Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = CMOD5

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5484 KiB  
Article
Analysis and Comparison of Three Bending Tests on Phosphogypsum-Based Material According to Peridynamic Theory
by Haoyu Ma, Kai Zhang, Sheng Liang, Jiatian Dong, Xiangyang Fan and Xuemei Zhang
Buildings 2024, 14(7), 2181; https://doi.org/10.3390/buildings14072181 - 15 Jul 2024
Viewed by 283
Abstract
Phosphogypsum-based materials have gained much attention in the field of road infrastructure from the economic and sustainable perspectives. The Three-point bending test, the Four-point bending test and the Semi-circular bending test are three typical test methods applied for fracture energy measurement. However, the [...] Read more.
Phosphogypsum-based materials have gained much attention in the field of road infrastructure from the economic and sustainable perspectives. The Three-point bending test, the Four-point bending test and the Semi-circular bending test are three typical test methods applied for fracture energy measurement. However, the optimal test method for fracture energy evaluation has not been determined for phosphogypsum-based materials. To contribute to the gap, this study aims to analyze and compare the three test methods for fracture energy evaluation of phosphogypsum materials based on the peridynamic theory. For this purpose, the load–displacement, vertical displacement–Crack Mouth Opening Displacement (CMOD) and fracture energy of the phosphogypsum-based materials were measured and calculated from the three test methods. The simulated load–displacement and vertical displacement–CMOD by PD numerical models, with different fracture energy as inputs, were compared to the corresponding tested values according to simulation error results. The results showed that the Four-point bending test led to minimized errors lower than 0.189 and indicators lower than 0.124, demonstrating the most optimal test method for the fracture energy measurement of phosphogypsum-based material. The results of this study can provide new methodological references for the selection of material fracture energy measurement tests. Full article
(This article belongs to the Special Issue Carbon-Neutral Infrastructure)
Show Figures

Figure 1

17 pages, 3917 KiB  
Article
Experimental Characterization and Phase-Field Damage Modeling of Ductile Fracture in AISI 316L
by Vladimir Dunić, Nenad Gubeljak, Miroslav Živković, Vladimir Milovanović, Darko Jagarinec and Nenad Djordjevic
Metals 2024, 14(7), 787; https://doi.org/10.3390/met14070787 - 5 Jul 2024
Viewed by 355
Abstract
(1) Modeling and characterization of ductile fracture in metals is still a challenging task in the field of computational mechanics. Experimental testing offers specific responses in the form of crack-mouth (CMOD) and crack-tip (CTOD) opening displacement related to applied force or crack growth. [...] Read more.
(1) Modeling and characterization of ductile fracture in metals is still a challenging task in the field of computational mechanics. Experimental testing offers specific responses in the form of crack-mouth (CMOD) and crack-tip (CTOD) opening displacement related to applied force or crack growth. The main aim of this paper is to develop a phase-field-based Finite Element Method (FEM) implementation for modeling of ductile fracture in stainless steel. (2) A Phase-Field Damage Model (PFDM) was coupled with von Mises plasticity and a work-densities-based criterion was employed, with a threshold to propose a new relationship between critical fracture energy and critical total strain value. In addition, the threshold value of potential internal energy—which controls damage evolution—is defined from the critical fracture energy. (3) The material properties of AISI 316L steel are determined by a uniaxial tensile test and the Compact Tension (CT) specimen crack growth test. The PFDM model is validated against the experimental results obtained in the fracture toughness characterization test, with the simulation results being within 8% of the experimental measurements. (4) The novel implementation offers the possibility for better control of the ductile behavior of metallic materials and damage initiation, evolution, and propagation. Full article
Show Figures

Figure 1

20 pages, 7739 KiB  
Article
Resistance Analysis of Crack Propagation in Concrete Subjected to Hydraulic Pressure
by Yang Wang, Jingshan Sun, Gaohui Wang, Yongzhen Li and Weiqi Xiong
Materials 2024, 17(13), 3243; https://doi.org/10.3390/ma17133243 - 2 Jul 2024
Viewed by 392
Abstract
The KR resistance curve for hydraulic crack propagation in a concrete beam was determined and discussed. A semi-analytical method was introduced to calculate the hydraulic crack propagation in concrete. A series of concrete beams with various hydraulic pressures and initial crack depths [...] Read more.
The KR resistance curve for hydraulic crack propagation in a concrete beam was determined and discussed. A semi-analytical method was introduced to calculate the hydraulic crack propagation in concrete. A series of concrete beams with various hydraulic pressures and initial crack depths were tested, and the hydraulic crack propagation in these beams was calculated. The calculated P-CMOD curves were first verified, and then the calculated KR resistance curve for hydraulic crack propagation was determined. Based on the test results and calculation results, the following conclusions can be drawn: The proposed analysis method can accurately predict the hydraulic crack propagation process in concrete. The KR resistance to hydraulic crack propagation in concrete decreases with the increase in hydraulic pressure but is less influenced by the initial crack depth of the test beams. In addition, the concrete beams collapse immediately under hydraulic fracturing once the KIw curve reaches the KR resistance curve. This indicates that the failure of concrete structures under hydraulic fracturing occurs immediately once the driving force of crack propagation, dominated by the hydraulic pressure in the crack, becomes significant. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 6268 KiB  
Article
Effectiveness of the Concrete Equivalent Mortar Method for the Prediction of Fresh and Hardened Properties of Concrete
by Haruna Ibrahim, George Wardeh, Hanaa Fares and Elhem Ghorbel
Buildings 2024, 14(6), 1610; https://doi.org/10.3390/buildings14061610 - 1 Jun 2024
Viewed by 285
Abstract
Modern concrete mix design is a complex process involving superplasticisers, fine powders, and fibres, requiring time and energy due to the high number of trial tests needed to achieve rheological properties in the fresh state. Concrete batching involves the extensive use of materials, [...] Read more.
Modern concrete mix design is a complex process involving superplasticisers, fine powders, and fibres, requiring time and energy due to the high number of trial tests needed to achieve rheological properties in the fresh state. Concrete batching involves the extensive use of materials, time, and the testing of chemical admixtures, with various methodologies proposed. Therefore, in some instances, the required design properties (physical and mechanical) are not achieved, leading to the loss of resources. The concrete equivalent mortar (CEM) method was introduced to anticipate concrete behaviour at fresh and hardened states. Moreover, the CEM method saves time and costs by replacing coarse aggregates with an equivalent sand mass, resulting in an equivalent specific surface area at the mortar scale. This study aims to evaluate the performance of fibre in CEM and concrete and determine the relationships between the CEM and the concrete in fresh and hardened states. Steel and polypropylene fibres were used to design three series of mixtures (CEM and concrete): normal-strength concrete (NSC), high-strength concrete (HSC), high-strength concrete with fly ash (HSCFA), and equivalent normal-strength mortar (NSM), high-strength mortar (HSM), and high-strength mortar with fly ash (HSMFA). This study used three-point bending tests and digital image correlation to evaluate load and crack mouth opening displacement (CMOD) curves. An analytical mode I crack propagation model was developed using a tri-linear stress–crack opening relationship. Post-cracking parameters were optimised using inverse analysis and compared to actual MC2010 characteristic values. The concrete slump is approximately half of the CEM flow; its compressive strength ranges between 78% and 82% of CEM strength, while its flexural strength is 60% of CEM strength. The post-cracking behaviour showed a significant difference attributed to the presence of aggregates in concrete. The fracture energy of concrete is 28.6% of the CEM fracture energy, while the critical crack opening of the concrete is 60% of that of the CEM. Full article
(This article belongs to the Special Issue Innovative Solutions towards Sustainable Precast Concrete Products)
Show Figures

Figure 1

13 pages, 2421 KiB  
Article
The Prognostic Value of a Liver Function Test Using Indocyanine Green (ICG) Clearance in Patients with Multiple Organ Dysfunction Syndrome (MODS)
by Franz Haertel, Sebastian Nuding, Diana Reisberg, Martin Peters, Karl Werdan, P. Christian Schulze and Henning Ebelt
J. Clin. Med. 2024, 13(4), 1039; https://doi.org/10.3390/jcm13041039 - 11 Feb 2024
Viewed by 1157
Abstract
Background: Multiple organ dysfunction syndrome (MODS) is common in intensive care units (ICUs) and is associated with high mortality. Although there have been multiple investigations into a multitude of organ dysfunctions, little is known about the role of liver dysfunction. In addition, clinical [...] Read more.
Background: Multiple organ dysfunction syndrome (MODS) is common in intensive care units (ICUs) and is associated with high mortality. Although there have been multiple investigations into a multitude of organ dysfunctions, little is known about the role of liver dysfunction. In addition, clinical and laboratory findings of liver dysfunction may occur with a significant delay. Therefore, the aim of this study was to investigate whether a liver function test, based on indocyanine green (ICG)-clearance, contains prognostic information for patients in the early phase of MODS. Methods: The data of this analysis were based on the MODIFY study, which included 70 critically ill patients of a tertiary medical ICU in the early phase of MODS (≤24 h after diagnosis by an APACHE II score ≥ 20 and a sinus rhythm ≥ 90 beats per minute, with the following subgroups: cardiogenic (cMODS) and septic MODS (sMODS)) over a period of 18 months. ICG clearance was characterized by plasma disappearance rate = PDR (%/min); it was measured non-invasively by using the LiMON system (PULSION Medical Systems, Feldkirchen, Germany). The PDR was determined on the day of study inclusion (baseline) and after 96 h. The primary endpoint of this analysis was 28-day mortality. Results: ICG clearance was measured in 44 patients of the MODIFY trial cohort, of which 9 patients had cMODS (20%) and 35 patients had sMODS (80%). Mean age: 59.7 ± 16.5 years; 31 patients were men; mean APACHE II score: 33.6 ± 6.3; 28-day mortality was 47.7%. Liver function was reduced in the total cohort as measured by a PDR of 13.4 ± 6.3%/min At baseline, there were no relevant differences between survivors and non-survivors regarding ICG clearance (PDR: 14.6 ± 6.1%/min vs. 12.1 ± 6.5%/min; p = 0.21). However, survivors showed better liver function than non-survivors after 96 h (PDR: 21.9 ± 6.3%/min vs. 9.2 ± 6.3%/min, p < 0.05). Consistent with these findings, survivors but not non-survivors show a significant improvement in the PDR (7.3 ± 6.3%/min vs. −2.9 ± 2.6%/min; p < 0.01) within 96 h. In accordance, receiver-operating characteristic curves (ROCs) at 96 h but not at baseline show a link between the PDR and 28-day mortality (PDR at 96 h: AUC: 0.87, 95% CI: 0.76–0.98; p < 0.01. Conclusions: In our study, we found that ICG clearance at baseline did not provide prognostic information in patients in the early stages of MODS despite being reduced in the total cohort. However, improvement of ICG clearance 96 h after ICU admission is associated with reduced 28-day mortality. Full article
Show Figures

Figure 1

16 pages, 5891 KiB  
Article
Verification of C-Band Geophysical Model Function for Wind Speed Retrieval in the Open Ocean and Inland Water Conditions
by Daniil Sergeev, Olga Ermakova, Nikita Rusakov, Evgeny Poplavsky and Daria Gladskikh
Geosciences 2023, 13(12), 361; https://doi.org/10.3390/geosciences13120361 - 24 Nov 2023
Viewed by 1297
Abstract
Verification of the C-band geophysical model functions (GMF) for the open ocean and the Gorky reservoir was carried out using Sentinel-1 IW-mode Synthetic aperture radar (SAR) images. CMOD5.N, CMOD7, GMF for the Caspian Sea, and CSARMOD2 were considered. The motivation for this study [...] Read more.
Verification of the C-band geophysical model functions (GMF) for the open ocean and the Gorky reservoir was carried out using Sentinel-1 IW-mode Synthetic aperture radar (SAR) images. CMOD5.N, CMOD7, GMF for the Caspian Sea, and CSARMOD2 were considered. The motivation for this study is concerned with the clarification of applying C-band GMFs for SAR images including for the conditions of inland water bodies, as well as with the study of the influence of various wind speed direction sources on the results of wind speed magnitude retrieval for ocean conditions. Comparison of wind speed from the CMOD5.N algorithm using wind direction data from NOAA NDBC oceanographic buoys together with the data provided by NCEP reanalysis data showed that regardless of the geographic location, the result does not depend significantly on the choice of the wind direction source. Novel results of CMOD5.N, CMOD7, GMF for the Caspian Sea, and CSARMOD2 applications to the conditions of the Gorky reservoir are presented. The comparison of these results with the meteorological station measurements showed the best agreement for CMOD5.N. The preliminary results on the construction of new C-band GMF adjusted to the Gorky Reservoir have shown statistical parameters better than for Caspian Sea GMF and CSARMOD2. Full article
(This article belongs to the Special Issue Earth Observation by GNSS and GIS Techniques)
Show Figures

Figure 1

21 pages, 7453 KiB  
Article
A Quasi-2D Exploration of Mixed-Mode Fracture Propagation in Concrete Semi-Circular Chevron-Notched Disks
by Xiaoqing Lu and Guanxi Yan
Buildings 2023, 13(10), 2633; https://doi.org/10.3390/buildings13102633 - 19 Oct 2023
Cited by 1 | Viewed by 1035
Abstract
Most semi-circular bend (SCB) tests on concrete have been conducted with a pre-crack with a straight-through tip, thereby undermining the determination of the tensile fracture toughness (KIc). Therefore, the present study involved mixed-mode (tensile–shearing) fracture propagation in concrete semi-circular chevron-notched [...] Read more.
Most semi-circular bend (SCB) tests on concrete have been conducted with a pre-crack with a straight-through tip, thereby undermining the determination of the tensile fracture toughness (KIc). Therefore, the present study involved mixed-mode (tensile–shearing) fracture propagation in concrete semi-circular chevron-notched disks (i.e., with a sharp notch tip) using SCB tests and the FRANC2D numerical simulation software. The inclined notch angle (β) was varied from 0° to 70° while the other settings remained fixed, and the crack mouth opening displacement (CMOD) of the notch was measured constantly. The stress distribution was analyzed using finite-element simulations, and the experimental results showed that this testing method was robust. The maximum failure load and the fracture propagation angle increased with β, and wing fracture was observed. With FRANC2D simulating these SCB tests successfully, it was found that the tensile stress concentration around the notch tip moved toward the upper face of the notch, and the compressive stress concentration formed on the notch tip. The tensile mode was generated as the CMOD kept increasing for β = 0–30°, whereas the mixed mode became more evident as the CMOD kept decreasing for β = 45–70°. The fracture process zone was found for β = 0–30° but not for β = 45–70°. This mixed-mode fracture is predicted better by the criterion of extended maximum tangential strain than by other criteria, and there is a linear relationship between CMOD and KIc, as examined previously for pavement and concrete materials. Full article
(This article belongs to the Special Issue Research on the Crack Control of Concrete)
Show Figures

Figure 1

16 pages, 4987 KiB  
Article
Implementation of Wavelet-Transform-Based Algorithms in an FPGA for Heart Rate and RT Interval Automatic Measurements in Real Time: Application in a Long-Term Ambulatory Electrocardiogram Monitor
by José Alberto García Limón, Frank Martínez-Suárez and Carlos Alvarado-Serrano
Micromachines 2023, 14(9), 1748; https://doi.org/10.3390/mi14091748 - 7 Sep 2023
Cited by 2 | Viewed by 1310
Abstract
Cardiovascular diseases are currently the leading cause of death worldwide. Thus, there is a need for non-invasive ambulatory (Holter) ECG monitors with automatic measurements of ECG intervals to evaluate electrocardiographic abnormalities of patients with cardiac diseases. This work presents the implementation of algorithms [...] Read more.
Cardiovascular diseases are currently the leading cause of death worldwide. Thus, there is a need for non-invasive ambulatory (Holter) ECG monitors with automatic measurements of ECG intervals to evaluate electrocardiographic abnormalities of patients with cardiac diseases. This work presents the implementation of algorithms in an FPGA for beat-to-beat heart rate and RT interval measurements based on the continuous wavelet transform (CWT) with splines for a prototype of an ambulatory ECG monitor of three leads. The prototype’s main elements are an analog–digital converter ADS1294, an FPGA of Xilinx XC7A35T-ICPG236C of the Artix-7 family of low consumption, immersed in a low-scale Cmod-A7 development card integration, an LCD display and a micro-SD memory of 16 Gb. A main state machine initializes and manages the simultaneous acquisition of three leads from the ADS1294 and filters the signals using a FIR filter. The algorithm based on the CWT with splines detects the QRS complex (R or S wave) and then the T-wave end using a search window. Finally, the heart rate (60/RR interval) and the RT interval (from R peak to T-wave end) are calculated for analysis of its dynamics. The micro-SD memory stores the three leads and the RR and RT intervals, and an LCD screen displays the beat-to-beat values of heart rate, RT interval and the electrode connection. The algorithm implemented on the FPGA achieved satisfactory results in detecting different morphologies of QRS complexes and T wave in real time for the analysis of heart rate and RT interval dynamics. Full article
(This article belongs to the Special Issue FPGA Applications and Future Trends)
Show Figures

Figure 1

20 pages, 25470 KiB  
Article
Computational Fracture Evolution Analysis of Steel-Fiber-Reinforced Concrete Using Concrete Continuous Damage and Fiber Progressive Models
by Iwona Pokorska, Mariusz Poński, Wojciech Kubissa, Tomasz Libura, Adam Brodecki and Zbigniew Kowalewski
Materials 2023, 16(16), 5635; https://doi.org/10.3390/ma16165635 - 15 Aug 2023
Cited by 2 | Viewed by 1061
Abstract
The process of concrete cracking is a common problem because the first micro-cracks due to the loss of moisture may appear even before the concrete is loaded. The application of fracture mechanics allows for a better understanding of this problem. Steel-fiber-reinforced concrete (SFRC) [...] Read more.
The process of concrete cracking is a common problem because the first micro-cracks due to the loss of moisture may appear even before the concrete is loaded. The application of fracture mechanics allows for a better understanding of this problem. Steel-fiber-reinforced concrete (SFRC) samples with a notch were subjected to a three-point bending test, and the results for crack energy were used to analyze the concrete’s material properties. In this paper, an experimental and numerical analysis of SFRC with rapid changes in the force (F) crack mouth opening displacement (CMOD) curve (F-CMOD) is presented. In order to obtain the relevant F-CMOD diagrams, three-point bending tests were carried out with non-standard samples with a thickness equal to one-third of the width of standard samples. For analysis purposes, crimped steel fibers were adopted. A probabilistic analysis of the most important parameters describing the material in question, such as peak strength, post-cracking strength, crack mouth opening displacement (CMOD), fracture energy, and the post-cracking deformation modulus, was conducted. The tests and the analysis of their results show that the quasi-static numerical method can be applied to obtain suitable results. However, significant dynamic effects during experiments that influence the F-CMOD curves are hard to reflect well in numerical calculations. Full article
Show Figures

Figure 1

22 pages, 21338 KiB  
Article
An Experimental Approach to Assess the Sensitivity of a Smart Concrete
by Shaban Shahzad, Ahmed Toumi, Jean-Paul Balayssac and Anaclet Turatsinze
Buildings 2023, 13(8), 2034; https://doi.org/10.3390/buildings13082034 - 9 Aug 2023
Cited by 3 | Viewed by 1330
Abstract
Structural health monitoring of concrete infrastructure is a critical concern for timely repair and maintenance. This study provides an innovative approach utilizing smart concrete integrated with multi-walled carbon nanotubes (MWCNTs) to enhance electrical conductivity. The smart concrete’s self-sensing capability is assessed through fractional [...] Read more.
Structural health monitoring of concrete infrastructure is a critical concern for timely repair and maintenance. This study provides an innovative approach utilizing smart concrete integrated with multi-walled carbon nanotubes (MWCNTs) to enhance electrical conductivity. The smart concrete’s self-sensing capability is assessed through fractional change in electrical resistance (FCR) measured using a four-probe technique. Four-point bending and compressive tests explore the material’s response to cyclic and monotonic loads. Additionally, the impact of saturation levels on self-sensing sensitivity is investigated through compressive tests on varying saturation degrees. Remarkably, a substantial correlation between crack mouth opening displacement (CMOD) and FCR is observed during cyclic bending tests, where FCR increases significantly (from 0.019% to 154%) as CMOD rises from 0.004 mm to 0.55 mm. Digital image correlation (DIC) further validates CMOD measurements and their correlation with FCR. Moreover, this study reveals that amplitude of loading and degree of saturation have a significant effect on the self-sensing of the smart concrete. In saturated conditions, the self-sensing response of the material is insensitive to the mechanical strain, while with reduction in the saturation degree, a quasi-linear response is observed. To assess the sensitivity of the smart concrete, stress and strain sensitivities were evaluated, revealing a noteworthy enhancement of approximately 33% and 50% in stress and strain sensitivity, respectively, as saturation levels decreased. The self-sensing response of the material is very sensitive to the mechanical strain during monotonic loading and damage. These findings indicate the potential of smart concrete as a promising tool for comprehensive, real-time structural health monitoring for infrastructure during its entire life. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 12624 KiB  
Article
Applicability of CMOD to Obtain the Actual Fracture Toughness of Rightly-Cracked Fibrous Concrete Beams
by Mahmoud A. Abdallah, Ahmed A. Elakhras, Ramy M. Reda, Hossam El-Din M. Sallam and Mohamed Moawad
Buildings 2023, 13(8), 2010; https://doi.org/10.3390/buildings13082010 - 7 Aug 2023
Cited by 5 | Viewed by 1196
Abstract
Unfortunately, most of the previous work studying the fracture toughness of fibrous composites has deliberately ignored bridging the fiber onto the pre-crack/notch surfaces by creating such a crack as a through-thickness crack (TTC). Furthermore, no standard specifications for measuring the fracture toughness of [...] Read more.
Unfortunately, most of the previous work studying the fracture toughness of fibrous composites has deliberately ignored bridging the fiber onto the pre-crack/notch surfaces by creating such a crack as a through-thickness crack (TTC). Furthermore, no standard specifications for measuring the fracture toughness of fibrous composites have considered the fiber bridging through the pre-notch. Only a few pieces of research, no more than fingers on one hand, have addressed this problem by creating an actual crack, i.e., a matrix crack (MC) instead of a TTC. The challenge these researchers face is the inability to calculate the fracture toughness directly through the stress intensity factor (SIF) relationship because there is no geometry correction factor equation, f(a/d), for an MC. The main objective of the present work is to calculate f(a/d) and ascertain a relationship between the SIF and crack mouth opening displacement (CMOD) for an MC numerically using 3-D finite element analysis. An experimental program was also conducted to measure the fracture toughness of three types of concrete beams: high-strength concrete (HSC) beams with a TTC, HSC beams with an MC, and fiber-reinforced concrete (FRC) beams with an MC. The results showed that FRC beams with an MC have the highest fracture toughness and, subsequently, the highest resistance to crack growth. The numerical results revealed a suggested relationship between the SIF and CMOD of FRC beams with an MC. This relation was used to predict the fracture toughness of FRC with an MC by the critical value of CMOD measured experimentally. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

12 pages, 5927 KiB  
Article
Crack Size and Undermatching Effects on Fracture Behavior of a Welded Joint
by Aleksandar Sedmak, Elisaveta Doncheva, Bojan Medjo, Marko Rakin, Nenad Milosevic and Dorin Radu
Materials 2023, 16(13), 4858; https://doi.org/10.3390/ma16134858 - 6 Jul 2023
Cited by 2 | Viewed by 849
Abstract
Crack size and undermatching effects on fracture behavior of undermatched welded joints are presented and analyzed. Experimental and numerical analysis of the fracture behavior of high-strength low-alloyed (HSLA) steel welded joints with so-called small and large crack in undermatched weld metal and the [...] Read more.
Crack size and undermatching effects on fracture behavior of undermatched welded joints are presented and analyzed. Experimental and numerical analysis of the fracture behavior of high-strength low-alloyed (HSLA) steel welded joints with so-called small and large crack in undermatched weld metal and the base metal was performed, as a part of more extensive research previously conducted. J integral was determined by direct measurement using special instrumentation including strain gauges and a CMOD measuring device. Numerical analysis was performed by 3D finite element method (FEM) with different tensile properties in BM and WM. Results of J-CMOD curves evaluation for SUMITEN SM 80P HSLA steel and its weld metal (WM) are presented and analyzed for small and large cracks in tensile panels. This paper is focused on some new numerical results and observations on crack tip fields and constraint effects of undermatching and crack size keeping in mind previously performed experiments on the full-scale prototype. In this way, a unique combined approach of experimental investigation on the full-scale proto-type and tensile panels, as well as numerical investigation on mismatching and crack size effects, is achieved. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

22 pages, 13555 KiB  
Article
Effects of Directional Wave Spectra on the Modeling of Ocean Radar Backscatter at Various Azimuth Angles by a Modified Two-Scale Method
by Qiushuang Yan, Yuqi Wu, Chenqing Fan, Junmin Meng, Tianran Song and Jie Zhang
Remote Sens. 2023, 15(8), 2191; https://doi.org/10.3390/rs15082191 - 20 Apr 2023
Viewed by 1690
Abstract
Knowledge of the ocean backscatter at various azimuth angles is critical to the radar detection of the ocean environment. In this study, the modified two-scale model (TSM), which introduces a correction term in the conventional TSM, is improved based on the empirical model, [...] Read more.
Knowledge of the ocean backscatter at various azimuth angles is critical to the radar detection of the ocean environment. In this study, the modified two-scale model (TSM), which introduces a correction term in the conventional TSM, is improved based on the empirical model, CMOD5.n. Then, the influences of different directional wave spectra on the prediction of azimuthal behavior of ocean radar backscatter are investigated by comparing the simulated results with CMOD5.n and the Advanced Scatterometer (ASCAT) measurements. The results show that the overall performance of the single spectra of D, A, E, and H18 and the composite spectra of AH18 and AEH18 in predicting ocean backscatter are different at different wind speeds and incidence angles. Generally, the AH18 spectrum has better performance at low and moderate wind speeds, while the A spectrum works better at high wind speed. Nevertheless, the wave spectra have little effect on the prediction of the azimuthal fluctuation of scattering, which is highly dependent on the directional spreading function. The relative patterns of azimuthal undulation produced by different spreading functions are rather different at different wind speeds, but similar under different incidence angles. The Gaussian spreading function generally has better performance in predicting the azimuthal fluctuation of scattering. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

15 pages, 2858 KiB  
Article
Experimental Study on the Influence of Humidity on Double-K Fracture Toughness and Fracture Energy of Concrete under Water Environment
by Guohui Zhang, Xinlan Ni, Xiong Wei, Zhendong Yang and Yanshuang Gu
Buildings 2023, 13(3), 816; https://doi.org/10.3390/buildings13030816 - 20 Mar 2023
Viewed by 1282
Abstract
Saturated concrete is significantly different from dry concrete in fracture mechanical properties. Using the wedge-splitting tensile method to research the rule of change in moisture content, double-K fracture toughness and fracture energy of three strength grades (C20, C30, and C40) of concrete immersed [...] Read more.
Saturated concrete is significantly different from dry concrete in fracture mechanical properties. Using the wedge-splitting tensile method to research the rule of change in moisture content, double-K fracture toughness and fracture energy of three strength grades (C20, C30, and C40) of concrete immersed in a free water environment for 0 h, 2 h, 5 h, 24 h, and 120 h were studied in order to provide support for the safety evaluation of concrete structures in a water environment. The initial cracking fracture toughness of C20, C30, and C40 concrete in saturated state were, respectively, 29.6%, 23.2%, and 33.4% lower than that in dry state. The unstable fracture toughness of C20, C30, and C40 concrete in saturated state were, respectively, 22.7%, 23.9% and 33.8% lower than that in dry state. The fracture energy of C20, C30, and C40 concrete in saturated state are only 71.99%, 70.29%, and 66.11% of that in dry state, respectively. The initial cracking fracture toughness and unstable fracture toughness of concrete all show a linear, decreasing trend with an increase in moisture content. Before the crack initiation, the measured P–CMOD curve had an obvious linear elastic stage, stable expansion stage, and unstable expansion stage. The critical crack opening displacement gradually decreases with an increase in moisture content; the deformation capacity and toughness of concrete are shown to decrease. The humidity state should be fully considered when evaluating the fracture mechanical properties of concrete. Full article
(This article belongs to the Special Issue Advanced Studies in Structure Materials)
Show Figures

Figure 1

14 pages, 4470 KiB  
Article
Prediction of Crack Propagation of Nano-Crystalline Coating Material Prepared from (SAM2X5): Experimentally and Numerically
by Hamid Al-Abboodi, Huiqing Fan and Mohammed Al-Bahrani
Crystals 2023, 13(2), 365; https://doi.org/10.3390/cryst13020365 - 20 Feb 2023
Cited by 1 | Viewed by 1396
Abstract
The fracture and crack growth of materials can be practically and conveniently predicted through numerical analysis and linear elastics fracture mechanics. On this basis, the current study aims to present experimental work supported by a numerical technique for mimicking the crack propagation by [...] Read more.
The fracture and crack growth of materials can be practically and conveniently predicted through numerical analysis and linear elastics fracture mechanics. On this basis, the current study aims to present experimental work supported by a numerical technique for mimicking the crack propagation by Version 5.6 of COMSOL Multiphysics (version 5.6), used for the simulation of the coating made from Fe-based amorphous material with a thickness of 300 µm. The paper shows the effects of mixed-mode loading on cohesive zone parameters attained from load-crack mouth opening displacement (CMOD) curves. The microstructure dominates the fracture, which in mode I is altered from all-transgranular cleavage to nearly all-intergranular structure in mode II. Two common criteria for failure are linked to the mixed-mode results: Maximum energy release rate criterion (Maximum G) and maximum tensile stress criterion (Maximum S). However, distinguishing between the two criteria is made impossible by the large scatter in the data. The stress intensity factor is the basis for the. The stress intensity factor is the leading parameter facilitated by the singular element and should be estimated with accuracy. With the aim of comparing each criterion and illustrating the numerical schemes’ robustness, a number of examples are presented. It can be concluded that the Maximum G and Maximum S were successful and accurate in predicting the propagation of the Fe-based amorphous material prepared on mild steel. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

Back to TopTop