Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (146)

Search Parameters:
Keywords = ASTM E3125-17 standard

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 6349 KiB  
Proceeding Paper
Enhancing Hydrophilicity and Efficiency of PVC-Based Nanofiber Membranes by Adding PEG, Chitosan, and Silver Nanoparticles for Water Filtration
by Harini Sosiati, Lambang Prabowo Iqbal Hanafi, Kasyi Ridha Takiyudin, Sabtanti Harimurti and Yusmaniar Yusmaniar
Eng. Proc. 2025, 84(1), 22; https://doi.org/10.3390/engproc2025084022 - 29 Jan 2025
Viewed by 210
Abstract
This study aims to investigate PVC-based nanofiber membranes added with PEG, chitosan, and silver nanoparticles (CSNPs and AgNPs) to improve their hydrophilicity and filtration efficiency. The nanofiber membranes were fabricated by an electrospinning technique. All nanofiber membranes were subjected to a tensile test [...] Read more.
This study aims to investigate PVC-based nanofiber membranes added with PEG, chitosan, and silver nanoparticles (CSNPs and AgNPs) to improve their hydrophilicity and filtration efficiency. The nanofiber membranes were fabricated by an electrospinning technique. All nanofiber membranes were subjected to a tensile test according to the ASTM D882 standard and water contact angle (WCA) measurement. SEM was used to examine nanofiber morphology. Adding PEG to PVC increased hydrophilicity, lowering the water contact angle from 135° to 83°, while adding CSNPs and AgNPs to PEG/PVC slightly decreased it. The inclusion of these nanoparticles improved membrane tensile strength. In filtration tests, 0.5% AgNPs/PEG/PVC worked better against Colitinja bacteria than the CSNP variant. However, both types of nanoparticles were equally effective at inhibiting E. coli. These results indicate that 0.5% CSNP/PEG/PVC and 0.5% AgNPs/PEG/PVC membranes are promising for antibacterial water filtration applications due to their hydrophilic and durable properties. Full article
Show Figures

Figure 1

23 pages, 2740 KiB  
Article
Comparative Study of ASTM C1202 and IBRACON/NT Build 492 Testing Methods for Assessing Chloride Ion Penetration in Concretes Using Different Types of Cement
by Wanderson Santos de Jesus, Suânia Fabiele Moitinho da Silva, Thalles Murilo Santos de Almeida, Marcelo Tramontin Souza, Eduarda Silva Leal, Ramon Santos Souza, Laio Andrade Sacramento, Ivan Bezerra Allaman and José Renato de Castro Pessôa
Buildings 2025, 15(3), 302; https://doi.org/10.3390/buildings15030302 - 21 Jan 2025
Viewed by 526
Abstract
Durability is crucial for reinforced concrete, directly influencing the service life of structures. The presence of aggressive agents, especially chloride ions, significantly impacts durability. This study investigates the differences between ASTM C1202 and IBRACON/NT Build 492 standards in concrete containing various types of [...] Read more.
Durability is crucial for reinforced concrete, directly influencing the service life of structures. The presence of aggressive agents, especially chloride ions, significantly impacts durability. This study investigates the differences between ASTM C1202 and IBRACON/NT Build 492 standards in concrete containing various types of cement designed for a characteristic compressive strength of 40 MPa. Forty-eight cylindrical samples were prepared using eight types of Portland cement, including those with blast furnace slag, filler, and pozzolanic materials. Chloride migration tests were performed according to the ASTM C1202/2022 and IBRACON/NT Build 492/1999 methodologies. At a 95% confidence level, the results indicated that concrete made with filler-containing cement (PCII F-SR and PC II F) showed the poorest chloride resistance, with charge passing values exceeding 4000 coulombs (ASTM C1202) and diffusion coefficients above 10 × 10−12 m2/s (IBRACON/NT Build 492). In contrast, concrete containing high slag cement (PC III-SR) and pozzolan cement (PC IV) demonstrated superior resistance to chloride penetration, with charge passing values below 1500 coulombs and diffusion coefficients under 5 × 10−12 m2/s. Notably, discrepancies in classification were observed, as PC II Z (fly-ash based) and PC II E-SR (slag-based) received different ratings under the two methods. ASTM C1202 was found to be more stringent than NT Build 492, highlighting significant variations in the classification criteria between these standards. Based on the findings, new interval values are proposed for classifying concrete regarding the risk of chloride ion penetration, particularly for the ASTM C1202 standard, in order to better align with performance-based durability criteria and improve classification accuracy. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 7471 KiB  
Article
Monitoring the Calibration Status of a Universal Testing Machine Through the Implementation of Acoustic Methods: Development of Equipment and a Suitable Interface
by Sharath P. Subadra, Roy Skaria, Andrea Hasselmann, Eduard Mayer and Shahram Sheikhi
NDT 2025, 3(1), 2; https://doi.org/10.3390/ndt3010002 - 2 Jan 2025
Viewed by 631
Abstract
The calibration of a universal testing machine (UTM) verifies the accuracy of the system instruments responsible for obtaining force and displacement measurements. This process involves comparing the instrument to equipment that has already been calibrated to a known traceable standard. The limit of [...] Read more.
The calibration of a universal testing machine (UTM) verifies the accuracy of the system instruments responsible for obtaining force and displacement measurements. This process involves comparing the instrument to equipment that has already been calibrated to a known traceable standard. The limit of accuracy is then certified and the traceability of the measurements is determined. There are several internationally recognized standards that are used to calibrate the cross-head speed and displacement (ASTM E2658 and E2309, respectively), strain and load rate (ASTM E2309), measurement of tension, compression (ASTM E4) and dynamic force (ASTM E467). The current study aims to monitor the calibration status of UTMs through the implementation of acoustic methods. A methodology is developed whereby a reference sample is initially identified with suitable material properties, enabling it to be used continuously. The sample is used simultaneously with acoustic instruments to check its natural frequencies, which enables the monitoring of the UTM calibration status. An algorithm is developed that enables the user to interact with the system, thus forming an interface and helping the user to check the calibration status of the equipment. The entire system is validated to check if the equipment and the inbuilt algorithm can predict the calibration status of the machine. It was found that the geometric constraints imposed on the sample influence the output from the algorithm, and hence correct values should be fed to the system. Our sample never lost its elastic characteristics through continuous use, demonstrating that it can be used to continuously monitor the machine’s status. Full article
Show Figures

Graphical abstract

11 pages, 7141 KiB  
Article
Microstructural Insights into Solid Particle Erosion in a High-Chromium Cast Iron
by Alessio Suman, Annalisa Fortini and Nicola Zanini
Metals 2025, 15(1), 6; https://doi.org/10.3390/met15010006 - 26 Dec 2024
Viewed by 455
Abstract
Solid particle erosion (SPE) significantly limits the service life of High-Chromium Cast Irons (HCCIs), widely used in power generation and mining industries. This study investigates how microstructural features influence the erosion resistance of a Fe-Cr-C cast iron, focusing on the interplay between particle [...] Read more.
Solid particle erosion (SPE) significantly limits the service life of High-Chromium Cast Irons (HCCIs), widely used in power generation and mining industries. This study investigates how microstructural features influence the erosion resistance of a Fe-Cr-C cast iron, focusing on the interplay between particle kinetic energy and carbide features, i.e., carbide volume fraction (CVF). Erosion tests, conducted per ASTM G76 standards, revealed that substrates with similar CVFs exhibited varying damage levels, even at consistent particle kinetic energies. The findings underscored that impact conditions have a greater influence on erosion resistance than CVF alone, emphasizing the critical role of carbide morphology and distribution in mitigating damage. This work provides valuable insights for optimizing HCCIs to enhance material performance and durability in demanding erosive environments by tailoring carbide distribution to specific operational conditions. Full article
(This article belongs to the Special Issue Design, Processing and Characterization of Metals and Alloys)
Show Figures

Figure 1

20 pages, 4608 KiB  
Article
Finite Element Modeling of the Behaviors of Concrete-Filled Steel Tube (CFT) Columns at Elevated Temperatures
by Van Lanh Le, Chang-Hwan Lee, Robel Wondimu Alemayehu and Min Jae Park
Buildings 2025, 15(1), 11; https://doi.org/10.3390/buildings15010011 - 24 Dec 2024
Viewed by 540
Abstract
Concrete-filled steel tube (CFT) columns are widely used as structural systems because of their high load-bearing capacity and material efficiency. However, under fire conditions, elevated temperatures degrade the mechanical properties of both steel and concrete. When combined with initial geometric imperfections, these factors [...] Read more.
Concrete-filled steel tube (CFT) columns are widely used as structural systems because of their high load-bearing capacity and material efficiency. However, under fire conditions, elevated temperatures degrade the mechanical properties of both steel and concrete. When combined with initial geometric imperfections, these factors significantly affect the load distribution and the fire resistance of the structure. Understanding how material properties and geometric factors change in CFT columns at elevated temperatures is essential for ensuring safe and efficient design. This study used the ASTM E119-88 fire curve to establish the relationship between the surface temperature of the structure and the fire resistance duration of the CFT column. Heat transfer and mechanical analyses of the structure were conducted using ABAQUS 2024 software. A comparison of simulation and experimental data showed that the numerical model was highly accurate. The study also addressed the effects of initial geometric imperfections, considering amplification factors of L/1000 and L/500, and compared the simulation results with the experimental data. The results demonstrated that initial geometric imperfections significantly influenced the fire resistance of the columns. Additionally, this study examined the material properties under high-temperature conditions as specified in the AISC 360-22 standard. The study compared the simulation results with the Eurocode standards and experimental data. The findings suggested that utilizing the material properties specified in the AISC 360-22 standard resulted in more conservative predictions of fire resistance for CFT columns, compared to the Eurocode standards. Furthermore, Appendix 4 of the AISC 360-22 standard was used to calculate the fire resistance rating of the CFT column. These calculations were compared with the simulation and experimental results to evaluate the reliability of using ABAQUS 2024 simulation software. Full article
(This article belongs to the Special Issue Structural Response of Buildings in Fire)
Show Figures

Figure 1

16 pages, 11126 KiB  
Article
Fracture and Fatigue Crack Growth Behaviour of A516 Gr 60 Steel Welded Joints
by Nikola Kostić, Ivica Čamagić, Aleksandar Sedmak, Milivoje Jovanović, Zijah Burzić, Tamara Golubović, Simon Sedmak and Igor Martić
Metals 2024, 14(12), 1447; https://doi.org/10.3390/met14121447 - 17 Dec 2024
Viewed by 602
Abstract
The facture and fatigue behaviour of welded joints made of A516 Gr 60 was analysed, bearing in mind their susceptibility to cracking, especially in the case of components which had been in service for a long time period. With respect to fracture, the [...] Read more.
The facture and fatigue behaviour of welded joints made of A516 Gr 60 was analysed, bearing in mind their susceptibility to cracking, especially in the case of components which had been in service for a long time period. With respect to fracture, the fracture toughness was determined for all three zones of a welded joint, the base metal (BM), heat-affected zone (HAZ) and weld metal (WM), by applying a standard procedure to evaluate KIc via based on JIc values (ASTM E1820). With respect to fatigue, the fatigue crack growth rates were determined according to the Paris law by the standard procedure (ASTM E647) to evaluate the behaviour of different welded joint zones under amplitude loading. The results obtained for A516 Gr. 60 structural steel showed why it is widely used in the case of static loads, since the minimum value of fracture toughness (185 MPa√m) provides relatively large critical crack lengths, whereas its behaviour under amplitude loading indicated a need for further improvement in WM and HAZ, since the crack growth rate reached values as high as 4.58 × 10−4 mm/cycle. In addition, risk-based analysis was applied to assess the structural integrity of a pressure vessel, including comparison with the high-strength low-alloy (HSLA) steel NIOVAL 50, proving once again its superior behaviour under static loading. Full article
(This article belongs to the Special Issue Fracture Mechanics and Failure Analysis of Metallic Materials)
Show Figures

Figure 1

23 pages, 4842 KiB  
Article
Evaluation of Snowboarding Helmets in Mitigation of the Biomechanical Responses of Head Surrogate
by Atul Harmukh and Shailesh G. Ganpule
Appl. Sci. 2024, 14(23), 11460; https://doi.org/10.3390/app142311460 - 9 Dec 2024
Viewed by 860
Abstract
Traumatic brain injury (TBI) during snowboarding sports is a major concern. A robust evaluation of existing snowboarding helmets is desired. Head kinematics (i.e., linear acceleration, angular velocity, angular acceleration) and associated brain responses (brain pressure, equivalent (von Mises) stress, and maximum principal strain) [...] Read more.
Traumatic brain injury (TBI) during snowboarding sports is a major concern. A robust evaluation of existing snowboarding helmets is desired. Head kinematics (i.e., linear acceleration, angular velocity, angular acceleration) and associated brain responses (brain pressure, equivalent (von Mises) stress, and maximum principal strain) of the head are a predominant cause of TBI or concussion. The conventional snowboarding helmet, which mitigates linear acceleration, is typically used in snow sports. However, the role of conventional snowboarding helmets in mitigating angular head kinematics is marginal or insignificant. In recent years, new anti-rotational technologies (e.g., MIPS, WaveCel) have been developed that seek to reduce angular kinematics (i.e., angular velocity, angular acceleration). However, investigations regarding the performance of snowboarding helmets in terms of the mitigation of head kinematics and brain responses are either extremely limited or not available. Toward this end, we have evaluated the performance of snowboarding helmets (conventional and anti-rotational technologies) against blunt impact. We also evaluated the performance of newly developed low-cost, silica-based anti-rotational pads by integrating them with conventional helmets. Helmets were mounted on a head surrogate–Hybrid III neck assembly. The head surrogate consisted of skin, skull, dura mater, and brain. The geometry of the head surrogate was based on the GHBMC head model. Substructures of the head surrogate was manufactured using additive manufacturing and/or molding. A linear impactor system was used to simulate/recreate snowfield hazards (e.g., tree stump, rock, pole) loading. Following the ASTM F2040 standard, an impact velocity of 4.6 ± 0.2 m/s was used. The head kinematics (i.e., linear acceleration, angular velocity, angular acceleration) and brain simulant pressures were measured in the head surrogate. Further, using the concurrent simulation, the brain simulant responses (i.e., pressure, von Mises stress, and maximum principal strain) were computed. The front and side orientations were considered. Our results showed that the helmets with anti-rotation technologies (i.e., MIPS, WaveCel) significantly reduced the angular kinematics and brain responses compared to the conventional helmet. Further, the performance of the silica pad-based anti-rotational helmet was comparable to the existing anti-rotational helmets. Lastly, the effect of a comfort liner on head kinematics was also investigated. The comfort liner further improved the performance of anti-rotational helmets. Overall, these results provide important data and novel insights regarding the performance of various snowboarding helmets. These data have utility in the design and development of futuristic snowboarding helmets and safety protocols. Full article
Show Figures

Figure 1

15 pages, 3220 KiB  
Article
Regulatory Standard for Determining Preoperative Skin Preparation Efficacy Underreports True Dermal Bioburden in a Porcine Model
by Hannah R. Duffy, Nicholas N. Ashton, Abbey Blair, Nathanael Hooper, Porter Stulce and Dustin L. Williams
Microorganisms 2024, 12(11), 2369; https://doi.org/10.3390/microorganisms12112369 - 20 Nov 2024
Viewed by 688
Abstract
Medical device companies and regulatory bodies rely on a nondestructive bacterial sampling technique specified by the American Society for Testing and Materials (ASTM E1173-15) to test preoperative skin preparations (PSPs). Despite the widespread use of PSPs, opportunistic skin-flora pathogens remain the most significant [...] Read more.
Medical device companies and regulatory bodies rely on a nondestructive bacterial sampling technique specified by the American Society for Testing and Materials (ASTM E1173-15) to test preoperative skin preparations (PSPs). Despite the widespread use of PSPs, opportunistic skin-flora pathogens remain the most significant contributor to surgical site infections, suggesting that the ASTM testing standard may be underreporting true dermal bioburden. We hypothesized that ASTM E1173-15 may fail to capture deep skin-dwelling flora. To test this hypothesis, we applied ASTM E1173-15 and a full-thickness skin sampling technique, which we established previously through application to the backs of seven pigs (Yorkshire/Landrace hybrid) following a clinically used PSP (4% chlorhexidine gluconate). The results showed that samples quantified using the full-thickness skin method consistently cultured more bacteria than the ASTM standard, which principally targeted surface-dwelling bacteria. Following PSP, the ASTM standard yielded 1.05 ± 0.24 log10 CFU/cm2, while the full-thickness tissue method resulted in 3.24 ± 0.24 log10 CFU/cm2, more than a 2 log10 difference (p < 0.001). Immunofluorescence images corroborated the data, showing that Staphylococcus epidermidis was present in deep skin regions with or without PSP treatment. Outcomes suggested that a full-thickness sampling technique may better evaluate PSP technologies as it resolves bioburdens dwelling in deeper skin regions. Full article
(This article belongs to the Special Issue Antimicrobial Testing (AMT), Third Edition)
Show Figures

Figure 1

12 pages, 1275 KiB  
Article
A Simple and Green Analytical Alternative for Chloride Determination in High-Salt-Content Crude Oil: Combining Miniaturized Extraction with Portable Colorimetric Analysis
by Alice P. Holkem, Giuliano Agostini, Adilson B. Costa, Juliano S. Barin and Paola A. Mello
Processes 2024, 12(11), 2425; https://doi.org/10.3390/pr12112425 - 3 Nov 2024
Viewed by 1311
Abstract
A simple and miniaturized protocol was developed for chloride extraction from Brazilian pre-salt crude oil for further salt determination by colorimetry. In this protocol, the colorimetric analysis of chloride using digital images was carried out in an aqueous phase obtained after a simple [...] Read more.
A simple and miniaturized protocol was developed for chloride extraction from Brazilian pre-salt crude oil for further salt determination by colorimetry. In this protocol, the colorimetric analysis of chloride using digital images was carried out in an aqueous phase obtained after a simple and miniaturized extraction carefully developed for this purpose. A portable device composed of a homemade 3D-printed chamber with a USB camera was used. The PhotoMetrix app converted the images into RGB histograms, and a partial least squares (PLS) model was obtained from chemometric treatment. The sample preparation was performed by extraction after defining the best conditions for the main parameters (e.g., extraction time, temperature, type and volume of solvent, and sample mass). The PLS model was evaluated considering the coefficient of determination (R2) and the root mean square errors (RMSEs)—calibration (RMSEC), cross-validation (RMSECV), and prediction (RMSEP). Under the optimized conditions, an extraction efficiency higher than 84% was achieved, and the limit of quantification was 1.6 mg g−1. The chloride content obtained in the pre-salt crude oils ranged from 3 to 15 mg g−1, and no differences (ANOVA, 95%) were observed between the results and the reference values by direct solid sampling elemental analysis (DSS-EA) or the ASTM D 6470 standard method. The easy-to-use colorimetric analysis combined with the extraction method’s simplicity offered a high-throughput, low-cost, and environmentally friendly method, with the possibility of portability. Additionally, the decrease in energy consumption and waste generation, increasing the sample throughput and operators’ safety, makes the proposed method a greener approach. Furthermore, the cost savings make this a suitable option for routine quality control, which can be attractive in the crude oil industry. Full article
Show Figures

Figure 1

13 pages, 1843 KiB  
Article
Evaluation of Advanced Biofuels in Internal Combustion Engines: Diesel/Fusel Oil/Vegetable Oil Triple Blends
by Rafael Estevez, Francisco J. López-Tenllado, Laura Aguado-Deblas, Felipa M. Bautista, Antonio A. Romero and Diego Luna
Fuels 2024, 5(4), 660-672; https://doi.org/10.3390/fuels5040036 - 18 Oct 2024
Viewed by 999
Abstract
In this research work, the feasibility of using fusel oil, a by-product of the sugar–alcohol industry, as an LVLC solvent in blends with straight vegetable oils (SVOs) and diesel was investigated. Concretely, diesel/fusel oil/sunflower oil (D/FO/SO) and diesel/fusel oil/castor oil (D/FO/CO) triple blends [...] Read more.
In this research work, the feasibility of using fusel oil, a by-product of the sugar–alcohol industry, as an LVLC solvent in blends with straight vegetable oils (SVOs) and diesel was investigated. Concretely, diesel/fusel oil/sunflower oil (D/FO/SO) and diesel/fusel oil/castor oil (D/FO/CO) triple blends were prepared and characterized by measuring the most important physicochemical properties, i.e., viscosity, density, cold flow properties, flash point and cetane number. An appreciable improvement in cold flow values has been achieved with triple blends, without compromising properties such as calorific value and cetane number. Likewise, the triple blends meet the viscosity and density requirements specified by the European quality standard EN 14214 and the American standard ASTM D6751. After characterization, the triple blends were used on a diesel engine, evaluating different parameters such as power output, opacity, exhaust emissions (CO and NOx) and consumption at different engine loads. The results indicate that as the biofuel content in the blend increases, engine power decreases while fuel consumption rises. Nevertheless, the values obtained with D/FO/CO are better than those for D/FO/SO and are also very similar to those of fossil diesel. Regarding opacity values and NOx emissions obtained with the utilization of the triple blends, they are lower than those produced by diesel. However, in the case of CO emissions, it depends on the type of oil used, with the samples prepared with castor oil exhibiting the best results. Full article
Show Figures

Figure 1

16 pages, 7099 KiB  
Article
Economical Experimental Device for Evaluating Thermal Conductivity in Construction Materials under Limited Research Funding
by Damien Ali Hamada Fakra, Rijalalaina Rakotosaona, Marie Hanitriniaina Ratsimba, Mino Patricia Randrianarison and Riad Benelmir
Metrology 2024, 4(3), 430-445; https://doi.org/10.3390/metrology4030026 - 30 Aug 2024
Viewed by 1066
Abstract
African scientific research faces formidable challenges, particularly with limited access to state-of-the-art measurement instruments. The high cost associated with these devices presents a significant barrier for regional research laboratories, impeding their ability to conduct sophisticated experiments and gather precise data. This predicament not [...] Read more.
African scientific research faces formidable challenges, particularly with limited access to state-of-the-art measurement instruments. The high cost associated with these devices presents a significant barrier for regional research laboratories, impeding their ability to conduct sophisticated experiments and gather precise data. This predicament not only hampers the individual laboratories but also has broader implications for the African scientific community and the advancement of knowledge in developing nations—the financial cost barrier considerably impacts the research quality of these laboratories. Reflection on technical and economical solutions needs to be quickly found to help these countries advance their research. In civil engineering, the thermal conductivity property is the most important measurement for characterizing heat transfer in construction materials. Existing devices (i.e., conductometers) in a laboratory are expensive (approximately EUR 30,000) and unavailable for some African laboratories. This study proposes a new and affordable device to evaluate thermal conductivity in construction materials. The method involves establishing a thermal flux between a heat source (from the Joule effect provided by steel wool where a current is circulating) and a cold source (generated by ice cubes) under steady-state conditions. The development of the cylindrical prototype is based on the comparative flux-meter method outlined in the measuring protocol of the ASTM E1225 standard document. Experiments were conducted on four distinct materials (polystyrene, wood, agglomerated wood, and rigid foam). The results indicate a correct correlation between the experimental values obtained from the newly developed prototype and the reference values found in the literature. For example, concerning the experimental polystyrene study, the detailed case analysis reveals a good correlation, with a deviation of only 4.88%. The percent error found falls within the acceptable range indicated by the standard recommendations of the ASTM E1225 standard, i.e., within 5% acceptable error. Full article
Show Figures

Figure 1

18 pages, 6689 KiB  
Article
Experimental Analysis of Stress Shielding Effects in Screw Spacers Placed in Porcine Spinal Tissue
by Elliot Alonso Alcántara-Arreola, Karla Nayeli Silva-Garcés, Jocabed Mendoza-Martínez, Miguel Antonio Cardoso-Palomares and Christopher René Torres-SanMiguel
J. Funct. Biomater. 2024, 15(8), 238; https://doi.org/10.3390/jfb15080238 - 22 Aug 2024
Cited by 2 | Viewed by 850
Abstract
Bone cortical tissues reorganize and remodel in response to tensile forces acting on them, while compressive forces cause atrophy. However, implants support most of the payload. Bones do not regenerate, and stress shielding occurs. The aim is to analyze the biomechanical behavior of [...] Read more.
Bone cortical tissues reorganize and remodel in response to tensile forces acting on them, while compressive forces cause atrophy. However, implants support most of the payload. Bones do not regenerate, and stress shielding occurs. The aim is to analyze the biomechanical behavior of a lumbar cage to study the implant’s stress shielding. The ASTM E-9 standard was used with the necessary adjustments to perform compression tests on lumbar and thoracic porcine spinal vertebrae. Twelve cases were analyzed: six with the metal prosthesis and six with the PEEK implant. A mathematical model based on the Hertz contact theory is proposed to assess the stress shielding for endoprosthesis used in spine pathologies. The lumbar spacer (screw) helps to reduce the stress shielding effect due to the ACME thread. The best interspinous spacer is the PEEK screw. It does not embed in bone. The deformation capability increases by 11.5% and supports 78.6 kg more than a system without any interspinous spacer. Full article
(This article belongs to the Special Issue Biomaterials and Biomechanics Studies in Tissue Engineering)
Show Figures

Figure 1

15 pages, 5597 KiB  
Article
Elastic Property Evaluation of Fiberglass and Epoxy Resin Composite Material Using Digital Image Correlation
by Dalferson Yoras, Sylwia Makowska, Agnė Kairytė, Jurga Šeputytė-Jucikė, Luis Roberto Centeno Drehmmer and Maikson Luiz Passaia Tonatto
Materials 2024, 17(15), 3726; https://doi.org/10.3390/ma17153726 - 27 Jul 2024
Viewed by 866
Abstract
This study focused on evaluating the sensitivity and limitations of the simplified equipment used in the Digital Image Correlation (DIC) technique, comparing them with the analog extensometer, based on the mechanical property data of a composite made of fiberglass and epoxy resin. The [...] Read more.
This study focused on evaluating the sensitivity and limitations of the simplified equipment used in the Digital Image Correlation (DIC) technique, comparing them with the analog extensometer, based on the mechanical property data of a composite made of fiberglass and epoxy resin. The objectives included establishing a methodology based on the literature, fabricating samples through manual lamination, conducting mechanical tests according to the ASTM D3039 and D3518 standards, comparing DIC with the analog extensometer of the testing machine, and contrasting the experimental results with classical laminate theory. Three composite plates with specific stacking sequences ([0]3, [90]4, and [±45]3) were fabricated, and samples were extracted for testing to determine tensile strength, modulus of elasticity, and other properties. DIC was used to capture deformation fields during testing. Comparisons between data obtained from the analog extensometer and DIC revealed differences of 11.1% for the longitudinal modulus of elasticity E1 and 5.6% for E2. Under low deformation conditions, DIC showed lower efficiency due to equipment limitations. Finally, a theoretical analysis based on classical laminate theory, conducted using a Python script, estimated the longitudinal modulus of elasticity Ex and the shear strength of the [±45]3 laminate, highlighting a relative difference of 31.2% between the theoretical value of 7136 MPa and the experimental value of 5208 MPa for Ex. Full article
Show Figures

Figure 1

14 pages, 3967 KiB  
Article
Repeatability and Reproducibility of Pavement Density Profiling Systems
by Fabricio Leiva-Villacorta and Adriana Vargas-Nordcbeck
NDT 2024, 2(3), 190-203; https://doi.org/10.3390/ndt2030011 - 22 Jun 2024
Cited by 1 | Viewed by 1238
Abstract
The work conducted in this study was designed to establish achievable testing tolerances for non-destructive pavement density measurements using Density Profiling Systems (DPSs). Nine and six sensors were used to determine the precision of repeatability and reproducibility in the laboratory and the field, [...] Read more.
The work conducted in this study was designed to establish achievable testing tolerances for non-destructive pavement density measurements using Density Profiling Systems (DPSs). Nine and six sensors were used to determine the precision of repeatability and reproducibility in the laboratory and the field, respectively. A minimum of six sensors (considered in this study as independent laboratories) were needed to comply with the minimum number of participants required in the current ASTM standard practice (ASTM E691). The methodology included the development of laboratory precision evaluation with a total of nine sensors and two different mixtures (9.5 mm fine-graded mix, 19.0 mm coarse-graded mix) compacted at four density levels (97%, 94%, 91%, and 88% of Gmm). For the field portion of this study, pavement sections built at the National Center for Asphalt Technology (NCAT) Test Track in 2021 served as experimental variables. These sections were built with fine-graded asphalt mixtures and open-graded mixes as wearing courses. Additionally, the pavement sections included three underlying materials: new asphalt (binder layer), milled asphalt surface, and granular base, with thicknesses ranging from 3.8 to 13.9 cm. Density profile testing was conducted at two locations: within the mat (center of the lane) and along the joint. Computed precision statements regarding dielectric values within and between laboratories were about double for field results compared to laboratory results. However, when converted to density, the statements were significantly below the reported statements for Bulk Specific Gravity and Vacuum Sealing in the laboratory and Nuclear and Electromagnetic density gauges in the field. Full article
(This article belongs to the Topic Nondestructive Testing and Evaluation)
Show Figures

Figure 1

10 pages, 227 KiB  
Brief Report
Antiviral Activity of Ag5IO6, a Unique Silver Compound
by Mauri Erickson, Tyler J. Boone and Patricia L. Nadworny
Viruses 2024, 16(6), 959; https://doi.org/10.3390/v16060959 - 13 Jun 2024
Viewed by 1662
Abstract
Pentasilver hexaoxoiodate (Ag5IO6) has broad-spectrum antimicrobial efficacy, including the long-term prevention of microbial adherence, the rapid killing of planktonic microorganisms, and the elimination of mature biofilms. This study’s goal was to determine whether it may also have antiviral activity [...] Read more.
Pentasilver hexaoxoiodate (Ag5IO6) has broad-spectrum antimicrobial efficacy, including the long-term prevention of microbial adherence, the rapid killing of planktonic microorganisms, and the elimination of mature biofilms. This study’s goal was to determine whether it may also have antiviral activity against structurally distinct viruses. Ag5IO6 was tested following ASTM E1052-20, Standard Practice to Assess the Activity of Microbicides Against Viruses in Suspension, against adenovirus type 5, murine norovirus, poliovirus type 1, SARS-CoV-2 (original), and SARS-CoV-2 (omicron) (host cells: H1HeLa, RAW 264.7, LLC-MK2, Vero E6, and Vero E6, respectively). A 0.1 g/mL Ag5IO6 suspension was prepared and the viruses were exposed for 30 min, 4 h, or 24 h. Exposure to Ag5IO6 resulted in complete kill of SARS-CoV-2 (omicron) within 30 min, as well as complete kill of both SARS-CoV-2 (original) and the murine norovirus within 4 h. Ag5IO6 showed increasing activity over time against the adenovirus, but did not achieve a 3-log reduction within 24 h, and showed no antiviral activity against the poliovirus. These results demonstrate that Ag5IO6 has antiviral activity against medically important viruses, in addition to its well-characterized antimicrobial activity, suggesting that it may be valuable in situations where the prevention or simultaneous treatment of microbes and viruses are necessary. Full article
Show Figures

Graphical abstract

Back to TopTop