Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = Butterworth filtering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 13176 KiB  
Article
The Real-Time Detection of Vertical Displacements by Low-Cost GNSS Receivers Using Precise Point Positioning
by Aleksandra Maciejewska, Maciej Lackowski, Tomasz Hadas and Kamil Maciuk
Sensors 2024, 24(17), 5599; https://doi.org/10.3390/s24175599 - 29 Aug 2024
Viewed by 539
Abstract
Vertical displacements are traditionally measured with precise levelling, which is inherently time consuming. Rapid or even real-time height determination can be achieved by the Global Navigation Satellite System (GNSS). Nevertheless, the accuracy of real-time GNSS positioning is limited, and the deployment of a [...] Read more.
Vertical displacements are traditionally measured with precise levelling, which is inherently time consuming. Rapid or even real-time height determination can be achieved by the Global Navigation Satellite System (GNSS). Nevertheless, the accuracy of real-time GNSS positioning is limited, and the deployment of a network of continuously operating GNSS receivers is not cost effective unless low-cost GNSS receivers are considered. In this study, we examined the use of geodetic-grade and low-cost GNSS receivers for static and real-time GNSS levelling, respectively. The results of static GNSS levelling were processed in four different software programs or services. The largest differences for ellipsoidal/normal heights reached 0.054 m/0.055 m, 0.046 m/0.047 m, and 0.058 m/0.058 m for points WRO1, BM_ROOF, and BM_CP, respectively. In addition, the values depended on the software used and the location of the point. However, the multistage experiment was designed to analyze various strategies for GNSS data processing and to define a method for detecting vertical displacement in a time series of receiver coordinates. The developed method combined time differentiation of coordinates estimated for a single GNSS receiver using the Precise Point Positioning (PPP) technique and Butterworth filtering. It demonstrated the capability of real-time detection of six out of eight displacements in the range between 20 and 55 mm at the three-sigma level. The study showed the potential of low-cost GNSS receivers for real-time displacement detection, thereby suggesting their applicability to structural health monitoring, positioning, or early warning systems. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

13 pages, 5919 KiB  
Article
Parametric Synthesis of Single-Stage Lattice-Type Acoustic Wave Filters and Extended Multi-Stage Design
by Wei-Hsien Tseng and Ruey-Beei Wu
Micromachines 2024, 15(9), 1075; https://doi.org/10.3390/mi15091075 - 26 Aug 2024
Viewed by 469
Abstract
This study proposes a single-stage lattice-type acoustic filter using an analytical solution method for either a narrow passband filter or a wider passband filter using two kinds of parameter assignments in the Butterworth–Van Dyke (BVD) model. To achieve the goal of a large [...] Read more.
This study proposes a single-stage lattice-type acoustic filter using an analytical solution method for either a narrow passband filter or a wider passband filter using two kinds of parameter assignments in the Butterworth–Van Dyke (BVD) model. To achieve the goal of a large bandwidth or high return loss, two first-order all-pass conditions are used. For multi-stage lattice-type filters, the cost function is defined and design parameters are extracted by using pattern search, while the initial values are provided through single-stage design to shorten optimization time and allow convergence to a better solution. This method provides the S-parameter frequency response for the filter on the YX 42° cut angle of lithium tantalate (electromechanical coupling coefficient of about 6%) that can meet the system specifications as much as possible. Finally, the three-stage lattice-type was applied to various 5G bands with a fractional bandwidth of 2–5%, resulting in a passband return loss of 10 dB and an out-of-band rejection of 40 dB or more. Full article
(This article belongs to the Special Issue Novel Surface and Bulk Acoustic Wave Devices)
Show Figures

Figure 1

19 pages, 15739 KiB  
Article
Extraction of Underwater Acoustic Signals across Sea–Air Media Using Butterworth Filtering
by Tengyuan Cui, Xiaolong Cao, Yiguang Yang, Qi Tan, Yuchen Du, Tongchang Zhang, Jiaqi Yuan, Zhenyuan Zhu and Jianquan Yao
J. Mar. Sci. Eng. 2024, 12(9), 1469; https://doi.org/10.3390/jmse12091469 - 23 Aug 2024
Viewed by 531
Abstract
Direct wireless communication through sea–air media is essential for constructing an integrated communication network that spans space, air, land, and sea. The amplitude of acoustically induced micromotion surface waves is much smaller than the noise interference in complex sea states, making the accurate [...] Read more.
Direct wireless communication through sea–air media is essential for constructing an integrated communication network that spans space, air, land, and sea. The amplitude of acoustically induced micromotion surface waves is much smaller than the noise interference in complex sea states, making the accurate extraction of these signals from the raw signals detected by an FMCW millimeter-wave radar a major challenge. In this paper, Butterworth filtering is used to extract underwater acoustic signals from the surface waves detected by radar. The physical processes of the channel were simulated theoretically and verified experimentally. The results demonstrate a fitting coefficient of 0.99 between the radar-detected water surface waves and the simulation outcomes, enabling the effective elimination of noise interference and the extraction of acoustically induced micromotion signals in environments with a signal-to-noise ratio (SNR) of −20 dB to −10 dB. Experiments modifying frequency and linear frequency modulation have verified that the usable frequency range for underwater acoustic signals is at least 400 Hz, meeting the frequency requirements of Binary Frequency Shift Keying (2FSK) modulation encoding methods. This research confirms the accuracy of the simulation results and the feasibility of filtering and extracting underwater acoustic signals, providing a theoretical basis and an experimental foundation for building cross-media communication links. Full article
(This article belongs to the Special Issue Underwater Wireless Communications: Recent Advances and Challenges)
Show Figures

Figure 1

16 pages, 3458 KiB  
Article
Design of Infinite Impulse Response Filters Based on Multi-Objective Particle Swarm Optimization
by Te-Jen Su, Qian-Yi Zhuang, Wei-Hong Lin, Ya-Chung Hung, Wen-Rong Yang and Shih-Ming Wang
Signals 2024, 5(3), 526-541; https://doi.org/10.3390/signals5030029 - 14 Aug 2024
Cited by 1 | Viewed by 512
Abstract
The goal of this study is to explore the effectiveness of applying multi-objective particle swarm optimization (MOPSO) algorithms in the design of infinite impulse response (IIR) filters. Given the widespread application of IIR filters in digital signal processing, the precision of their design [...] Read more.
The goal of this study is to explore the effectiveness of applying multi-objective particle swarm optimization (MOPSO) algorithms in the design of infinite impulse response (IIR) filters. Given the widespread application of IIR filters in digital signal processing, the precision of their design plays a significant role in the system’s performance. Traditional design methods often encounter the problem of local optima, which limits further enhancement of the filter’s performance. This research proposes a method based on multi-objective particle swarm optimization algorithms, aiming not just to find the local optima but to identify the optimal global design parameters for the filters. The design methodology section will provide a detailed introduction to the application of multi-objective particle swarm optimization algorithms in the IIR filter design process, including particle initialization, velocity and position updates, and the definition of objective functions. Through multiple experiments using Butterworth and Chebyshev Type I filters as prototypes, as well as examining the differences in the performance among these filters in low-pass, high-pass, and band-pass configurations, this study compares their efficiencies. The minimum mean square error (MMSE) of this study reached 1.83, the mean error (ME) reached 2.34, and the standard deviation (SD) reached 0.03, which is better than the references. In summary, this research demonstrates that multi-objective particle swarm optimization algorithms are an effective and practical approach in the design of IIR filters. Full article
Show Figures

Figure 1

18 pages, 4541 KiB  
Article
Monitoring the Sleep Respiratory Rate with Low-Cost Microcontroller Wi-Fi in a Controlled Environment
by Ratthamontree Burimas, Teerayut Horanont, Aakash Thapa and Badri Raj Lamichhane
Appl. Sci. 2024, 14(15), 6458; https://doi.org/10.3390/app14156458 - 24 Jul 2024
Viewed by 640
Abstract
Sleep apnea, characterized by breathing interruptions or slow breathing at night, can cause various health issues. Detecting respiratory rate (RR) using Wireless Fidelity (Wi-Fi) can identify sleep disorders without physical contact avoiding sleep disruption. However, traditional methods using Network Interface Cards (NICs) like [...] Read more.
Sleep apnea, characterized by breathing interruptions or slow breathing at night, can cause various health issues. Detecting respiratory rate (RR) using Wireless Fidelity (Wi-Fi) can identify sleep disorders without physical contact avoiding sleep disruption. However, traditional methods using Network Interface Cards (NICs) like the Intel Wi-Fi Link 5300 NIC are often costly and limited in channel state information (CSI) resolution. Our study introduces an effective strategy using the affordable ESP32 single-board computer for tracking RR through detailed analysis of Wi-Fi signal CSI. We developed a technique correlating Wi-Fi signal fluctuations with RR, employing signal processing methods—Hampel Filtering, Gaussian Filtering, Linear Interpolation, and Butterworth Low Pass Filtering—to accurately extract relevant signals. Additionally, noise from external movements is mitigated using a Z-Score for anomaly detection approach. We also implemented a local peak function to count peaks within an interval, scaling it to bpm for RR identification. RR measurements were conducted at different rates—Normal (12–16 bpm), Fast (>16 bpm), and Slow (<12 bpm)—to assess the effectiveness in both normal and sleep apnea conditions. Tested on data from 8 participants with distinct body types and genders, our approach demonstrated accuracy by comparing modeled sleep RR against actual RR measurements from the Vernier Respiration Monitor Belt. Optimal parameter settings yielded an overall average mean absolute deviation (MAD) of 2.60 bpm, providing the best result for normal breathing (MAD = 1.38). Different optimal settings were required for fast (MAD = 1.81) and slow breathing (MAD = 2.98). The results indicate that our method effectively detects RR using a low-cost approach under different parameter settings. Full article
(This article belongs to the Special Issue Intelligent Electronic Monitoring Systems and Their Application)
Show Figures

Figure 1

15 pages, 1875 KiB  
Article
Multi-Scale Feature and Multi-Channel Selection toward Parkinson’s Disease Diagnosis with EEG
by Haoyu Wu, Jun Qi, Erick Purwanto, Xiaohui Zhu, Po Yang and Jianjun Chen
Sensors 2024, 24(14), 4634; https://doi.org/10.3390/s24144634 - 17 Jul 2024
Cited by 1 | Viewed by 629
Abstract
Objective: Motivated by Health Care 4.0, this study aims to reducing the dimensionality of traditional EEG features based on manual extracted features, including statistical features in the time and frequency domains. Methods: A total of 22 multi-scale features were extracted from the UNM [...] Read more.
Objective: Motivated by Health Care 4.0, this study aims to reducing the dimensionality of traditional EEG features based on manual extracted features, including statistical features in the time and frequency domains. Methods: A total of 22 multi-scale features were extracted from the UNM and Iowa datasets using a 4th order Butterworth filter and wavelet packet transform. Based on single-channel validation, 29 channels with the highest R2 scores were selected from a pool of 59 common channels. The proposed channel selection scheme was validated on the UNM dataset and tested on the Iowa dataset to compare its generalizability against models trained without channel selection. Results: The experimental results demonstrate that the proposed model achieves an optimal classification accuracy of 100%. Additionally, the generalization capability of the channel selection method is validated through out-of-sample testing based on the Iowa dataset Conclusions: Using single-channel validation, we proposed a channel selection scheme based on traditional statistical features, resulting in a selection of 29 channels. This scheme significantly reduced the dimensionality of EEG feature vectors related to Parkinson’s disease by 50%. Remarkably, this approach demonstrated considerable classification performance on both the UNM and Iowa datasets. For the closed-eye state, the highest classification accuracy achieved was 100%, while for the open-eye state, the highest accuracy reached 93.75%. Full article
(This article belongs to the Topic AI and Data-Driven Advancements in Industry 4.0)
Show Figures

Figure 1

31 pages, 5788 KiB  
Article
Automated Lung Cancer Diagnosis Applying Butterworth Filtering, Bi-Level Feature Extraction, and Sparce Convolutional Neural Network to Luna 16 CT Images
by Nasr Y. Gharaibeh, Roberto De Fazio, Bassam Al-Naami, Abdel-Razzak Al-Hinnawi and Paolo Visconti
J. Imaging 2024, 10(7), 168; https://doi.org/10.3390/jimaging10070168 - 15 Jul 2024
Viewed by 1112
Abstract
Accurate prognosis and diagnosis are crucial for selecting and planning lung cancer treatments. As a result of the rapid development of medical imaging technology, the use of computed tomography (CT) scans in pathology is becoming standard practice. An intricate interplay of requirements and [...] Read more.
Accurate prognosis and diagnosis are crucial for selecting and planning lung cancer treatments. As a result of the rapid development of medical imaging technology, the use of computed tomography (CT) scans in pathology is becoming standard practice. An intricate interplay of requirements and obstacles characterizes computer-assisted diagnosis, which relies on the precise and effective analysis of pathology images. In recent years, pathology image analysis tasks such as tumor region identification, prognosis prediction, tumor microenvironment characterization, and metastasis detection have witnessed the considerable potential of artificial intelligence, especially deep learning techniques. In this context, an artificial intelligence (AI)-based methodology for lung cancer diagnosis is proposed in this research work. As a first processing step, filtering using the Butterworth smooth filter algorithm was applied to the input images from the LUNA 16 lung cancer dataset to remove noise without significantly degrading the image quality. Next, we performed the bi-level feature selection step using the Chaotic Crow Search Algorithm and Random Forest (CCSA-RF) approach to select features such as diameter, margin, spiculation, lobulation, subtlety, and malignancy. Next, the Feature Extraction step was performed using the Multi-space Image Reconstruction (MIR) method with Grey Level Co-occurrence Matrix (GLCM). Next, the Lung Tumor Severity Classification (LTSC) was implemented by using the Sparse Convolutional Neural Network (SCNN) approach with a Probabilistic Neural Network (PNN). The developed method can detect benign, normal, and malignant lung cancer images using the PNN algorithm, which reduces complexity and efficiently provides classification results. Performance parameters, namely accuracy, precision, F-score, sensitivity, and specificity, were determined to evaluate the effectiveness of the implemented hybrid method and compare it with other solutions already present in the literature. Full article
Show Figures

Figure 1

16 pages, 1463 KiB  
Article
Effect of Sampling Rate, Filtering, and Torque Onset Detection on Quadriceps Rate of Torque Development and Torque Steadiness
by McKenzie S. White, Megan C. Graham, Tereza Janatova, Gregory S. Hawk, Katherine L. Thompson and Brian Noehren
Sensors 2024, 24(13), 4250; https://doi.org/10.3390/s24134250 - 30 Jun 2024
Viewed by 901
Abstract
Quadriceps rate of torque development (RTD) and torque steadiness are valuable metrics for assessing explosive strength and the ability to control force over a sustained period of time, which can inform clinical assessments of knee function. Despite their widespread use, there is a [...] Read more.
Quadriceps rate of torque development (RTD) and torque steadiness are valuable metrics for assessing explosive strength and the ability to control force over a sustained period of time, which can inform clinical assessments of knee function. Despite their widespread use, there is a significant gap in standardized methodology for measuring these metrics, which limits their utility in comparing outcomes across different studies and populations. To address these gaps, we evaluated the influence of sampling rates, signal filtering, and torque onset detection on RTD and torque steadiness. Twenty-seven participants with a history of a primary anterior cruciate ligament reconstruction (N = 27 (11 male/16 female), age = 23 ± 8 years, body mass index = 26 ± 4 kg/m2) and thirty-two control participants (N = 32 (13 male/19 female), age = 23 ± 7 years, body mass index = 23 ± 3 kg/m2) underwent isometric quadriceps strength testing, with data collected at 2222 Hz on an isokinetic dynamometer. The torque–time signal was downsampled to approximately 100 and 1000 Hz and processed using a low-pass, zero-lag Butterworth filter with a range of cutoff frequencies spanning 10–200 Hz. The thresholds used to detect torque onset were defined as 0.1 Nm, 1 Nm, and 5 Nm. RTD between 0 and 100 ms, 0 and 200 ms, and 40–160 ms was computed, as well as absolute and relative torque steadiness. Relative differences were computed by comparing all outcomes to the “gold standard” values computed, with a sampling rate of 2222 Hz, a cutoff frequency in the low-pass filter of 150 Hz, and torque onset of 1 Nm, and compared utilizing linear mixed models. While all combinations of signal collection and processing parameters reached statistical significance (p < 0.05), these differences were consistent between injured and control limbs. Additionally, clinically relevant differences (+/−10%) were primarily observed through torque onset detection methods and primarily affected RTD between 0 and 100 ms. Although measurements of RTD and torque steadiness were generally robust against diverse signal collection and processing parameters, the selection of torque onset should be carefully considered, especially in early RTD assessments that have shorter time epochs. Full article
(This article belongs to the Special Issue Advanced Sensors in Biomechanics and Rehabilitation)
Show Figures

Figure 1

36 pages, 5369 KiB  
Article
Design and Analysis of a High-Gain, Low-Noise, and Low-Power Analog Front End for Electrocardiogram Acquisition in 45 nm Technology Using gm/ID Method
by Md. Zubair Alam Emon, Khosru Mohammad Salim and Md. Iqbal Bahar Chowdhury
Electronics 2024, 13(11), 2190; https://doi.org/10.3390/electronics13112190 - 4 Jun 2024
Viewed by 942
Abstract
In this work, an analog front-end (AFE) circuit for an electrocardiogram (ECG) detection system has been designed, implemented, and investigated in an industry-standard Cadence simulation framework using an advanced technology node of 45 nm. The AFE consists of an instrumentation amplifier, a Butterworth [...] Read more.
In this work, an analog front-end (AFE) circuit for an electrocardiogram (ECG) detection system has been designed, implemented, and investigated in an industry-standard Cadence simulation framework using an advanced technology node of 45 nm. The AFE consists of an instrumentation amplifier, a Butterworth band-pass filter (with fifth-order low-pass and second-order high-pass sections), and a second-order notch filter—all are based on two-stage, Miller-compensated operational transconductance amplifiers (OTA). The OTAs have been designed employing the gm/ID methodology. Both the pre-layout and post-layout simulation are carried out. The layout consumes an area of 0.00628 mm2 without the resistors and capacitors. Analysis of various simulation results are carried out for the proposed AFE. The circuit demonstrates a post-layout bandwidth of 239 Hz, with a variable gain between 44 and 58 dB, a notch depth of −56.4 dB at 50.1 Hz, a total harmonic distortion (THD) of −59.65 dB (less than 1%), an input-referred noise spectral density of <34 μVrms/Hz at the pass-band, a dynamic range of 52.71 dB, and a total power consumption of 10.88 μW with a supply of ±0.6 V. Hence, the AFE exhibits the promise of high-quality signal acquisition capability required for portable ECG detection systems in modern healthcare. Full article
(This article belongs to the Section Bioelectronics)
Show Figures

Figure 1

26 pages, 7249 KiB  
Article
Biosensor-Driven IoT Wearables for Accurate Body Motion Tracking and Localization
by Nouf Abdullah Almujally, Danyal Khan, Naif Al Mudawi, Mohammed Alonazi, Abdulwahab Alazeb, Asaad Algarni, Ahmad Jalal and Hui Liu
Sensors 2024, 24(10), 3032; https://doi.org/10.3390/s24103032 - 10 May 2024
Cited by 15 | Viewed by 1188
Abstract
The domain of human locomotion identification through smartphone sensors is witnessing rapid expansion within the realm of research. This domain boasts significant potential across various sectors, including healthcare, sports, security systems, home automation, and real-time location tracking. Despite the considerable volume of existing [...] Read more.
The domain of human locomotion identification through smartphone sensors is witnessing rapid expansion within the realm of research. This domain boasts significant potential across various sectors, including healthcare, sports, security systems, home automation, and real-time location tracking. Despite the considerable volume of existing research, the greater portion of it has primarily concentrated on locomotion activities. Comparatively less emphasis has been placed on the recognition of human localization patterns. In the current study, we introduce a system by facilitating the recognition of both human physical and location-based patterns. This system utilizes the capabilities of smartphone sensors to achieve its objectives. Our goal is to develop a system that can accurately identify different human physical and localization activities, such as walking, running, jumping, indoor, and outdoor activities. To achieve this, we perform preprocessing on the raw sensor data using a Butterworth filter for inertial sensors and a Median Filter for Global Positioning System (GPS) and then applying Hamming windowing techniques to segment the filtered data. We then extract features from the raw inertial and GPS sensors and select relevant features using the variance threshold feature selection method. The extrasensory dataset exhibits an imbalanced number of samples for certain activities. To address this issue, the permutation-based data augmentation technique is employed. The augmented features are optimized using the Yeo–Johnson power transformation algorithm before being sent to a multi-layer perceptron for classification. We evaluate our system using the K-fold cross-validation technique. The datasets used in this study are the Extrasensory and Sussex Huawei Locomotion (SHL), which contain both physical and localization activities. Our experiments demonstrate that our system achieves high accuracy with 96% and 94% over Extrasensory and SHL in physical activities and 94% and 91% over Extrasensory and SHL in the location-based activities, outperforming previous state-of-the-art methods in recognizing both types of activities. Full article
(This article belongs to the Special Issue Sensors for Human Activity Recognition II)
Show Figures

Figure 1

16 pages, 2804 KiB  
Article
Design of a Transformer Oil Viscosity, Density, and Dielectric Constant Simultaneous Measurement System Based on a Quartz Tuning Fork
by Hao Yang, Shijie Chen and Jiafeng Ding
Sensors 2024, 24(9), 2722; https://doi.org/10.3390/s24092722 - 24 Apr 2024
Viewed by 766
Abstract
Transformer oil, crucial for transformer and power system safety, demands effective monitoring. Aiming to address the problems of expensive and bulky equipment, poor real-time performance, and single parameter detection of traditional measurement methods, this study proposes a quartz tuning fork-based simultaneous measurement system [...] Read more.
Transformer oil, crucial for transformer and power system safety, demands effective monitoring. Aiming to address the problems of expensive and bulky equipment, poor real-time performance, and single parameter detection of traditional measurement methods, this study proposes a quartz tuning fork-based simultaneous measurement system for online monitoring of the density, viscosity, and dielectric constant of transformer oil. Based on the Butterworth–Van Dyke quartz tuning fork equivalent circuit model, a working mechanism of transformer oil density, viscosity, and dielectric constant was analyzed, and a measurement model for oil samples was obtained. A miniaturized simultaneous measurement system was designed based on a dedicated chip for vector current-voltage impedance analysis for data acquisition and a Savitzky–Golay filter for data filtering. A transformer oil test platform was built to verify the simultaneous measurement system. The results showed that the system has good repeatability, and the measurement errors of density, viscosity, and dielectric constant are lower than 2.00%, 5.50%, and 3.20%, respectively. The online and offline results showed that the system meets the requirements of the condition maintenance system for online monitoring accuracy and real-time detection. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

10 pages, 1907 KiB  
Communication
Heart Rate Measurement Using the Built-In Triaxial Accelerometer from a Commercial Digital Writing Device
by Julie Payette, Fabrice Vaussenat and Sylvain G. Cloutier
Sensors 2024, 24(7), 2238; https://doi.org/10.3390/s24072238 - 31 Mar 2024
Cited by 1 | Viewed by 2067
Abstract
Currently, wearable technology is an emerging trend that offers remarkable access to our data through smart devices like smartphones, watches, fitness trackers and textiles. As such, wearable devices can enable health monitoring without disrupting our daily routines. In clinical settings, electrocardiograms (ECGs) and [...] Read more.
Currently, wearable technology is an emerging trend that offers remarkable access to our data through smart devices like smartphones, watches, fitness trackers and textiles. As such, wearable devices can enable health monitoring without disrupting our daily routines. In clinical settings, electrocardiograms (ECGs) and photoplethysmographies (PPGs) are used to monitor heart and respiratory behaviors. In more practical settings, accelerometers can be used to estimate the heart rate when they are attached to the chest. They can also help filter out some noise in ECG signals from movement. In this work, we compare the heart rate data extracted from the built-in accelerometer of a commercial smart pen equipped with sensors (STABILO’s DigiPen) to standard ECG monitor readouts. We demonstrate that it is possible to accurately predict the heart rate from the smart pencil. The data collection is carried out with eight volunteers writing the alphabet continuously for five minutes. The signal is processed with a Butterworth filter to cut off noise. We achieve a mean-squared error (MSE) better than 6.685 × 103 comparing the DigiPen’s computed Δt (time between pulses) with the reference ECG data. The peaks’ timestamps for both signals all maintain a correlation higher than 0.99. All computed heart rates (HR =60Δt) from the pen accurately correlate with the reference ECG signals. Full article
Show Figures

Figure 1

19 pages, 6902 KiB  
Article
Research on the Soft-Sensing Method of Indicator Diagram of Beam Pumping Unit
by Huaijun Zhao, Junping Wang, Tianyu Liu, Yang Yu, Dingxing Hu and Chenxin Cai
Sensors 2024, 24(6), 1794; https://doi.org/10.3390/s24061794 - 11 Mar 2024
Cited by 1 | Viewed by 1070
Abstract
An accurate calculation of the indicator diagram of a pumping unit is the key factor in analyzing the performance of an oilfield production and operation and in preparing and optimizing an oilfield development plan. Aiming at the problems of the poor stability of [...] Read more.
An accurate calculation of the indicator diagram of a pumping unit is the key factor in analyzing the performance of an oilfield production and operation and in preparing and optimizing an oilfield development plan. Aiming at the problems of the poor stability of the conventional load-displacement sensor method and the wave equation method, owing to the influence of an alternating load on the force sensor and the difficulty in measuring the crank angle using the electrical parameter method, a new soft sensing method employing the input electrical parameters of the motor and the beam inclination has been proposed to obtain the indicator diagram. At first, this method is established based on the beam angle of the pumping unit, which is easily measured using the suspension point displacement mathematics calculation model and the torque factor. Subsequently, the electric motor input parameters, the parameters of the four-bar linkage, and the relationship between the polished rod load have been established. Finally, the motor and the beam angle of the measured electrical parameters have been substituted into the calculation of the suspension point displacement and load value and pull in accordance with the guidelines to eliminate the singularity mutation values. After processing the measured data through a Butterworth filter, the indicator diagram is obtained. The results of the engineering experiment and application show that the average relative error of the method is less than 3.95%, and the maximum relative error remains within 2% for 6 months, which verifies the stability of the soft sensing method. Full article
(This article belongs to the Special Issue Soft Sensors and Sensing Techniques)
Show Figures

Figure 1

25 pages, 8258 KiB  
Article
Quantity Monitor Based on Differential Weighing Sensors for Storage Tank of Agricultural UAV
by Junhao Huang, Weizhuo He, Deshuai Yang, Jianqin Lin, Yuanzhen Ou, Rui Jiang and Zhiyan Zhou
Drones 2024, 8(3), 92; https://doi.org/10.3390/drones8030092 - 7 Mar 2024
Viewed by 1690
Abstract
Nowadays, unmanned aerial vehicles (UAVs) play a pivotal role in agricultural production. In scenarios involving the release of particulate materials, the precision of quantity monitors for the storage tank of UAVs directly impacts its operational accuracy. Therefore, this paper introduces a novel noise-mitigation [...] Read more.
Nowadays, unmanned aerial vehicles (UAVs) play a pivotal role in agricultural production. In scenarios involving the release of particulate materials, the precision of quantity monitors for the storage tank of UAVs directly impacts its operational accuracy. Therefore, this paper introduces a novel noise-mitigation design for agricultural UAVs’ quantity monitors, utilizing differential weighing sensors. The design effectively addresses three primary noise sources: sensor-intrinsic noise, vibration noise, and weight-loading uncertainty. Additionally, two comprehensive data processing methods are proposed for noise reduction: the first combines the Butterworth low-pass filter, the Kalman filter, and the moving average filter (BKM), while the second integrates the Least Mean Squares (LMS) adaptive filter, the Kalman filter, and the moving average filter (LKM). Rigorous data processing has been conducted, and the monitor’s performance has been assessed in three UAV typical states: static, hovering, and flighting. Specifically, compared to the BKM, the LKM’s maximum relative error ranges between 1.24% and 2.74%, with an average relative error of 0.31%~0.58% when the UAV was in a hovering state. In flight mode, the LKM’s maximum relative error varies from 1.68% to 10.06%, while the average relative error ranges between 0.74% and 2.54%. Furthermore, LKM can effectively suppress noise interference near 75 Hz and 150 Hz. The results reveal that the LKM technology demonstrated superior adaptability to noise and effectively mitigates its impact in the quantity monitoring for storage tank of agricultural UAVs. Full article
(This article belongs to the Special Issue Drones in Sustainable Agriculture)
Show Figures

Figure 1

16 pages, 6770 KiB  
Article
Time Delay Study of Ultrasonic Gas Flowmeters Based on VMD–Hilbert Spectrum and Cross-Correlation
by Lingcai Kong, Liang Zhang, Hulin Guo, Ning Zhao and Xinhu Xu
Sensors 2024, 24(5), 1462; https://doi.org/10.3390/s24051462 - 23 Feb 2024
Cited by 1 | Viewed by 907
Abstract
The accuracy of ultrasonic flowmeter time delay measurement is directly affected by the processing method of the ultrasonic echo signal. This paper proposes a method for estimating the time delay of the ultrasonic gas flowmeter based on the Variational Mode Decomposition (VMD)–Hilbert Spectrum [...] Read more.
The accuracy of ultrasonic flowmeter time delay measurement is directly affected by the processing method of the ultrasonic echo signal. This paper proposes a method for estimating the time delay of the ultrasonic gas flowmeter based on the Variational Mode Decomposition (VMD)–Hilbert Spectrum and Cross-Correlation (CC). The method improves the accuracy of the ultrasonic gas flowmeter by enhancing the quality of the echo signal. To denoise forward and reverse ultrasonic echo signals collected at various wind speeds, a Butterworth filter is initially used. The ultrasonic echo signals are then analyzed by Empirical Mode De-composition (EMD) and VMD analysis to obtain the Intrinsic Mode Function (IMF) containing distinct center frequencies, respectively. The Hilbert spectrum time–frequency diagram is used to evaluate the results of the VMD and EMD decompositions. It is found that the IMF decomposed by VMD has a better filtering performance and better anti-interference performance. Therefore, the IMF with a better effect is selected for signal reconstruction. The ultrasonic time delay is then calculated using the Cross-Correlation algorithm. The self-developed ultrasonic gas flowmeter was tested on the experimental platform of the gas flow standard devices using this signal processing method. The results show a maximum indication error of 0.84% within the flow range of 60–606 m3/h, with a repeatability of no more than 0.29%. These results meet the 1-level accuracy requirements as outlined in the national ultrasonic flowmeters calibration regulation JJG1030-2007. Full article
Show Figures

Figure 1

Back to TopTop