Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = Bluetooth Mesh

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 627 KiB  
Article
Enhancing Reliability and Stability of BLE Mesh Networks: A Multipath Optimized AODV Approach
by Muhammad Rizwan Ghori, Tat-Chee Wan, Gian Chand Sodhy, Mohammad Aljaidi, Amna Rizwan, Ali Safaa Sadiq and Omprakash Kaiwartya
Sensors 2024, 24(18), 5901; https://doi.org/10.3390/s24185901 - 11 Sep 2024
Viewed by 868
Abstract
Bluetooth Low Energy (BLE) mesh networks provide flexible and reliable communication among low-power sensor-enabled Internet of Things (IoT) devices, enabling them to communicate in a flexible and robust manner. Nonetheless, the majority of existing BLE-based mesh protocols operate as flooding-based piconet or scatternet [...] Read more.
Bluetooth Low Energy (BLE) mesh networks provide flexible and reliable communication among low-power sensor-enabled Internet of Things (IoT) devices, enabling them to communicate in a flexible and robust manner. Nonetheless, the majority of existing BLE-based mesh protocols operate as flooding-based piconet or scatternet overlays on top of existing Bluetooth star topologies. In contrast, the Ad hoc On-Demand Distance Vector (AODV) protocol used primarily in wireless ad hoc networks (WAHNs) is forwarding-based and therefore more efficient, with lower overheads. However, the packet delivery ratio (PDR) and link recovery time for AODV performs worse compared to flooding-based BLE protocols when encountering link disruptions. We propose the Multipath Optimized AODV (M-O-AODV) protocol to address these issues, with improved PDR and link robustness compared with other forwarding-based protocols. In addition, M-O-AODV achieved a PDR of 88%, comparable to the PDR of 92% for flooding-based BLE, unlike protocols such as Reverse-AODV (R-AODV). Also, M-O-AODV was able to perform link recovery within 3700 ms in the case of node failures, compared with other forwarding-based protocols that require 4800 ms to 6000 ms. Consequently, M-O-AODV-based BLE mesh networks are more efficient for wireless sensor-enabled IoT environments. Full article
(This article belongs to the Special Issue Energy Harvesting and Self-Powered Sensors)
Show Figures

Figure 1

19 pages, 1868 KiB  
Article
Constrained Flooding Based on Time Series Prediction and Lightweight GBN in BLE Mesh
by Junxiang Li, Mingxia Li and Li Wang
Sensors 2024, 24(14), 4752; https://doi.org/10.3390/s24144752 - 22 Jul 2024
Cited by 1 | Viewed by 577
Abstract
Bluetooth Low Energy Mesh (BLE Mesh) enables Bluetooth flexibility and coverage by introducing Low-Power Nodes (LPNs) and enhanced networking protocol. It is also a commonly used communication method in sensor networks. In BLE Mesh, LPNs are periodically woken to exchange messages in a [...] Read more.
Bluetooth Low Energy Mesh (BLE Mesh) enables Bluetooth flexibility and coverage by introducing Low-Power Nodes (LPNs) and enhanced networking protocol. It is also a commonly used communication method in sensor networks. In BLE Mesh, LPNs are periodically woken to exchange messages in a stop-and-wait way, where the tradeoff between energy and efficiency is a hard problem. Related works have reduced the energy consumption of LPNs mainly in the direction of changing the bearer layer, improving time synchronization and broadcast channel utilization. These algorithms improve communication efficiency; however, they cause energy loss, especially for the LPNs. In this paper, we propose a constrained flooding algorithm based on time series prediction and lightweight GBN (Go-Back-N). On the one hand, the wake-up cycle of the LPNs is determined by the time series prediction of the surrounding load. On the other, LPNs exchange messages through lightweight GBN, which improves the window and ACK mechanisms. Simulation results validate the effectiveness of the Time series Prediction and LlightWeight GBN (TP-LW) algorithm in energy consumption and throughput. Compared with the original algorithm of BLE Mesh, when fewer packets are transmitted, the throughput is increased by 214.71%, and the energy consumption is reduced by 65.14%. Full article
Show Figures

Figure 1

25 pages, 9966 KiB  
Article
Development of a Multi-Radio Device for Dry Container Monitoring and Tracking
by Mariano Falcitelli, Misal, Sandro Noto and Paolo Pagano
IoT 2024, 5(2), 187-211; https://doi.org/10.3390/iot5020010 - 2 Apr 2024
Viewed by 1671
Abstract
Maritime shipping companies have identified continuous tracking of intermodal containers as a key tool for increasing shipment reliability and generating important economies of scale. Equipping all dry containers with an Internet-connected tracking device is a need in the global shipping market that is [...] Read more.
Maritime shipping companies have identified continuous tracking of intermodal containers as a key tool for increasing shipment reliability and generating important economies of scale. Equipping all dry containers with an Internet-connected tracking device is a need in the global shipping market that is still waiting to be met. This paper presents the methods and tools to build and test a prototype of a Container Tracking Device (CTD) that integrates NB-IoT, BLE Mesh telecommunication and low-power consumption technologies for the massive deployment of the IoT. The work was carried out as part of a project to build the so-called “5G Global Tracking System”, enabling several different logistic applications relying on massive IoT, M2M standard platforms, as well as satellite networks to collect data from dry containers when the vessel is in open sea. Starting from a preliminary phase, in which state-of-the-art technologies, research approaches, industrial initiatives and developing standards were investigated, a prototype version of the CTD has been designed, verified and developed as the first fundamental step for subsequent industrial engineering. The results of specific tests are shown: after verifying that the firmware is capable of handling the various functions of the device, a special focus is devoted to the power consumption measurements of the CTD to size the battery pack. Full article
Show Figures

Figure 1

16 pages, 668 KiB  
Article
Optimizing Lifetime of Internet-of-Things Networks with Dynamic Scanning
by Seung-Kyu Choi, Woo Hyun Kim and Illsoo Sohn
Mathematics 2023, 11(23), 4768; https://doi.org/10.3390/math11234768 - 25 Nov 2023
Cited by 1 | Viewed by 933
Abstract
With the development of Internet-of-Things (IoT) technology, industries such as smart agriculture, smart health, smart buildings, and smart cities are attracting attention. As a core wireless communication technology, Bluetooth Low Energy (BLE) is gaining a lot of interest as a highly reliable low-power [...] Read more.
With the development of Internet-of-Things (IoT) technology, industries such as smart agriculture, smart health, smart buildings, and smart cities are attracting attention. As a core wireless communication technology, Bluetooth Low Energy (BLE) is gaining a lot of interest as a highly reliable low-power communication technology. In particular, BLE enables a connectionless mesh network that propagates data in a flooding manner using advertising channels. In this paper, we aim to optimize the energy consumption of the network by minimizing the scanning time while preserving the reliability of the network. Maximizing network lifetime requires various optimizing algorithms, including exhaustive searching and gradient descent searching. However, they are involved with excessive computational complexity and high implementation costs. To reduce computational complexity of network optimization, we mathematically model the energy consumption of BLE networks and formulate maximizing network lifetime as an optimization problem. We first present an analytical approach to solve the optimization problem and show that finding the minima from the complicated objective function of the optimization problem does not guarantee a valid solution to the problem. As a low-complexity solution, we approximate the complicated objective function into a convex form and derive a closed-form expression of the suboptimal solution. Our simulation results show that the proposed suboptimal solution provides almost equivalent performance compared to the optimal solution in terms of network lifetime. With very low computational complexity, the proposed suboptimal solution can extensively reduce implementation costs. Full article
(This article belongs to the Special Issue Applications of Mathematical Analysis in Telecommunications-II)
Show Figures

Figure 1

16 pages, 4465 KiB  
Article
Bluetooth 5.0 Suitability Assessment for Emergency Response within Fire Environments
by Brendan Black, Joseph Rafferty, Jose Santos, Andrew Ennis, Philip Perry and Maurice McKee
Electronics 2023, 12(22), 4599; https://doi.org/10.3390/electronics12224599 - 10 Nov 2023
Viewed by 1134
Abstract
Natural disasters, such as wildfires, can cause widespread devastation. Future-proofing infrastructure, such as buildings and bridges, through technological advancements is crucial to minimize their impact. Fires in disasters often stem from damaged fuel lines and electrical equipment, such as the 2018 California wildfire [...] Read more.
Natural disasters, such as wildfires, can cause widespread devastation. Future-proofing infrastructure, such as buildings and bridges, through technological advancements is crucial to minimize their impact. Fires in disasters often stem from damaged fuel lines and electrical equipment, such as the 2018 California wildfire caused by a power line fault. To enhance safety, IoT applications can continuously monitor the health of emergency personnel. Using Bluetooth 5.0 and wearables in mesh networks, these apps can alert others about an individual’s location during emergencies. However, fire can disrupt wireless networks. This study assesses Bluetooth 5.0’s performance in transmitting signals in fire conditions. It examined received signal strength indicator (RSSI) values in a front open-fire chamber using both Peer-to-Peer (P2P) and mesh networks. The experiment considered three transmission heights of 0.61, 1.22, and 1.83 m and two distances of 11.13 m and 1.52 m. The study demonstrated successful signal transmission with a maximum loss of only 2 dB when transmitting through the fire. This research underscores the potential for reliable communication in fire-prone environments, improving safety during natural disasters. Full article
Show Figures

Figure 1

20 pages, 5028 KiB  
Article
Intelligent Microsystem for Sound Event Recognition in Edge Computing Using End-to-End Mesh Networking
by Lulu Hou, Wenrui Duan, Guozhe Xuan, Shanpeng Xiao, Yuan Li, Yizheng Li and Jiahao Zhao
Sensors 2023, 23(7), 3630; https://doi.org/10.3390/s23073630 - 31 Mar 2023
Viewed by 2336
Abstract
Wireless acoustic sensor networks (WASNs) and intelligent microsystems are crucial components of the Internet of Things (IoT) ecosystem. In various IoT applications, small, lightweight, and low-power microsystems are essential to enable autonomous edge computing and networked cooperative work. This study presents an innovative [...] Read more.
Wireless acoustic sensor networks (WASNs) and intelligent microsystems are crucial components of the Internet of Things (IoT) ecosystem. In various IoT applications, small, lightweight, and low-power microsystems are essential to enable autonomous edge computing and networked cooperative work. This study presents an innovative intelligent microsystem with wireless networking capabilities, sound sensing, and sound event recognition. The microsystem is designed with optimized sensing, energy supply, processing, and transceiver modules to achieve small size and low power consumption. Additionally, a low-computational sound event recognition algorithm based on a Convolutional Neural Network has been designed and integrated into the microsystem. Multiple microsystems are connected using low-power Bluetooth Mesh wireless networking technology to form a meshed WASN, which is easily accessible, flexible to expand, and straightforward to manage with smartphones. The microsystem is 7.36 cm3 in size and weighs 8 g without housing. The microsystem can accurately recognize sound events in both trained and untrained data tests, achieving an average accuracy of over 92.50% for alarm sounds above 70 dB and water flow sounds above 55 dB. The microsystems can communicate wirelessly with a direct range of 5 m. It can be applied in the field of home IoT and border security. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

25 pages, 1614 KiB  
Review
Bluetooth Low Energy Mesh: Applications, Considerations and Current State-of-the-Art
by Iynkaran Natgunanathan, Niroshinie Fernando, Seng W. Loke and Charitha Weerasuriya
Sensors 2023, 23(4), 1826; https://doi.org/10.3390/s23041826 - 6 Feb 2023
Cited by 23 | Viewed by 6470
Abstract
With the proliferation of IoT applications, more and more smart, connected devices will be required to communicate with one another, operating in situations that involve diverse levels of range and cost requirements, user interactions, mobility, and energy constraints. Wireless technologies that can satisfy [...] Read more.
With the proliferation of IoT applications, more and more smart, connected devices will be required to communicate with one another, operating in situations that involve diverse levels of range and cost requirements, user interactions, mobility, and energy constraints. Wireless technologies that can satisfy the aforementioned requirements will be vital to realise emerging market opportunities in the IoT sector. Bluetooth Mesh is a new wireless protocol that extends the core Bluetooth low energy (BLE) stack and promises to support reliable and scalable IoT systems where thousands of devices such as sensors, smartphones, wearables, robots, and everyday appliances operate together. In this article, we present a comprehensive discussion on current research directions and existing use cases for Bluetooth Mesh, with recommendations for best practices so that researchers and practitioners can better understand how they can use Bluetooth Mesh in IoT scenarios. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

17 pages, 767 KiB  
Article
RESEMBLE: A Real-Time Stack for Synchronized Mesh Mobile Bluetooth Low Energy Networks
by Luca Leonardi, Lucia Lo Bello and Gaetano Patti
Appl. Syst. Innov. 2023, 6(1), 19; https://doi.org/10.3390/asi6010019 - 26 Jan 2023
Cited by 3 | Viewed by 1941
Abstract
Bluetooth Low Energy (BLE) is a wireless technology for low-power, low-cost and lowcomplexity short-range communications. On top of the BLE stack, the Bluetooth Mesh profile can be adopted to handle large networks with mesh topologies. BLE is a promising candidate for the implemention [...] Read more.
Bluetooth Low Energy (BLE) is a wireless technology for low-power, low-cost and lowcomplexity short-range communications. On top of the BLE stack, the Bluetooth Mesh profile can be adopted to handle large networks with mesh topologies. BLE is a promising candidate for the implemention of Industrial Wireless Sensor Networks (IWSNs), thanks to its wide diffusion (e.g., on smartphones and tablets) and the lower cost of the devices compared to other wireless industrial communication technologies. However, neither the BLE nor the Bluetooth Mesh specifications can provide real-time messages with bounded delays. To overcome this limitation, this work proposes RESEMBLE, a real-time stack developed on top of BLE that is able to realize low-cost IWSNs over mesh topologies. RESEMBLE offers support to both real-time and non-real-time communications on the same network. Moreover, RESEMBLE provides clock synchronization, thus allowing for Time Division Multiple Access (TDMA) transmissions. The clock synchronization provided by RESEMBLE can be also exploited by the upper layers’ industrial applications to implement timecoordinated actions. Full article
Show Figures

Figure 1

20 pages, 4678 KiB  
Article
PCO-Based BLE Mesh Accelerator
by Ivan Bukreyev, Hazal Yüksel, Ken Ho and Alyssa Apsel
Sensors 2022, 22(14), 5324; https://doi.org/10.3390/s22145324 - 16 Jul 2022
Viewed by 2072
Abstract
Bluetooth Low Energy (BLE) mesh networks enable diverse communication for the Internet of Things (IoT). However, existing BLE mesh implementations cannot simultaneously achieve low-power operation, symmetrical communication, and scalability. A major limitation of mesh networks is the inability of the BLE stack to [...] Read more.
Bluetooth Low Energy (BLE) mesh networks enable diverse communication for the Internet of Things (IoT). However, existing BLE mesh implementations cannot simultaneously achieve low-power operation, symmetrical communication, and scalability. A major limitation of mesh networks is the inability of the BLE stack to handle network-scalable time synchronization. Pulse-coupled oscillators (PCOs) have been studied extensively and are able to achieve fast and reliable synchronization across a range of applications and network topologies. This paper presents a lightweight physical (PHY) layer accelerator to the BLE stack that enables scalable synchronization command with a PCO. The accelerator is a fully digital solution that can be synthesized with only the standard cells available in any silicon technology. This paper provides a detailed analysis of PCO-based BLE mesh networks and explores per-node system-level requirements. Finally, the analytical results are validated with measurements of a custom radio node based on the ubiquitous AD9364 transceiver. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

17 pages, 7138 KiB  
Article
Selected Energy Consumption Aspects of Sensor Data Transmission in Distributed Multi-Microcontroller Embedded Systems
by Magdalena Szymczyk and Piotr Augustyniak
Electronics 2022, 11(6), 848; https://doi.org/10.3390/electronics11060848 - 8 Mar 2022
Cited by 6 | Viewed by 2839
Abstract
Wireless network devices are currently a hot topic in research related to human health, control systems, smart homes, and the Internet of Things (IoT). In the shadow of the coronavirus pandemic, they have gained even more attention. This remote and contactless distributed sensing [...] Read more.
Wireless network devices are currently a hot topic in research related to human health, control systems, smart homes, and the Internet of Things (IoT). In the shadow of the coronavirus pandemic, they have gained even more attention. This remote and contactless distributed sensing technology enabled monitoring of vital signs in real-time. Many of the devices are battery powered, so appropriate management of available energy is crucial for lengthening autonomous operation time without affecting weight, size, maintenance requirement, and user acceptance. In this paper, we discuss energy consumption aspects of sensor data transmission using wireless Bluetooth Low Energy Mesh Long Range (BLE-M-LR) technology. Papers in the field of energy savings in wireless networks do not directly address the problem of the dependence of the energy needed for transmission on the type and degree of data preprocessing, which is the novelty and uniqueness of this work. We built and studied a prototype system designed to work as a multimodal sensing node in a compound IoT application targeted to assisted living. To analyze multiple energy-related aspects, we tested it in various operation and data transmission modes: continuous, periodic, and event-based. We also implemented and tested two alternative sensor-side processing procedures: deterministic data stream reduction and neural network-based recognition and labeling of the states. Our results reveal that event-based or periodic operation allows the node for years-long operating, and the sensor-side processing may degrade the power economy more than it benefits from savings made on transmission of concise data. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

21 pages, 1383 KiB  
Article
ACE: A Routing Algorithm Based on Autonomous Channel Scheduling for Bluetooth Mesh Network
by Minyue Wang, Yeming Li, Jiamei Lv, Yi Gao, Cheng Qiao, Baiqiang Liu and Wei Dong
Electronics 2022, 11(1), 113; https://doi.org/10.3390/electronics11010113 - 30 Dec 2021
Cited by 6 | Viewed by 2645
Abstract
The Internet of Things (IoT) interconnects massive cyber-physical devices (CPD) to provide various applications, such as smart home and smart building. Bluetooth Mesh is an emerging networking technology, which can be used to organize a massive network with Bluetooth Low Energy (BLE) devices. [...] Read more.
The Internet of Things (IoT) interconnects massive cyber-physical devices (CPD) to provide various applications, such as smart home and smart building. Bluetooth Mesh is an emerging networking technology, which can be used to organize a massive network with Bluetooth Low Energy (BLE) devices. Managed-flooding protocol is used in Bluetooth Mesh to route the data packets. Although it is a highly desirable option when data transmission is urgent, it is inefficient in a larger and denser mesh network due to the collisions of broadcast data packets. In this paper, we introduce ACE: a Routing Algorithm based on Autonomous Channel Scheduling for Bluetooth Mesh Network. ACE relies on the existing Bluetooth Mesh messages to distribute routes without additional traffic overhead and conducts a beacon-aware routing update adaptively as the topology evolves. In ACE, BLE channel resources can be efficiently utilized by a channel scheduling scheme for each node locally and autonomously without any neighborly negotiation. We implement ACE on the nRF52840 from Nordic Semiconductor and evaluate its effectiveness on our testbed. Compared to the Bluetooth Mesh, our experiments proved that ACE could reduce the end-to-end latency by 16%, alleviate packets collisions issues, and increase the packet delivery ratio (PDR) by 30% under heavy traffic. Moreover, simulation results verified that ACE has better scalability when the size and density of networks become larger and denser. Full article
(This article belongs to the Special Issue Novel Methods for Dependable IoT Edge Applications)
Show Figures

Figure 1

20 pages, 1375 KiB  
Article
Measurement and Analysis of RSS Using Bluetooth Mesh Network for Localization Applications
by Yuan Cao, Harsha Kandula and Xinrong Li
Network 2021, 1(3), 315-334; https://doi.org/10.3390/network1030018 - 2 Dec 2021
Cited by 3 | Viewed by 5243
Abstract
Bluetooth low energy (BLE)-based location service technology has become one of the fastest growing applications for Bluetooth. Received signal strength (RSS) is often used in localization techniques for ranging or location fingerprinting. However, RSS-based localization solutions have poor performance in multipath environments. In [...] Read more.
Bluetooth low energy (BLE)-based location service technology has become one of the fastest growing applications for Bluetooth. Received signal strength (RSS) is often used in localization techniques for ranging or location fingerprinting. However, RSS-based localization solutions have poor performance in multipath environments. In this paper, we present a measurement system designed using multiple ESP32 BLE modules and the Bluetooth mesh networking technology, which is capable of exploiting the space, time, and frequency diversities in measurements. To enable channel-aware multi-device RSS measurements, we also designed a communication protocol to associate channel ID information to advertising messages. Based on channel measurement and analysis, we demonstrate that with a six-receiver configuration and space-time-frequency diversity combining, we can significantly reduce the residual linear regression fitting errors in path loss models. Such a reduction leads to more accurately correlating RSS measurements to the distance between the transmitter and receiver devices and thus to achieving improved performance with the RSS-based localization techniques. More importantly, the reduction in the fitting errors is achieved without differentiating the three advertising channels, making it possible to conveniently implement the proposed six-receiver configuration using commercially available BLE devices and the standard Bluetooth mesh networking protocol stack. Full article
Show Figures

Figure 1

9 pages, 418 KiB  
Article
IoT Security Mechanisms in the Example of BLE
by Evgeny Kalinin, Danila Belyakov, Dmitry Bragin and Anton Konev
Computers 2021, 10(12), 162; https://doi.org/10.3390/computers10120162 - 29 Nov 2021
Cited by 4 | Viewed by 3573
Abstract
In recent years, a lot of IoT devices, wireless sensors, and smart things contain information that must be transmitted to the server for further processing. Due to the distance between devices, battery power, and the possibility of sudden device failure, the network that [...] Read more.
In recent years, a lot of IoT devices, wireless sensors, and smart things contain information that must be transmitted to the server for further processing. Due to the distance between devices, battery power, and the possibility of sudden device failure, the network that connects the devices must be scalable, energy efficient, and flexible. Particular attention must be paid to the protection of the transmitted data. The Bluetooth mesh was chosen as such a network. This network is built on top of Bluetooth Low-Energy devices, which are widespread in the market and whose radio modules are available from several manufacturers. This paper presents an overview of security mechanisms for the Bluetooth mesh network. This network provides encryption at two layers: network and upper transport layers, which increases the level of data security. The network uses sequence numbers for each message to protect against replay attacks. The introduction of devices into the network is provided with an encryption key, and the out-of-band (OOB) mechanism is also supported. At the moment, a comparison has been made between attacks and defense mechanisms that overlap these attacks. The article also suggested ways to improve network resiliency. Full article
Show Figures

Graphical abstract

25 pages, 706 KiB  
Article
Optimization of the AODV-Based Packet Forwarding Mechanism for BLE Mesh Networks
by Muhammad Rizwan Ghori, Tat-Chee Wan, Gian Chand Sodhy and Amna Rizwan
Electronics 2021, 10(18), 2274; https://doi.org/10.3390/electronics10182274 - 16 Sep 2021
Cited by 8 | Viewed by 3573
Abstract
The standard Bluetooth Low-Energy mesh networks assume the use of flooding for multihop communications. The flooding approach causes network overheads and delays due to continuous message broadcasting in the absence of a routing mechanism. Among the routing protocols, AODV is one of the [...] Read more.
The standard Bluetooth Low-Energy mesh networks assume the use of flooding for multihop communications. The flooding approach causes network overheads and delays due to continuous message broadcasting in the absence of a routing mechanism. Among the routing protocols, AODV is one of the most popular and robust routing protocol for wireless ad hoc networks. In this paper, we optimized the AODV protocol for Bluetooth Low-Energy communication to make it more efficient in comparison to the mesh protocol. With the proposed protocol (Optimized AODV (O-AODV)), we were able to achieve lower overheads, end-to-end delay, and average per-hop one-way delay in comparison to the BLE mesh (flooding) protocol and AODV protocol for all three scenarios (linear topology with ten nodes, multipath topology with six and ten nodes). In addition, the proposed protocol exhibited practically constant route requests and route reply setup times. Furthermore, the proposed protocol demonstrated a better Packet Delivery Ratio (PDR) for O-AODV (84%) in comparison to AODV (71%), but lower than the PDR of the mesh (flooding) protocol with 93%. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

24 pages, 1687 KiB  
Article
QoS Enabled Heterogeneous BLE Mesh Networks
by Subho Shankar Basu, Mathias Baert and Jeroen Hoebeke
J. Sens. Actuator Netw. 2021, 10(2), 24; https://doi.org/10.3390/jsan10020024 - 28 Mar 2021
Cited by 10 | Viewed by 3665
Abstract
Bluetooth Low Energy (BLE) is a widely known short-range wireless technology used for various Internet of Things (IoT) applications. Recently, with the introduction of BLE mesh networks, this short-range barrier of BLE has been overcome. However, the added advantage of an extended range [...] Read more.
Bluetooth Low Energy (BLE) is a widely known short-range wireless technology used for various Internet of Things (IoT) applications. Recently, with the introduction of BLE mesh networks, this short-range barrier of BLE has been overcome. However, the added advantage of an extended range can come at the cost of a lower performance of these networks in terms of latency, throughput and reliability, as the core operation of BLE mesh is based on advertising and packet flooding. Hence, efficient management of the system is required to achieve a good performance of these networks and a smoother functioning in dense scenarios. As the number of configuration points in a standard mesh network is limited, this paper describes a novel set of standard compliant Quality of Service (QoS) extensions for BLE mesh networks. The resulting QoS features enable better traffic management in the mesh network, providing sufficient redundancy to achieve reliability whilst avoiding unnecessary packet flooding to reduce collisions, as well as the prioritization of certain traffic flows and the ability to control end-to-end latencies. The QoS-based system has been implemented and validated in a small-scale BLE mesh network and compared against a setup without any QoS support. The assessment in a small-scale test setup confirms that applying our QoS features can enhance these types of non-scheduled and random access networks in a significant way. Full article
(This article belongs to the Section Actuators, Sensors and Devices)
Show Figures

Figure 1

Back to TopTop