Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (178)

Search Parameters:
Keywords = CMOS temperature sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 14461 KiB  
Article
Thermal Management of Cubesat Subsystem Electronics
by Kacper Kuta, Grzegorz Nowak and Iwona Nowak
Energies 2024, 17(24), 6462; https://doi.org/10.3390/en17246462 - 22 Dec 2024
Viewed by 250
Abstract
The temperature field of an electronic optical instrument can affect the image quality realised by the instrument and, in extreme cases, lead to damage. This is particularly true for instruments operating in harsh environments such as space. The hyperspectral imaging optical instrument (OI) [...] Read more.
The temperature field of an electronic optical instrument can affect the image quality realised by the instrument and, in extreme cases, lead to damage. This is particularly true for instruments operating in harsh environments such as space. The hyperspectral imaging optical instrument (OI) designed for the Intuition-1 (I-1) nanosatellite, currently in low Earth orbit, has been subjected to a numerical analysis of its thermal state under different operating conditions, and some preliminary experimental tests have been carried out to determine the maximum operating temperatures of its sensitive components and the risk of thermal damage. This work was part of a testing campaign prior to the deployment of Intuition-1. Three operational cases were analysed: (1) behaviour in the Earth’s atmospheric conditions when the OI is pointed at the Sun, (2) the end of the de-tumbling process in orbit with the Sun crossing the diagonal of the OI’s field of view, and (3) identification of the maximum possible number of consecutive Earth imaging cycles in orbit. The ultimate goal of this work was to validate the numerical approach used for these cases and to deepen the understanding of the thermal safety of the CMOS image sensor placed in the OI. For these cases, transient thermal field analyses were performed for the OI to determine the temperature distribution and its variability in the most thermally sensitive CMOS image sensor. The components of the OI and its overall structure were experimentally tested, and the results were used to validate the numerical models. The study showed that the built-in temperature sensor does not always reflect the actual CMOS temperature, and in some extreme cases the current temperature monitoring does not ensure its safe operation. Full article
(This article belongs to the Special Issue Heat Transfer and Thermoelectric Generator)
Show Figures

Figure 1

15 pages, 755 KiB  
Article
A Temperature-Robust Envelope Detector Receiving OOK-Modulated Signals for Low-Power Applications
by Alessia Maria Elgani, Matteo D’Addato, Luca Perilli, Eleonora Franchi Scarselli, Antonio Gnudi, Roberto Canegallo and Giulio Ricotti
Sensors 2024, 24(19), 6369; https://doi.org/10.3390/s24196369 - 30 Sep 2024
Viewed by 806
Abstract
This paper presents a passive Envelope Detector (ED) to be used for reception of OOK-modulated signals, such as in Wake-Up Receivers employed within Wireless Sensor Networks, widely used in the IoT. The main goal is implementing a temperature compensation mechanism in order to [...] Read more.
This paper presents a passive Envelope Detector (ED) to be used for reception of OOK-modulated signals, such as in Wake-Up Receivers employed within Wireless Sensor Networks, widely used in the IoT. The main goal is implementing a temperature compensation mechanism in order to keep the passive ED input resistance roughly constant over temperature, making it a constant load for the preceding matching network and ultimately keeping the overall receiving chain sensitivity constant over temperature. The proposed ED was designed using STMicroelectronics 90 nm CMOS technology to receive 1 kbps OOK-modulated packets with a 433 MHz carrier frequency and a 0.6 V supply. The use of a block featuring a Proportional-to-Absolute Temperature (PTAT) current yields a 5 dB reduction in sensitivity temperature variation across the −40 °C to 120 °C range. Moreover, two different implementations were compared, one targeting minimal mismatch and the other one targeting minimal area. The minimal area version appears to be better in terms of estimated overall chain sensitivity at all temperatures despite a higher sensitivity spread. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

11 pages, 2269 KiB  
Article
FBG Interrogator Using a Dispersive Waveguide Chip and a CMOS Camera
by Zhenming Ding, Qing Chang, Zeyu Deng, Shijie Ke, Xinhong Jiang and Ziyang Zhang
Micromachines 2024, 15(10), 1206; https://doi.org/10.3390/mi15101206 - 29 Sep 2024
Viewed by 3506
Abstract
Optical sensors using fiber Bragg gratings (FBGs) have become an alternative to traditional electronic sensors thanks to their immunity against electromagnetic interference, their applicability in harsh environments, and other advantages. However, the complexity and high cost of the FBG interrogation systems pose a [...] Read more.
Optical sensors using fiber Bragg gratings (FBGs) have become an alternative to traditional electronic sensors thanks to their immunity against electromagnetic interference, their applicability in harsh environments, and other advantages. However, the complexity and high cost of the FBG interrogation systems pose a challenge for the wide deployment of such sensors. Herein, we present a clean and cost-effective method for interrogating an FBG temperature sensor using a micro-chip called the waveguide spectral lens (WSL) and a standard CMOS camera. This interrogation system can project the FBG transmission spectrum onto the camera without any free-space optical components. Based on this system, an FBG temperature sensor is developed, and the results show good agreement with a commercial optical spectrum analyzer (OSA), with the respective wavelength-temperature sensitivity measured as 6.33 pm/°C for the WSL camera system and 6.32 pm/°C for the commercial OSA. Direct data processing on the WSL camera system translates this sensitivity to 0.44 μm/°C in relation to the absolute spatial shift of the FBG spectra on the camera. Furthermore, a deep neural network is developed to train the spectral dataset, achieving a temperature resolution of 0.1 °C from 60 °C to 120 °C, while direct processing on the valley/dark line detection yields a resolution of 7.84 °C. The proposed hardware and the data processing method may lead to the development of a compact, practical, and low-cost FBG interrogator. Full article
(This article belongs to the Special Issue Fiber Optic Sensing Technology: From Materials to Applications)
Show Figures

Figure 1

12 pages, 7899 KiB  
Article
A Modified Current-Mode VCSEL Driver for Short-Range LiDAR Sensor Applications in 180 nm CMOS
by Juntong Li, Yeojin Chon, Shinhae Choi and Sung-Min Park
Photonics 2024, 11(9), 868; https://doi.org/10.3390/photonics11090868 - 16 Sep 2024
Viewed by 771
Abstract
This paper presents a modified current-mode vertical-cavity surface-emitting laser (VCSEL) driver as a transmitter for short-range light detection and ranging (LiDAR) sensors, where a stable bias generator is suggested with a regulated cascode current mirror circuit to provide the bias current of 1 [...] Read more.
This paper presents a modified current-mode vertical-cavity surface-emitting laser (VCSEL) driver as a transmitter for short-range light detection and ranging (LiDAR) sensors, where a stable bias generator is suggested with a regulated cascode current mirror circuit to provide the bias current of 1 mA with a trivial deviation of 5.4%, even at the worst-case process–voltage–temperature (PVT) variations. Also, a modified current-steering logic circuit is exploited with N-type MOSFET (NMOS) switches to deliver the modulation currents of 0.1~10 mApp to the VCSEL diode simultaneously, with no overshoot distortions. Post-layout simulations of the modified current-mode VCSEL driver (m-CMVD), using 180 nm CMOS technology, demonstrate very large and clean output pulses with significantly reduced signal distortions. Hereby, the VCSEL diode is transformed into an equivalent circuit with a 1.6 V DC voltage and a 50 Ω resistor for circuit simulations. The proposed m-CMVD consumes a maximum of 11 mW from a 3.3 V supply voltage and the chip core occupies an area of 0.196 mm2. Full article
Show Figures

Figure 1

16 pages, 1309 KiB  
Article
A Sub-0.01 °C Resolution All-CMOS Temperature Sensor with 0.43 °C/−0.38 °C Inaccuracy and 1.9 pJ · K2 Resolution FoM for IoT Applications
by Yixiao Sun, Jie Cheng, Zhizhong Luo and Yanhan Zeng
Micromachines 2024, 15(9), 1132; https://doi.org/10.3390/mi15091132 - 6 Sep 2024
Viewed by 854
Abstract
A high resolution, acceptable accuracy and low power consumption time-domain temperature sensor is proposed and simulated in this paper based on a 180 nm standard CMOS technology. A diode stacking structure is introduced to enhance the accuracy of the temperature sensing core. To [...] Read more.
A high resolution, acceptable accuracy and low power consumption time-domain temperature sensor is proposed and simulated in this paper based on a 180 nm standard CMOS technology. A diode stacking structure is introduced to enhance the accuracy of the temperature sensing core. To improve the resolution of the sensor, a dual-input capacitor multiplexing voltage-to-time converter (VTC) is implemented. Additionally, a low-temperature drift voltage-mode relaxation oscillator (ROSC) is proposed, effectively reducing the large oscillation frequency drift caused by significant temperature impacts on delay errors. The simulated results show that the resolution is as high as 0.0071 °C over 0∼120 °C with +0.43 °C/−0.38 °C inaccuracy and 1.9 pJ · K2 resolution FoM, consuming only 1.48 μW at a 1.2 V supply voltage. Full article
Show Figures

Figure 1

20 pages, 5507 KiB  
Article
Robust Pixel Design Methodologies for a Vertical Avalanche Photodiode (VAPD)-Based CMOS Image Sensor
by Akito Inoue, Naoki Torazawa, Shota Yamada, Yuki Sugiura, Motonori Ishii, Yusuke Sakata, Taiki Kunikyo, Masaki Tamaru, Shigetaka Kasuga, Yusuke Yuasa, Hiromu Kitajima, Hiroshi Koshida, Tatsuya Kabe, Manabu Usuda, Masato Takemoto, Yugo Nose, Toru Okino, Takashi Shirono, Kentaro Nakanishi, Yutaka Hirose, Shinzo Koyama, Mitsuyoshi Mori, Masayuki Sawada, Akihiro Odagawa and Tsuyoshi Tanakaadd Show full author list remove Hide full author list
Sensors 2024, 24(16), 5414; https://doi.org/10.3390/s24165414 - 21 Aug 2024
Viewed by 910
Abstract
We present robust pixel design methodologies for a vertical avalanche photodiode-based CMOS image sensor, taking account of three critical practical factors: (i) “guard-ring-free” pixel isolation layout, (ii) device characteristics “insensitive” to applied voltage and temperature, and (iii) stable operation subject to intense light [...] Read more.
We present robust pixel design methodologies for a vertical avalanche photodiode-based CMOS image sensor, taking account of three critical practical factors: (i) “guard-ring-free” pixel isolation layout, (ii) device characteristics “insensitive” to applied voltage and temperature, and (iii) stable operation subject to intense light exposure. The “guard-ring-free” pixel design is established by resolving the tradeoff relationship between electric field concentration and pixel isolation. The effectiveness of the optimization strategy is validated both by simulation and experiment. To realize insensitivity to voltage and temperature variations, a global feedback resistor is shown to effectively suppress variations in device characteristics such as photon detection efficiency and dark count rate. An in-pixel overflow transistor is also introduced to enhance the resistance to strong illumination. The robustness of the fabricated VAPD-CIS is verified by characterization of 122 different chips and through a high-temperature and intense-light-illumination operation test with 5 chips, conducted at 125 °C for 1000 h subject to 940 nm light exposure equivalent to 10 kLux. Full article
(This article belongs to the Special Issue Optoelectronic Functional Devices for Sensing Applications)
Show Figures

Figure 1

18 pages, 7815 KiB  
Article
An ADPLL-Based GFSK Modulator with Two-Point Modulation for IoT Applications
by Nam-Seog Kim
Sensors 2024, 24(16), 5255; https://doi.org/10.3390/s24165255 - 14 Aug 2024
Viewed by 1090
Abstract
To establish ubiquitous and energy-efficient wireless sensor networks (WSNs), short-range Internet of Things (IoT) devices require Bluetooth low energy (BLE) technology, which functions at 2.4 GHz. This study presents a novel approach as follows: a fully integrated all-digital phase-locked loop (ADPLL)-based Gaussian frequency [...] Read more.
To establish ubiquitous and energy-efficient wireless sensor networks (WSNs), short-range Internet of Things (IoT) devices require Bluetooth low energy (BLE) technology, which functions at 2.4 GHz. This study presents a novel approach as follows: a fully integrated all-digital phase-locked loop (ADPLL)-based Gaussian frequency shift keying (GFSK) modulator incorporating two-point modulation (TPM). The modulator aims to enhance the efficiency of BLE communication in these networks. The design includes a time-to-digital converter (TDC) with the following three key features to improve linearity and time resolution: fast settling time, low dropout regulators (LDOs) that adapt to process, voltage, and temperature (PVT) variations, and interpolation assisted by an analog-to-digital converter (ADC). It features a digital controlled oscillator (DCO) with two key enhancements as follows: ΔΣ modulator dithering and hierarchical capacitive banks, which expand the frequency tuning range and improve linearity, and an integrated, fast-converging least-mean-square (LMS) algorithm for DCO gain calibration, which ensures compliance with BLE 5.0 stable modulation index (SMI) requirements. Implemented in a 28 nm CMOS process, occupying an active area of 0.33 mm2, the modulator demonstrates a wide frequency tuning range of from 2.21 to 2.58 GHz, in-band phase noise of −102.1 dBc/Hz, and FSK error of 1.42% while consuming 1.6 mW. Full article
Show Figures

Figure 1

16 pages, 7747 KiB  
Article
A ±0.15 °C (3σ) Inaccuracy CMOS Smart Temperature Sensor from −40 °C to 125 °C with a 10 ms Conversion Time-Leveraging an Adaptative Decimation Filter in 65 nm CMOS Technology
by Fábio Passos, Gabriel Santos and Marcelino Bicho dos Santos
Electronics 2024, 13(14), 2823; https://doi.org/10.3390/electronics13142823 - 18 Jul 2024
Viewed by 1206
Abstract
This paper presents the design and implementation of a highly accurate smart temperature sensor designed in 65 nm CMOS technology. The sensor exhibits a ±0.15 °C (3σ) error across a wide temperature range from −40 °C to 125 °C, catering to diverse application [...] Read more.
This paper presents the design and implementation of a highly accurate smart temperature sensor designed in 65 nm CMOS technology. The sensor exhibits a ±0.15 °C (3σ) error across a wide temperature range from −40 °C to 125 °C, catering to diverse application needs. Leveraging advanced CMOS technology, the sensor employs an adaptive decimation filter that allows us to control the conversion time, ensuring that the accuracy of the conversion is maintained even in challenging conditions. The proposed sensor architecture integrates advanced techniques for temperature sensing for improved accuracy and reliability. Through meticulous circuit design and the usage of dynamic element matching, chopping, and calibration/trimming, the sensor demonstrates exceptional performance characteristics, making it suitable for various industrial, automotive, and consumer electronics applications demanding high precision temperature monitoring. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

12 pages, 2210 KiB  
Article
A 3216 μm2 MOS-Based Temperature Sensor with a Wide Temperature Measurement Range and Linear Readout
by Hao Li, Zhao Yang, Dezhu Kong, Aiguo Yin, Zefu Chen and Peiyong Zhang
Electronics 2024, 13(14), 2753; https://doi.org/10.3390/electronics13142753 - 13 Jul 2024
Viewed by 696
Abstract
This paper introduces an MOS-based intelligent temperature sensor with a linear readout. Compared with similar designs, the proposed sensor utilizes the DIBL effect to reduce the precision requirement for the voltage reference source and compensate for the temperature measurement range. A compact voltage [...] Read more.
This paper introduces an MOS-based intelligent temperature sensor with a linear readout. Compared with similar designs, the proposed sensor utilizes the DIBL effect to reduce the precision requirement for the voltage reference source and compensate for the temperature measurement range. A compact voltage reference circuit is introduced, which generates two reference voltage bases using only three transistors. In addition, the proposed digital readout circuit does not require a subtractor or a divider, further saving area. Fabricated in a 55 nm CMOS process, the proposed sensor occupies a compact area of 3216 μm2. Post-simulation results show it has a maximum error of −0.52/+0.28 °C within the temperature range of −20 °C to 120 °C after two-point calibration. The power supply voltage range of the sensor is 0.8 to 1.8 V. It has a maximum voltage sensitivity of 5.7 °C/V and its power consumption is only 166 nW, with a power supply voltage of 0.8 V. Full article
(This article belongs to the Special Issue Analog and Mixed Circuit: Design and Applications)
Show Figures

Figure 1

10 pages, 4717 KiB  
Article
A Programmable Ambient Light Sensor with Dark Current Compensation and Wide Dynamic Range
by Nianbo Shi, Jian Yang, Zhixiang Cao and Xiangliang Jin
Sensors 2024, 24(11), 3396; https://doi.org/10.3390/s24113396 - 24 May 2024
Cited by 1 | Viewed by 1184
Abstract
Ambient light sensors are becoming increasingly popular due to their effectiveness in extending the battery life of portable electronic devices. However, conventional ambient light sensors are large in area and small in dynamic range, and they do not take into account the effects [...] Read more.
Ambient light sensors are becoming increasingly popular due to their effectiveness in extending the battery life of portable electronic devices. However, conventional ambient light sensors are large in area and small in dynamic range, and they do not take into account the effects caused due to a dark current. To address the above problems, a programmable ambient light sensor with dark current compensation and a wide dynamic range is proposed in this paper. The proposed ambient light sensor exhibits a low current power consumption of only 7.7 µA in dark environments, and it operates across a wide voltage range (2–5 V) and temperature range (−40–80 °C). It senses ambient light and provides an output current proportional to the ambient light intensity, with built-in dark current compensation to effectively suppress the effects of a dark current. It provides a wide dynamic range over the entire operating temperature range with three selectable output-current gain modes. The proposed ambient light sensor was designed and fabricated using a 0.18 µm standard CMOS process, and the effective area of the chip is 663 µm × 652 µm. The effectiveness of the circuit was verified through testing, making it highly suitable for portable electronic products and fluorescent fiber-optic temperature sensors. Full article
Show Figures

Figure 1

11 pages, 16475 KiB  
Article
Detecting Smell/Gas-Source Direction Using Output Voltage Characteristics of a CMOS Smell Sensor
by Yoshihiro Asada, Kenichi Maeno, Kenichi Hashizume, Yusuke Yodo, Toshihiko Noda, Kazuaki Sawada and Masahiro Akiyama
Electronics 2024, 13(10), 1847; https://doi.org/10.3390/electronics13101847 - 9 May 2024
Viewed by 1367
Abstract
Various organisms, such as dogs and moths, can locate their prey and mates by sensing their smells. Following this manner, if an engineering device with the capability to detect a smell or gas source is realized, it can have a wide range of [...] Read more.
Various organisms, such as dogs and moths, can locate their prey and mates by sensing their smells. Following this manner, if an engineering device with the capability to detect a smell or gas source is realized, it can have a wide range of potential applications, such as searching for landmines, locating gas leaks, and rapid detection of fire. A previous study on the estimation of smell and gas-flow direction successfully detected the smell/gas-source direction in low-wind-velocity environments using a semiconductor gas sensor array. However, some problems are generally associated with the use of semiconductor gas sensors due to the use of heaters. This study aimed to detect the location of a smell/gas source using an integrated CMOS smell sensor array, which operates at room temperature without a heater. The experiment showed that under ideal conditions, the order of gas responses and concentration gradient of the gas enabled the estimation of the direction of the smell/gas-source location on one side of the sensor. Full article
Show Figures

Figure 1

12 pages, 2961 KiB  
Article
Digital Miniature Cathode Ray Magnetometer
by Marcos Turqueti, Gustav Wagner, Azriel Goldschmidt and Rebecca Carney
Instruments 2024, 8(2), 29; https://doi.org/10.3390/instruments8020029 - 24 Apr 2024
Viewed by 1227
Abstract
In this study, we introduce the concept and construction of an innovative Digital Miniature Cathode Ray Magnetometer designed for the precise detection of magnetic fields. This device addresses several limitations inherent to magnetic probes such as D.C. offset, nonlinearity, temperature drift, sensor aging, [...] Read more.
In this study, we introduce the concept and construction of an innovative Digital Miniature Cathode Ray Magnetometer designed for the precise detection of magnetic fields. This device addresses several limitations inherent to magnetic probes such as D.C. offset, nonlinearity, temperature drift, sensor aging, and the need for frequent recalibration, while capable of operating in a wide range of magnetic fields. The core principle of this device involves the utilization of a charged particle beam as the sensitivity medium. The system leverages the interaction of an electron beam with a scintillator material, which then emits visible light that is captured by an imager. The emitted scintillation light is captured by a CMOS sensor. This sensor not only records the scintillation light but also accurately determines the position of the electron beam, providing invaluable spatial information crucial for magnetic field mapping. The key innovation lies in the combination of electron beam projection, CMOS imager scintillation-based detection, and digital image signal processing. By employing this synergy, the magnetometer achieves remarkable accuracy, sensitivity and dynamic range. The precise position registration enabled by the CMOS sensor further enhances the device’s utility in capturing complex magnetic field patterns, allowing for 2D field mapping. In this work, the optimization of the probe’s performance is tailored for applications related to the characterization of insertion devices in light sources, including undulators. Full article
Show Figures

Figure 1

3 pages, 336 KiB  
Abstract
Indoor Air Quality CO2 Thermally Modulated SMR Sensor
by Siavash Esfahani, Thomas Dawson, Barbara Urasinska Wojcik, Marina Cole and Julian W. Gardner
Proceedings 2024, 97(1), 143; https://doi.org/10.3390/proceedings2024097143 - 2 Apr 2024
Viewed by 3229
Abstract
This paper reports on a CO2 solidly mounted resonator (SMR)-based sensor with an integrated heater. The SMR device is CMOS compatible and operates at a resonant frequency of 2 GHz. To increase the sensitivity and selectivity, the SMR devices were functionalized with [...] Read more.
This paper reports on a CO2 solidly mounted resonator (SMR)-based sensor with an integrated heater. The SMR device is CMOS compatible and operates at a resonant frequency of 2 GHz. To increase the sensitivity and selectivity, the SMR devices were functionalized with a 20 μm CO2 sensitive layer. Two SMR sensors were employed in a differential configuration; one sensor was uncoated and used as a reference and the other was coated and used as a sensing device. The frequency shift of ~8 kHz/% CO2 in dry air was observed after temperature and humidity compensation; demonstrating its potential application in indoor air quality (IAQ) monitoring. Full article
(This article belongs to the Proceedings of XXXV EUROSENSORS Conference)
Show Figures

Figure 1

12 pages, 5827 KiB  
Article
A 10.5 ppm/°C Modified Sub-1 V Bandgap in 28 nm CMOS Technology with Only Two Operating Points
by Rajasekhar Nagulapalli, Nabil Yassine, Amr A. Tammam, Steve Barker and Khaled Hayatleh
Electronics 2024, 13(6), 1011; https://doi.org/10.3390/electronics13061011 - 7 Mar 2024
Cited by 2 | Viewed by 1470
Abstract
Reference voltage/current generation is essential to the Analog circuit design. There have been several ways to generate quality reference voltage using bandgap reference (BGR) and there are mainly two types: current mode and voltage mode. The current-mode bandgap reference (CBGR) is widely accepted [...] Read more.
Reference voltage/current generation is essential to the Analog circuit design. There have been several ways to generate quality reference voltage using bandgap reference (BGR) and there are mainly two types: current mode and voltage mode. The current-mode bandgap reference (CBGR) is widely accepted in industry due to having an output voltage which is below 1 V. However, its drawbacks include a lack of proportional to absolute temperature (PTAT) current availability, a large silicon area, multiple operating points, and a large temperature coefficient (TC). In this paper, various operating points are explained in detail with diagrams. Similar to the conventional voltage mode bandgap reference (VBGR) circuits, modifications of the existing circuits with only two operating points have also been proposed. Moreover, the proposed BGR occupies a much smaller area due to eliminating the complimentary to absolute temperature (CTAT) current-generating resistor. A new self-biased opamp was introduced to operate from a 1.05 V supply, reducing systematic offset and TC of the BGR. The proposed solution has been implemented in 28 nm CMOS TSMC technology, and extraction simulations were performed to prove the robustness of the proposed circuit. The targeted mean BGR output is 500 mV, and across the industrial temperature range (−40 to 125 °C), the simulated TC is approximately 10.5 ppm/°C. The integrated output noise within the observable frequency band is 19.6 µV (rms). A 200-point Monte Carlo simulation displays a histogram with a 2.6 mV accuracy of 1.2% (±3-sigma). The proposed BGR circuit consumes 32.8 µW of power from a 1.05 V supply in a fast process and hot (125 °C) corner. It occupies a silicon area of 81 × 42 µm (including capacitors). This design can aim for use in biomedical and sensor applications. Full article
(This article belongs to the Special Issue Design of Low-Voltage and Low-Power Integrated Circuits)
Show Figures

Figure 1

16 pages, 5461 KiB  
Article
A Novel Miniature and Selective CMOS Gas Sensor for Gas Mixture Analysis—Part 4: The Effect of Humidity
by Moshe Avraham, Adir Krayden, Hanin Ashkar, Dan Aronin, Sara Stolyarova, Tanya Blank, Dima Shlenkevitch and Yael Nemirovsky
Micromachines 2024, 15(2), 264; https://doi.org/10.3390/mi15020264 - 11 Feb 2024
Cited by 1 | Viewed by 1608
Abstract
This is the fourth part of a study presenting a miniature, combustion-type gas sensor (dubbed GMOS) based on a novel thermal sensor (dubbed TMOS). The TMOS is a micromachined CMOS-SOI transistor, which acts as the sensing element and is integrated with a catalytic [...] Read more.
This is the fourth part of a study presenting a miniature, combustion-type gas sensor (dubbed GMOS) based on a novel thermal sensor (dubbed TMOS). The TMOS is a micromachined CMOS-SOI transistor, which acts as the sensing element and is integrated with a catalytic reaction plate, where ignition of the gas takes place. The GMOS measures the temperature change due to a combustion exothermic reaction. The controlling parameters of the sensor are the ignition temperature applied to the catalytic layer and the increased temperature of the hotplate due to the released power of the combustion reaction. The solid-state device applies electrical parameters, which are related to the thermal parameters. The heating is applied by Joule heating with a resistor underneath the catalytic layer while the signal is monitored by the change in voltage of the TMOS sensor. Voltage, like temperature, is an intensive parameter, and one always measures changes in such parameters relative to a reference point. The reference point for both parameters (temperature and voltage) is the blind sensor, without any catalytic layer and hence where no reaction takes place. The present paper focuses on the study of the effect of humidity upon performance. In real life, the sensors are exposed to environmental parameters, where humidity plays a significant role. Humidity is high in storage rooms of fruits and vegetables, in refrigerators, in silos, in fields as well as in homes and cars. This study is significant and innovative since it extends our understanding of the performance of the GMOS, as well as pellistor sensors in general, in the presence of humidity. The three main challenges in simulating the performance are (i) how to define the operating temperature based on the input parameters of the heater voltage in the presence of humidity; (ii) how to measure the dynamics of the temperature increase during cyclic operation at a given duty cycle; and (iii) how to model the correlation between the operating temperature and the sensing response in the presence of humidity. Due to the complexity of the 3D analysis of packaged GMOS, and the many aspects of humidity simultanoesuly affecting performane, advanced simulation software is applied, incorporating computational fluid dynamics (CFD). The simulation and experimental data of this study show that the GMOS sensor can operate in the presence of high humidity. Full article
(This article belongs to the Special Issue CMOS-MEMS Fabrication Technologies and Devices)
Show Figures

Figure 1

Back to TopTop