilating either AMSU-A radiance data or large-scale GFS flows has a significant improvement on TC track forecast, but the improvement occurs within the first 72 h and after 72 h, respectively. When assimilating both AMSU-A radiance data and large-scale GFS flows, the forecast can take advantage of both data and thus lead to the smallest 5-day mean errors of the track forecast. These results are instructive to future operational TC track forecasting. Full article
Show Figures

Figure 1

18 pages, 4370 KiB  
Article
Direct Assimilation of Chinese FY-3E Microwave Temperature Sounder-3 Radiances in the CMA-GFS: An Initial Study
by Juan Li, Xiaoli Qian, Zhengkun Qin and Guiqing Liu
Remote Sens. 2022, 14(23), 5943; https://doi.org/10.3390/rs14235943 - 24 Nov 2022
Cited by 4 | Viewed by 1717
Abstract
FengYun-3E (FY-3E), the fifth satellite in China’s second-generation polar-orbiting satellite FY-3 series, was launched on 5 July 2021. FY-3E carries a third-generation microwave temperature sounder (MWTS-3). For the first time, this study demonstrates that MWTS-3 radiances data assimilation can improve the China Meteorological [...] Read more.
FengYun-3E (FY-3E), the fifth satellite in China’s second-generation polar-orbiting satellite FY-3 series, was launched on 5 July 2021. FY-3E carries a third-generation microwave temperature sounder (MWTS-3). For the first time, this study demonstrates that MWTS-3 radiances data assimilation can improve the China Meteorological Administration Global Forecast System (CMA-GFS). By establishing a cloud detection module based on the retrieval results of the new channels of MWTS-3, a quality control module according to the error characteristics of MWTS-3 data, and a bias correction module considering the scanning position of satellite and weather systems, the effective assimilation of MWTS-3 data in the CMA-GFS has been realized. Through one-month cycling experiments of assimilation and forecasts, the error characteristics and assimilation effects of MWTS-3 data are carefully evaluated. The results show that the observation errors in MWTS-3 data are similar to those in advanced technology microwave sounder (ATMS) data within the same frequency channel, are slightly larger than those in the advanced microwave-sounding unit-A (AMSU-A) data, and are much better than those in the MWTS-2 data. The validation of the assimilation and prediction results demonstrate the positive contribution of MWTS-3 data assimilation, which can remarkably reduce the analysis errors in the Northern and Southern Hemispheres. Specifically, the error growth on the upper layer of the model is obviously suppressed. When all other operational satellite observations are included, the assimilation of MWTS-3 data has a neutral or slightly positive contribution to the analysis and forecast results, and the improvement is mainly found in the Southern Hemisphere. The relevant evaluation results indicate that the MWTS-3 data assimilation has good application prospects for operation. Full article
Show Figures

Figure 1

19 pages, 13665 KiB  
Article
Impacts of Multi-Source Microwave Satellite Radiance Data Assimilation on the Forecast of Typhoon Ampil
by Aiqing Shu, Dongmei Xu, Shiyu Zhang, Feifei Shen, Xuewei Zhang and Lixin Song
Atmosphere 2022, 13(9), 1427; https://doi.org/10.3390/atmos13091427 - 2 Sep 2022
Cited by 2 | Viewed by 1707
Abstract
This study investigates the impacts of the joint assimilation of microware temperature sensor, Advanced Microwave Sounding Unit-A (AMSUA), and microware humidity sensors, Microwave Humidity Sounder (MHS) and Microwave Humidity Sounder-2 (MWHS2), on the analyses and forecasts for the tropical cyclone (TC) system. Experiments [...] Read more.
This study investigates the impacts of the joint assimilation of microware temperature sensor, Advanced Microwave Sounding Unit-A (AMSUA), and microware humidity sensors, Microwave Humidity Sounder (MHS) and Microwave Humidity Sounder-2 (MWHS2), on the analyses and forecasts for the tropical cyclone (TC) system. Experiments are conducted using a three-dimensional variation (3DVAR) algorithm in the framework of the weather research and forecasting data assimilation (WRFDA) system for the forecasting of Typhoon Ampil (2018). The results show that the assimilation of MWHS2 radiance data improves the analyses better in terms of TC’s structure and moisture conditions than those of the MHS experiment. To some extent, the experiment with only AMSUA radiance delivers some positive impacts of the precipitation, track, and intensity forecast than the other two experiments do. In addition, the skill of the precipitation forecast is notably enhanced with higher equitable threat score (ETS) by the simultaneous assimilation of the MHS, MWHS2, and AMSUA radiance. Generally, assimilation of radiance from all sources of MHS, MWHS2, and AMSUA could combine the advantages of assimilating each type of sensors rather than individually. The consistent improvement is also confirmed for the TC’s track forecast with reduced error on average, whereas the improvement of intensity forecast is not obvious. Full article
Show Figures

Figure 1

23 pages, 16816 KiB  
Article
Effects of Direct Assimilation of FY-4A AGRI Water Vapor Channels on the Meiyu Heavy-Rainfall Quantitative Precipitation Forecasts
by Zeyi Niu, Lei Zhang, Peiming Dong, Fuzhong Weng, Wei Huang and Jia Zhu
Remote Sens. 2022, 14(14), 3484; https://doi.org/10.3390/rs14143484 - 21 Jul 2022
Cited by 11 | Viewed by 3658
Abstract
In this study, the regional Weather Research and Forecasting model (WRF)-based quantitative precipitation forecasts (QPFs) are conducted for an extreme Meiyu rainfall event over East Asia in 2020. The data of water vapor channels 9 and 10 from the Advanced Geosynchronous Radiation Imager [...] Read more.
In this study, the regional Weather Research and Forecasting model (WRF)-based quantitative precipitation forecasts (QPFs) are conducted for an extreme Meiyu rainfall event over East Asia in 2020. The data of water vapor channels 9 and 10 from the Advanced Geosynchronous Radiation Imager (AGRI) onboard the Fengyun-4A (FY-4A) satellite are assimilated through the Gridpoint Statistical Interpolation (GSI) system. It shows that a reasonable amount of assimilated AGRI data can produce reasonable water vapor increments, compared to the too sparse or dense assimilated AGRI observations. In addition, the critical success indexes (CSIs) of the precipitation forecasts within 72 h are obviously improved. The enhanced variational bias correction (VarBC) scheme is applied to remove the air-mass and scan-angle biases, and the mean observation-minus-background (O − B) values before and after the VarBC of channel 9 are −1.185 and 0.02 K, respectively, and those of channel 10 are −0.559 and −0.01 K, respectively. Assimilating the upper-level channel 9 data of AGRI (EXP_WV9) lead to a neutral-to-positive effect on QPFs, compared to the control run (CTL), which is based on the assimilation of Advanced Microwave Sounding Unit-A (AMSU-A) data. In particular, the CSIs from 42 to 72 h are significantly improved. However, the assimilation of the AGRI channel 10 (EXP_WV10) shows a neutral-to-negative effect on QPFs in this study, probably due to the complicated surface situations. This study confirms the feasibility of assimilating the water vapor channel data of FY4A AGRI in the GSI system and highlights the importance of assimilating AGRI channel 9 data to improve the QPFs of the Meiyu rainfall event. Full article
Show Figures

Graphical abstract

15 pages, 5585 KiB  
Article
Satellite Radiance Data Assimilation Using the WRF-3DVAR System for Tropical Storm Dianmu (2021) Forecasts
by Thippawan Thodsan, Falin Wu, Kritanai Torsri, Efren Martin Alban Cuestas and Gongliu Yang
Atmosphere 2022, 13(6), 956; https://doi.org/10.3390/atmos13060956 - 12 Jun 2022
Cited by 5 | Viewed by 2999
Abstract
This study investigated the impact of the assimilation of satellite radiance observations in a three-dimensional variational data assimilation system (3DVAR) that could improve the tracking and intensity forecasts of the Tropical Storm Dianmu in 2021, which occurred over parts of southeast mainland Asia. [...] Read more.
This study investigated the impact of the assimilation of satellite radiance observations in a three-dimensional variational data assimilation system (3DVAR) that could improve the tracking and intensity forecasts of the Tropical Storm Dianmu in 2021, which occurred over parts of southeast mainland Asia. The weather research and forecasting (WRF) model was used to conduct the assimilation experiments of the storm. Four sets of numerical experiments were performed using the WRF. In the first, the control experiment, only conventional data in Binary Universal Form for the Representation of Meteorological Data (PREPBUFR) observations from the National Centers for Environmental Prediction (NCEP) were assimilated. The second experiment (RDA1) was performed with PREPBUFR observations and satellite radiance data from the Advanced Microwave Unit-A (AMSU-A), and the Advanced Technology Microwave Sounder (ATMS). PREPBUFR observations and the High-resolution Infrared Radiation Sounder (HIRS-4) were used in the third experiment (RDA2). The fourth experiment (ALL-OBS) used the assimilation of PREPBUFR observations and all satellite radiance data (AMSU-A, ATMS, and HIRS-4). The community radiative transfer model was used on the forward operator for the satellite radiance assimilation, along with quality control and bias correction procedures, before assimilating the radiance data. To evaluate the impact of the assimilation experiments, a forecast starting on 00 UTC 23 September 2021, was produced for 72 h. The results showed that the ALL-OBS experiment improved the short-term forecast up to ~24 h lead time, as compared to the assimilation considering only PREPBUFR observations. When all observations were assimilated into the model, the storm’s landfall position, intensity, and structure were accurately predicted. In the deterministic forecast, the tracking errors of the ALL-OBS experiment was consistently less than 40 km within 24 h. The case study of Tropical Storm Dianmu exhibited the significant positive impact of all observations in the numerical model, which could improve updates for initial conditions and storm forecasting. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

17 pages, 7271 KiB  
Article
Development and Evaluation of AMSU-A Cloud Detection over the Tibetan Plateau
by Jiawen Wu, Zhengkun Qin, Juan Li and Zhiwen Wu
Remote Sens. 2022, 14(9), 2116; https://doi.org/10.3390/rs14092116 - 28 Apr 2022
Cited by 1 | Viewed by 2102
Abstract
Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Humidity Sounder (MHS) data have been widely assimilated in operational forecasting systems. However, effective distinction between cloudy and clear-sky data is still an essential prerequisite for the assimilation of microwave observations. Cloud detection over the Tibetan [...] Read more.
Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Humidity Sounder (MHS) data have been widely assimilated in operational forecasting systems. However, effective distinction between cloudy and clear-sky data is still an essential prerequisite for the assimilation of microwave observations. Cloud detection over the Tibetan Plateau has long been a challenge owing to the influence of low temperatures, terrain height, surface vegetation, and inaccurate background fields. Based on the variations in the response characteristics of different channels of AMSU-A to clouds, five AMSU-A window and low-peaking channels (channels 1–4 and 15) are chosen to establish a cloud detection index. Combined with the existing MHS cloud detection index, a cloud detection scheme over the Tibetan Plateau is proposed. Referring to VISSR-II (Stretched Visible and Infrared Spin Scan Radiometer-II) and CALIPSO (The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) cloud classification products, the detection rate of cloudy data and the rejection rate of clear-sky data under different cloud index thresholds are evaluated. Results show that the new cloud detection scheme can identify more than 80% of cloudy data on average, but this decreases to 72% for area with terrain higher than 5 km, and the false deletion rate remains stable at 45%. The detection rates of mixed clouds and cumulonimbus are higher than 90%, but it is lower than 50% for altostratus with an altitude of about 7–8 km. Comparative analysis shows that the new method is more suitable for areas with terrain higher than 700 m. Based on the cloud detection results, the effects of terrain height on the characteristics of observation error and bias are also discussed for AMSU-A channels 5 and 6. Full article
Show Figures

Figure 1

20 pages, 15420 KiB  
Article
Development and Evaluation of a New Method for AMSU-A Cloud Detection over Land
by Zhiwen Wu, Juan Li and Zhengkun Qin
Remote Sens. 2021, 13(18), 3646; https://doi.org/10.3390/rs13183646 - 12 Sep 2021
Cited by 5 | Viewed by 3068
Abstract
Satellite data are the main source of information for operational data assimilation systems, and Advanced Microwave Sounding Unit-A (AMSU-A) data are one of the types of satellite data that contribute most to the reduction of numerical forecast errors. However, the assimilation of AMSU-A [...] Read more.
Satellite data are the main source of information for operational data assimilation systems, and Advanced Microwave Sounding Unit-A (AMSU-A) data are one of the types of satellite data that contribute most to the reduction of numerical forecast errors. However, the assimilation of AMSU-A data over land lags behind that over the ocean. In this respect, the accuracy of cloud detection over land is one of the factors affecting the assimilation of AMSU-A data, especially for the window and low-peaking channel (23–53.59 GHz and 89 GHz) data. Strong surface emissivity and high spatial and temporal variability make it difficult to distinguish between the radiative contributions of clouds and the atmosphere. Based on the differences in the response characteristics of different channels to clouds, five AMSU-A window and low-peaking channels (channels 1–4 and 15) were selected to develop a new index for cloud detection over land. Case studies showed that the AMSU-A cloud index can detect most of the convective clouds; additionally, by further matching the MHS (Microwave Humidity Sounder) cloud detection index, we can effectively distinguish between cloudy and clear-sky observations. Batch test results also verified the accuracy and stability of the new cloud detection method. By referring to the MODIS (Moderate Resolution Imaging Spectroradiometer) cloud product, the POD (probability of detection) of the cloud fields of view with the new method was nearly 84%. By using the new cloud detection method to remove the cloudy data, the bias and standard deviation of the observation-minus-simulated brightness temperature (O−B) were significantly reduced, with the bias of O−B for channels 2–4 being below 1.0 K and the standard deviation of channels 5 and 6 being nearly 1.0 K. Full article
Show Figures

Figure 1

21 pages, 12459 KiB  
Article
Combining FY-3D MWTS-2 with AMSU-A Data for Inter-Decadal Diurnal Correction and Climate Trends of Atmospheric Temperature
by Xinlu Xia and Xiaolei Zou
Remote Sens. 2021, 13(16), 3148; https://doi.org/10.3390/rs13163148 - 9 Aug 2021
Cited by 4 | Viewed by 1673
Abstract
Microwave temperature sounding observations from polar-orbiting meteorological satellites have been widely used for research on climate trends of atmospheric temperature at different heights around the world. Taking the Amazon rainforest as the target area, this study combined the Microwave Temperature Sounder-2 (MWTS-2) data [...] Read more.
Microwave temperature sounding observations from polar-orbiting meteorological satellites have been widely used for research on climate trends of atmospheric temperature at different heights around the world. Taking the Amazon rainforest as the target area, this study combined the Microwave Temperature Sounder-2 (MWTS-2) data onboard the Chinese FengYun-3D (FY-3D) satellite with the Advanced Microwave Sounding unit-A (AMSU-A) data onboard the National Oceanic and Atmospheric Administration (NOAA) and the European Meteorological Operational (MetOp) polar-orbiting meteorological satellites (i.e., NOAA-15, −18, −19, MetOp-A, -B). The double difference method was used to estimate and thus eliminate the inter-sensor bias, and a decadal diurnal correction was used to reduce the impact of different local equator crossing times on climate trends. The “no-rain” conditions were determined for AMSU-A data by channels 1 and 15, and for MWTS-2 data by channels 1 and 7. Finally, the decadal linear trends of atmospheric temperature from 1998 to 2020 were obtained after applying the inter-sensor bias calibration and inter-decadal diurnal correction to AMSU-A and MWTS-2 data from NOAA-15, −18, −19; MetOp-A, -B; and FY-3D. A warming trend was found in the AMSU-A window and tropospheric channels (1–9 and 15) and a cooling trend in stratospheric channels (10–14). The warming (cooling) trends of channels 7–9 (10) were relatively small. The warming (cooling) trends of AMSU-A channels 1–6 (14–15) were significantly reduced after the inter-decadal diurnal correction. Full article
Show Figures

Figure 1

12 pages, 3810 KiB  
Communication
Impact of Assimilating FY-3D MWTS-2 Upper Air Sounding Data on Forecasting Typhoon Lekima (2019)
by Zeyi Niu, Lei Zhang, Peiming Dong, Fuzhong Weng and Wei Huang
Remote Sens. 2021, 13(9), 1841; https://doi.org/10.3390/rs13091841 - 9 May 2021
Cited by 11 | Viewed by 2324
Abstract
In this study, the Fengyun-3D (FY-3D) clear-sky microwave temperature sounder-2 (MWTS-2) radiances were directly assimilated in the regional mesoscale Weather Research and Forecasting (WRF) model using the Gridpoint Statistical Interpolation (GSI) data assimilation system. The assimilation experiments were conducted to compare the track [...] Read more.
In this study, the Fengyun-3D (FY-3D) clear-sky microwave temperature sounder-2 (MWTS-2) radiances were directly assimilated in the regional mesoscale Weather Research and Forecasting (WRF) model using the Gridpoint Statistical Interpolation (GSI) data assimilation system. The assimilation experiments were conducted to compare the track errors of typhoon Lekima from uses of the Advanced Microwave Sounding Unit-A (AMSU-A) radiances (EXP_AD) with those from FY-3D MWTS-2 upper-air sounding data at channels 5–7 (EXP_AMD). The clear-sky mean bias-corrected observation-minus-background (O-B) values of FY-3D MWTS-2 channels 5, 6, and 7 are 0.27, 0.10 and 0.57 K, respectively, which are smaller than those without bias corrections. Compared with the control experiment, which was the forecast of the WRF model without use of satellite data, the assimilation of satellite radiances can improve the forecast performance and reduce the mean track error by 8.7% (~18.4 km) and 30% (~58.6 km) beyond 36 h through the EXP_AD and EXP_AMD, respectively. The direction of simulated steering flow changed from southwest in the EXP_AD to southeast in the EXP_AMD, which can be pivotal to forecasting the landfall of typhoon Lekima (2019) three days in advance. Assimilation of MWTS-2 upper-troposphere channels 5–7 has great potential to improve the track forecasts for typhoon Lekima. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

28 pages, 3795 KiB  
Article
The Impact of Assimilating Satellite Radiance Observations in the Copernicus European Regional Reanalysis (CERRA)
by Zheng Qi Wang and Roger Randriamampianina
Remote Sens. 2021, 13(3), 426; https://doi.org/10.3390/rs13030426 - 26 Jan 2021
Cited by 7 | Viewed by 2711
Abstract
The assimilation of microwave and infrared (IR) radiance satellite observations within numerical weather prediction (NWP) models have been an important component in the effort of improving the accuracy of analysis and forecast. Such capabilities were implemented during the development of the high-resolution Copernicus [...] Read more.
The assimilation of microwave and infrared (IR) radiance satellite observations within numerical weather prediction (NWP) models have been an important component in the effort of improving the accuracy of analysis and forecast. Such capabilities were implemented during the development of the high-resolution Copernicus European Regional Reanalysis (CERRA), funded by the Copernicus Climate Change Services (C3S). The CERRA system couples the deterministic system with the ensemble data assimilation to provide periodic updates of the background error covariance matrix. Several key factors for the assimilation of radiances were investigated, including appropriate use of variational bias correction (VARBC), surface-sensitive AMSU-A observations and observation error correlation. Twenty-one-day impact studies during the summer and winter seasons were conducted. Generally, the assimilation of radiances has a small impact on the analysis, while greater impacts are observed on short-range (12 and 24-h) forecasts with an error reduction of 1–2% for the mid and high troposphere. Although, the current configuration provided less accurate forecasts from 09 and 18 UTC analysis times. With the increased thinning distances and the rejection of IASI observation over land, the errors in the analyses and 3 h forecasts on geopotential height were reduced up to 2%. Full article
(This article belongs to the Special Issue Satellite Observation for Atmospheric Modeling)
Show Figures

Figure 1

Back to TopTop