Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = Contiki

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4830 KiB  
Article
Enabling Seamless Connectivity: Networking Innovations in Wireless Sensor Networks for Industrial Application
by Shathya Duobiene, Rimantas Simniškis and Gediminas Račiukaitis
Sensors 2024, 24(15), 4881; https://doi.org/10.3390/s24154881 - 27 Jul 2024
Viewed by 909
Abstract
The wide-ranging applications of the Internet of Things (IoT) show that it has the potential to revolutionise industry, improve daily life, and overcome global challenges. This study aims to evaluate the performance scalability of mature industrial wireless sensor networks (IWSNs). A new classification [...] Read more.
The wide-ranging applications of the Internet of Things (IoT) show that it has the potential to revolutionise industry, improve daily life, and overcome global challenges. This study aims to evaluate the performance scalability of mature industrial wireless sensor networks (IWSNs). A new classification approach for IoT in the industrial sector is proposed based on multiple factors and we introduce the integration of 6LoWPAN (IPv6 over low-power wireless personal area networks), message queuing telemetry transport for sensor networks (MQTT-SN), and ContikiMAC protocols for sensor nodes in an industrial IoT system to improve energy-efficient connectivity. The Contiki COOJA WSN simulator was applied to model and simulate the performance of the protocols in two static and moving scenarios and evaluate the proposed novelty detection system (NDS) for network intrusions in order to identify certain events in real time for realistic dataset analysis. The simulation results show that our method is an essential measure in determining the number of transmissions required to achieve a certain reliability target in an IWSNs. Despite the growing demand for low-power operation, deterministic communication, and end-to-end reliability, our methodology of an innovative sensor design using selective surface activation induced by laser (SSAIL) technology was developed and deployed in the FTMC premises to demonstrate its long-term functionality and reliability. The proposed framework was experimentally validated and tested through simulations to demonstrate the applicability and suitability of the proposed approach. The energy efficiency in the optimised WSN was increased by 50%, battery life was extended by 350%, duplicated packets were reduced by 80%, data collisions were reduced by 80%, and it was shown that the proposed methodology and tools could be used effectively in the development of telemetry node networks in new industrial projects in order to detect events and breaches in IoT networks accurately. The energy consumption of the developed sensor nodes was measured. Overall, this study performed a comprehensive assessment of the challenges of industrial processes, such as the reliability and stability of telemetry channels, the energy efficiency of autonomous nodes, and the minimisation of duplicate information transmission in IWSNs. Full article
(This article belongs to the Special Issue IoT Sensors Development and Application for Environment & Safety)
Show Figures

Figure 1

24 pages, 4686 KiB  
Article
User-Centric Internet of Things and Controlled Service Scheduling Scheme for a Software-Defined Network
by Mohd Anjum, Hong Min and Zubair Ahmed
Appl. Sci. 2024, 14(11), 4951; https://doi.org/10.3390/app14114951 - 6 Jun 2024
Cited by 1 | Viewed by 876
Abstract
Mobile users can access vital real-time services through wireless paradigms like software-defined network (SDN) topologies and the Internet of Things. Point-of-contact-based infrastructures and dynamic user densities increase resource access and service-sharing concurrency. Thus, controlling power consumption and network and device congestion becomes a [...] Read more.
Mobile users can access vital real-time services through wireless paradigms like software-defined network (SDN) topologies and the Internet of Things. Point-of-contact-based infrastructures and dynamic user densities increase resource access and service-sharing concurrency. Thus, controlling power consumption and network and device congestion becomes a major issue for SDN-based IoT applications. This paper uses the Controlled Service Scheduling Scheme (CS3) to address the challenge of simultaneous scheduling and power allocation. The suggested approach uses deep recurrent learning and probabilistic balancing for power allocation and service distribution during user-centric concurrent sharing intervals. The SDN control plane decides how much power to use for service delivery while forecasting user service demands directs the scheduling interval allocation. Power management is under the control plane of the SDN, whereas service distribution is under the data plane. Power-to-service requirements are evaluated probabilistically, and updates for both aircraft are obtained via the deep learning model. This allocation serves as the basis for training the learning model to alleviate power deficits across succeeding intervals. The simulation experiments are modeled using the Contiki Cooja simulator, where 200 mobile users are placed. The proposed plan delivers a 14.9% high-service distribution for various users, 18.29% less delay, 13.34% less failure, 5.54% less downtime, and 18.68% less power consumption. Full article
Show Figures

Figure 1

16 pages, 5529 KiB  
Article
Analysis of Wi-SUN FAN Network Formation Time
by Ananias Ambrosio Quispe, Rodrigo Jardim Riella, Luciana Michelotto Iantorno, Leonardo Santanna Mariani and Evelio M. Garcia Fernandez
Sensors 2024, 24(4), 1142; https://doi.org/10.3390/s24041142 - 9 Feb 2024
Viewed by 1506
Abstract
The Wi-SUN FAN (Wireless Smart Ubiquitous Network Field Area Network) standard is attracting great interest in various applications such as smart meters, smart cities and Internet of Things (IoT) devices due to the attractive features that the standard offers, such as multihop and [...] Read more.
The Wi-SUN FAN (Wireless Smart Ubiquitous Network Field Area Network) standard is attracting great interest in various applications such as smart meters, smart cities and Internet of Things (IoT) devices due to the attractive features that the standard offers, such as multihop and mesh topologies, a relatively high data rate, frequency hopping, and interoperability between manufacturers. However, the process of connecting nodes in Wi-SUN FAN networks, which includes discovering, joining, and forming the network, has been shown to be slow, especially in multihop environments, which has motivated research and experimentation to analyze this process. In the existing literature, to measure network formation time, some authors have performed experiments with up to 100 devices, which is a costly and time-consuming methodology. Others have used simulation tools that are difficult to replicate, because little information is available about the methodology used or because they are proprietary. Despite these efforts, there is still a lack of information to adequately assess the formation time of Wi-SUN FAN networks, since the experimental tests reported in the literature are expensive and time-consuming. Therefore, alternatives such as computer simulation have been explored to speed up performance analysis in different scenarios. With this perspective, this paper is focused on the implementation of the Wi-SUN FAN network formation process using the Contiki-NG open source operating system and the Cooja simultor, where a functionality was added that makes it possible to efficiently analyze the network performance, thereby facilitating the implementation of new techniques to reduce network training time. The simulation tool was integrated into Contiki-NG and has been used to estimate the network formation times in various indoor environments. The correspondence between the experimental and numerical results obtained shows that our proposal is efficient to study the formation process of this type of networks. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 3382 KiB  
Article
Graph-Based Neural Networks’ Framework Using Microcontrollers for Energy-Efficient Traffic Forecasting
by Sorin Zoican, Roxana Zoican, Dan Galatchi and Marius Vochin
Appl. Sci. 2024, 14(1), 412; https://doi.org/10.3390/app14010412 - 2 Jan 2024
Viewed by 1357
Abstract
This paper illustrates a general framework in which a neural network application can be easily integrated and proposes a traffic forecasting approach that uses neural networks based on graphs. Neural networks based on graphs have the advantage of capturing spatial–temporal characteristics that cannot [...] Read more.
This paper illustrates a general framework in which a neural network application can be easily integrated and proposes a traffic forecasting approach that uses neural networks based on graphs. Neural networks based on graphs have the advantage of capturing spatial–temporal characteristics that cannot be captured by other types of neural networks. This is due to entries that are graphs that, by their nature, include, besides a certain topology (the spatial characteristic), connections between nodes that model the costs (traffic load, speed, and road length) of the roads between nodes that can vary over time (the temporal characteristic). As a result, a prediction in a node influences the prediction from adjacent nodes, and, globally, the prediction has more precision. On the other hand, an adequate neural network leads to a good prediction, but its complexity can be higher. A recurrent neural network like LSTM is suitable for making predictions. A reduction in complexity can be achieved by choosing a relatively small number (usually determined by experiments) of hidden levels. The use of graphs as inputs to the neural network and the choice of a recurrent neural network combined lead to good accuracy in traffic prediction with a low enough implementation effort that it can be accomplished on microcontrollers with relatively limited resources. The proposed method minimizes the communication network (between vehicles and database servers) load and represents a reasonable trade-off between the communication network load and forecasting accuracy. Traffic prediction leads to less-congested routes and, therefore, to a reduction in energy consumption. The traffic is forecasted using an LSTM neural network with a regression layer. The inputs of the neural network are sequences—obtained from a graph that represents the road network—at specific moments in time that are read from traffic sensors or the outputs of the neural network (forecasting sequences). The input sequences can be filtered to improve the forecasting accuracy. This general framework is based on the Contiki IoT operating system, which ensures support for wireless communication and the efficient implementation of processes in a resource-constrained system, and it is particularized to implement a graph neural network. Two cases are studied: one case in which the traffic sensors are periodically read and another case in which the traffic sensors are read when their values’ changes are detected. A comparison between the cases is made, and the influence of filtering is evaluated. The obtained accuracy is very good and is very close to the accuracy obtained in an infinite precision simulation, the computation time is low enough, and the system can work in real time. Full article
Show Figures

Figure 1

19 pages, 2828 KiB  
Article
CERP: Cooperative and Efficient Routing Protocol for Wireless Sensor Networks
by Nesrine Atitallah, Omar Cheikhrouhou, Khaleel Mershad, Anis Koubaa and Fahima Hajjej
Sensors 2023, 23(21), 8834; https://doi.org/10.3390/s23218834 - 30 Oct 2023
Cited by 1 | Viewed by 1434
Abstract
Wireless sensor networks (WSNs), constrained by limited resources, demand routing strategies that prioritize energy efficiency. The tactic of cooperative routing, which leverages the broadcast nature of wireless channels, has garnered attention for its capability to amplify routing efficacy. This manuscript introduces a power-conscious [...] Read more.
Wireless sensor networks (WSNs), constrained by limited resources, demand routing strategies that prioritize energy efficiency. The tactic of cooperative routing, which leverages the broadcast nature of wireless channels, has garnered attention for its capability to amplify routing efficacy. This manuscript introduces a power-conscious routing approach, tailored for resource-restricted WSNs. By exploiting cooperative communications, we introduce an innovative relay node selection technique within clustered networks, aiming to curtail energy usage while safeguarding data dependability. This inventive methodology has been amalgamated into the Routing Protocol for Low-Power and Lossy Networks (RPL), giving rise to the cooperative and efficient routing protocol (CERP). The devised CERP protocol pinpoints and selects the most efficacious relay node, ensuring that packet transmission is both energy-minimal and reliable. Performance evaluations were executed to substantiate the proposed strategy, and its practicality was examined using an Arduino-based sensor node and the Contiki operating system in real-world scenarios. The outcomes affirm the efficacy of the proposed strategy, outshining the standard RPL concerning reliability and energy conservation, enhancing RPL reliability by 10% and energy savings by 18%. This paper is posited to contribute to the evolution of power-conscious routing strategies for WSNs, crucial for prolonging sensor node battery longevity while sustaining dependable communication. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

20 pages, 1990 KiB  
Article
Energy-Efficient IoT-Based Light Control System in Smart Indoor Agriculture
by Oussama Hadj Abdelkader, Hadjer Bouzebiba, Danilo Pena and António Pedro Aguiar
Sensors 2023, 23(18), 7670; https://doi.org/10.3390/s23187670 - 5 Sep 2023
Cited by 5 | Viewed by 3721
Abstract
Indoor agriculture is emerging as a promising approach for increasing the efficiency and sustainability of agri-food production processes. It is currently evolving from a small-scale horticultural practice to a large-scale industry as a response to the increasing demand. This led to the appearance [...] Read more.
Indoor agriculture is emerging as a promising approach for increasing the efficiency and sustainability of agri-food production processes. It is currently evolving from a small-scale horticultural practice to a large-scale industry as a response to the increasing demand. This led to the appearance of plant factories where agri-food production is automated and continuous and the plant environment is fully controlled. While plant factories improve the productivity and sustainability of the process, they suffer from high energy consumption and the difficulty of providing the ideal environment for plants. As a small step to address these limitations, in this article we propose to use internet of things (IoT) technologies and automatic control algorithms to construct an energy-efficient remote control architecture for grow lights monitoring in indoor farming. The proposed architecture consists of using a master–slave device configuration in which the slave devices are used to control the local light conditions in growth chambers while the master device is used to monitor the plant factory through wireless communication with the slave devices. The devices all together make a 6LoWPAN network in which the RPL protocol is used to manage data transfer. This allows for the precise and centralized control of the growth conditions and the real-time monitoring of plants. The proposed control architecture can be associated with a decision support system to improve yields and quality at low costs. The developed method is evaluated in emulation software (Contiki-NG v4.7),its scalability to the case of large-scale production facilities is tested, and the obtained results are presented and discussed. The proposed approach is promising in dealing with control, cost, and scalability issues and can contribute to making smart indoor agriculture more effective and sustainable. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

21 pages, 4536 KiB  
Protocol
A Subjective Logical Framework-Based Trust Model for Wormhole Attack Detection and Mitigation in Low-Power and Lossy (RPL) IoT-Networks
by Sarmad Javed, Ahthasham Sajid, Tayybah Kiren, Inam Ullah Khan, Christine Dewi, Francesco Cauteruccio and Henoch Juli Christanto
Information 2023, 14(9), 478; https://doi.org/10.3390/info14090478 - 29 Aug 2023
Cited by 1 | Viewed by 2504
Abstract
The increasing use of wireless communication and IoT devices has raised concerns about security, particularly with regard to attacks on the Routing Protocol for Low-Power and Lossy Networks (RPL), such as the wormhole attack. In this study, the authors have used the trust [...] Read more.
The increasing use of wireless communication and IoT devices has raised concerns about security, particularly with regard to attacks on the Routing Protocol for Low-Power and Lossy Networks (RPL), such as the wormhole attack. In this study, the authors have used the trust concept called PCC-RPL (Parental Change Control RPL) over communicating nodes on IoT networks which prevents unsolicited parent changes by utilizing the trust concept. The aim of this study is to make the RPL protocol more secure by using a Subjective Logic Framework-based trust model to detect and mitigate a wormhole attack. The study evaluates the trust-based designed framework known as SLF-RPL (Subjective Logical Framework-Routing Protocol for Low-Power and Lossy Networks) over various key parameters, i.e., low energy consumption, packet loss ratio and attack detection rate. The achieved results were conducted using a Contiki OS-based Cooja Network simulator with 30, 60, and 90 nodes with respect to a 1:10 malicious node ratio and compared with the existing PCC-RPL protocol. The results show that the proposed SLF-RPL framework demonstrates higher efficiency (0.0504 J to 0.0728 J out of 1 J) than PCC-RPL (0.065 J to 0.0963 J out of 1 J) in terms of energy consumption at the node level, a decreased packet loss ratio of 16% at the node level, and an increased attack detection rate at network level from 0.42 to 0.55 in comparison with PCC-RPL. Full article
Show Figures

Figure 1

28 pages, 5278 KiB  
Article
TB-RPL: A Try-the-Best Fused Mode of Operation to Enhance Point-to-Point Communication Performance in RPL
by Kaibin Zhang, Khadak Singh Bhandari and Gihwan Cho
Electronics 2023, 12(7), 1639; https://doi.org/10.3390/electronics12071639 - 30 Mar 2023
Cited by 1 | Viewed by 1653
Abstract
RPL is the IPv6 routing protocol for low-power and lossy networks in the Internet of Things which supports point-to-point (P2P) communication. However, the partition of two modes of operations (MOPs) in downward routing complicates achieving high performance. In the non-storing mode, a downward [...] Read more.
RPL is the IPv6 routing protocol for low-power and lossy networks in the Internet of Things which supports point-to-point (P2P) communication. However, the partition of two modes of operations (MOPs) in downward routing complicates achieving high performance. In the non-storing mode, a downward route with the longest path length is often picked. In the storing mode, the downward routes to some child nodes cannot be stored by their parent because of the limitation of memory space, which makes some nodes unreachable. In addition, there are extra performance costs of mixing or switching the two modes in the existing hybrid-MOPs works. Therefore, this article proposes TB-RPL to achieve an enhancement of RPL with a better performance of P2P communication. It allows all nodes to behave in a single and uniformly fused MOP that solves the problems mentioned above. The proposed mode uses a modified routing header format and introduces a threshold to the number of route entries. We implemented and compared TB-RPL with related mechanisms in Cooja simulator based on the Contiki-NG operating system. Simulation results verify that TB-RPL eliminates the three identified problems. Consequently, it significantly improves the performance of P2P communication in LLN. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

21 pages, 2476 KiB  
Article
An Analysis into Physical and Virtual Power Draw Characteristics of Embedded Wireless Sensor Network Devices under DoS and RPL-Based Attacks
by Patryk Przybocki and Vassilios G. Vassilakis
Sensors 2023, 23(5), 2605; https://doi.org/10.3390/s23052605 - 27 Feb 2023
Cited by 4 | Viewed by 1902
Abstract
Currently, within the world, cybercrime is becoming increasingly rampant—often targeting civil infrastructure like power stations and other critical systems. A trend that is being noticed with these attacks is their increased use of embedded devices in denial-of-service (DoS) attacks. This creates a substantial [...] Read more.
Currently, within the world, cybercrime is becoming increasingly rampant—often targeting civil infrastructure like power stations and other critical systems. A trend that is being noticed with these attacks is their increased use of embedded devices in denial-of-service (DoS) attacks. This creates a substantial risk to systems and infrastructures worldwide. Threats to embedded devices can be significant, and network stability and reliability can suffer, mainly through the risk of battery draining or complete system hang. This paper investigates such consequences through simulations of excessive loads, by staging attacks on embedded devices. Experimentation within Contiki OS focused on loads placed on physical and virtualised wireless sensor network (WSN) embedded devices by launching DoS attacks and by exploiting the Routing Protocol for Low Power and Lossy Networks (RPL). Results from these experiments were based on the metric of power draw, mainly the percentage increase over baseline and the pattern of it. The physical study relied on the output of the inline power analyser and the virtual study relied on the output of a Cooja plugin called PowerTracker. This involved experiments on both physical and virtual devices, and analysis of the power draws characteristics of WSN devices with a focus on embedded Linux platforms and Contiki OS. Experimental results provide evidence that peak power draining occurs with a malicious-node-to-sensor device ratio of 13-to-1. Results show a decline in power usage with a more expansive 16-sensor network after modelling and simulating a growing sensor network within the Cooja simulator. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

18 pages, 1778 KiB  
Article
Case Studies with the Contiki-NG Simulator to Design Strategies for Sensors’ Communication Optimization in an IoT-Fog Ecosystem
by Antonio Marcos Almeida Ferreira, Leonildo José de Melo de Azevedo, Júlio Cezar Estrella and Alexandre Cláudio Botazzo Delbem
Sensors 2023, 23(4), 2300; https://doi.org/10.3390/s23042300 - 18 Feb 2023
Cited by 4 | Viewed by 2326
Abstract
With the development of mobile communications and the Internet of Things (IoT), IoT devices have increased, allowing their application in numerous areas of Industry 4.0. Applications on IoT devices are time sensitive and require a low response time, making reducing latency in IoT [...] Read more.
With the development of mobile communications and the Internet of Things (IoT), IoT devices have increased, allowing their application in numerous areas of Industry 4.0. Applications on IoT devices are time sensitive and require a low response time, making reducing latency in IoT networks an essential task. However, it needs to be emphasized that data production and consumption are interdependent, so when designing the implementation of a fog network, it is crucial to consider criteria other than latency. Defining the strategy to deploy these nodes based on different criteria and sub-criteria is a challenging optimization problem, as the amount of possibilities is immense. This work aims to simulate a hybrid network of sensors related to public transport in the city of São Carlos - SP using Contiki-NG to select the most suitable place to deploy an IoT sensor network. Performance tests were carried out on five analyzed scenarios, and we collected the transmitted data based on criteria corresponding to devices, applications, and network communication on which we applied Multiple Attribute Decision Making (MADM) algorithms to generate a multicriteria decision ranking. The results show that based on the TOPSIS and VIKOR decision-making algorithms, scenario four is the most viable among those analyzed. This approach makes it feasible to optimally select the best option among different possibilities. Full article
Show Figures

Figure 1

25 pages, 881 KiB  
Review
Efficient Secure Routing Mechanisms for the Low-Powered IoT Network: A Literature Review
by Muhammad Zunnurain Hussain and Zurina Mohd Hanapi
Electronics 2023, 12(3), 482; https://doi.org/10.3390/electronics12030482 - 17 Jan 2023
Cited by 15 | Viewed by 3939
Abstract
The Wireless Sensor Network in the Internet of Things (WSN-IoT) has been flourishing as another global breakthrough over the past few years. The WSN-IoT is reforming the way we live today by spreading through all areas of life, including the dangerous demographic aging [...] Read more.
The Wireless Sensor Network in the Internet of Things (WSN-IoT) has been flourishing as another global breakthrough over the past few years. The WSN-IoT is reforming the way we live today by spreading through all areas of life, including the dangerous demographic aging crisis and the subsequent decline of jobs. For a company to increase revenues and cost-effectiveness growth should be customer-centered and agile within an organization. WSN-IoT networks have simultaneously faced threats, such as sniffing, spoofing, and intruders. However, WSN-IoT networks are often made up of multiple embedded devices (sensors and actuators) with limited resources that are joined via various connections in a low-power and lossy manner. However, to our knowledge, no research has yet been conducted into the security methods. Recently, a Contiki operating system’s partial implementation of Routing Protocol for Low Power & Lossy Network RPL’s security mechanisms was published, allowing us to evaluate RPL’s security methods. This paper presents a critical analysis of security issues in the WSN-IoT and applications of WSN-IoT, along with network management details using machine learning. The paper gives insights into the Internet of Things in Low Power Networks (IoT-LPN) architecture, research challenges of the Internet of Things in Low Power Networks, network attacks in WSN-IoT infrastructures, and the significant WSN-IoT objectives that need to be accompanied by current WSN-IoT frameworks. Several applied WSN-IoT security mechanisms and recent contributions have been considered, and their boundaries have been stated to be a significant research area in the future. Moreover, various low-powered IoT protocols have been further discussed and evaluated, along with their limitations. Finally, a comparative analysis is performed to assess the proposed work’s performance. The study shows that the proposed work covers a wide range of factors, whereas the rest of the research in the literature is limited. Full article
(This article belongs to the Special Issue Applications of Machine Learning in Real World)
Show Figures

Figure 1

23 pages, 9789 KiB  
Article
Towards Sustainable Distributed Sensor Networks: An Approach for Addressing Power Limitation Issues in WSNs
by Alaa Alaerjan
Sensors 2023, 23(2), 975; https://doi.org/10.3390/s23020975 - 14 Jan 2023
Cited by 12 | Viewed by 2575
Abstract
Distributed wireless sensor networks (WSNs) have been implemented in multiple applications. Those networks are intended to support the quality of operations and enhance applications’ productivity and safety. WSNs are constructed of a large amount of sensor nodes that are battery powered. Typically, wireless [...] Read more.
Distributed wireless sensor networks (WSNs) have been implemented in multiple applications. Those networks are intended to support the quality of operations and enhance applications’ productivity and safety. WSNs are constructed of a large amount of sensor nodes that are battery powered. Typically, wireless sensors are deployed in complex terrain which makes battery replacement extremely difficult. Therefore, it is critical to adopt an energy sustainability approach to enhance the lifetime of each sensor node since each node contributes to the lifetime of the entire WSN. In this work, we propose an approach to reduce power consumption in wireless sensors. The approach addresses power reduction in a sensor node at the sensing level, as well as the communication level. First, we propose configuring the microcontroller of the sensor to conserve energy based on the performed tasks. Then, we implement an interface to reduce consumed power by the radio module. Based on the approach, we carried out field experiments and we measure the improvement of power-consumption reduction. The results show that the approach contributes to saving up to 50% of the wasted energy at the sensor node and it improves communication reliability especially when the number of sensors in a network scales. Full article
(This article belongs to the Topic Wireless Sensor Networks)
Show Figures

Figure 1

24 pages, 4432 KiB  
Article
Vehicular Networks Dynamic Grouping and Re-Orchestration Scenarios
by Duaa Zuhair Al-Hamid and Adnan Al-Anbuky
Information 2023, 14(1), 32; https://doi.org/10.3390/info14010032 - 5 Jan 2023
Cited by 6 | Viewed by 2026
Abstract
The topological structure in vehicular communication networks presents challenges for sustaining network connectivity on the road. Highway dynamics, for example, encourage the need for an adaptive and flexible structure to handle the rapid events of vehicles joining and leaving the road. Such demand [...] Read more.
The topological structure in vehicular communication networks presents challenges for sustaining network connectivity on the road. Highway dynamics, for example, encourage the need for an adaptive and flexible structure to handle the rapid events of vehicles joining and leaving the road. Such demand aligns with the advancement made in software-defined networks and related dynamic network re-orchestration. This paper discusses the development of a virtual model that represents the operation of an autonomous vehicular network. It also investigates the ability to re-orchestrate the topology through software definition while running the various operational phases. Network self-formation, network expansion, retraction via vehicular members joining and leaving, and network self-healing when a topological rupture occurs as a result of a key member leaving the network are the key grouping phases. The communication approach is analyzed based on the status of network members and their ability to assume the various network roles. The concept is tested using both a Contiki–Cooja network simulator and a MATLAB analytical modeling tool to reflect the operation and performance of the grouping approach under various road scenarios. The outcome of the analysis reflects the ability of the group to be formulated within a measured latency considering the various network parameters such as communication message rate. The approach offers tools for managing the dynamic connectivity of vehicular groups and may also be extended to assume the function of an on-road network digital twin during the lifetime of a given group. Full article
(This article belongs to the Special Issue Internet of Everything and Vehicular Networks)
Show Figures

Figure 1

20 pages, 3019 KiB  
Article
Customised Intrusion Detection for an Industrial IoT Heterogeneous Network Based on Machine Learning Algorithms Called FTL-CID
by Nasr Abosata, Saba Al-Rubaye and Gokhan Inalhan
Sensors 2023, 23(1), 321; https://doi.org/10.3390/s23010321 - 28 Dec 2022
Cited by 16 | Viewed by 3015
Abstract
Technological breakthroughs in the Internet of Things (IoT) easily promote smart lives for humans by connecting everything through the Internet. The de facto standardised IoT routing strategy is the routing protocol for low-power and lossy networks (RPL), which is applied in various heterogeneous [...] Read more.
Technological breakthroughs in the Internet of Things (IoT) easily promote smart lives for humans by connecting everything through the Internet. The de facto standardised IoT routing strategy is the routing protocol for low-power and lossy networks (RPL), which is applied in various heterogeneous IoT applications. Hence, the increase in reliance on the IoT requires focus on the security of the RPL protocol. The top defence layer is an intrusion detection system (IDS), and the heterogeneous characteristics of the IoT and variety of novel intrusions make the design of the RPL IDS significantly complex. Most existing IDS solutions are unified models and cannot detect novel RPL intrusions. Therefore, the RPL requires a customised global attack knowledge-based IDS model to identify both existing and novel intrusions in order to enhance its security. Federated transfer learning (FTL) is a trending topic that paves the way to designing a customised RPL-IoT IDS security model in a heterogeneous IoT environment. In this paper, we propose a federated-transfer-learning-assisted customised distributed IDS (FT-CID) model to detect RPL intrusion in a heterogeneous IoT. The design process of FT-CID includes three steps: dataset collection, FTL-assisted edge IDS learning, and intrusion detection. Initially, the central server initialises the FT-CID with a predefined learning model and observes the unique features of different RPL-IoTs to construct a local model. The experimental model generates an RPL-IIoT dataset with normal and abnormal traffic through simulation on the Contiki-NG OS. Secondly, the edge IDSs are trained using the local parameters and the globally shared parameters generated by the central server through federation and aggregation of different local parameters of various edges. Hence, transfer learning is exploited to update the server’s and edges’ local and global parameters based on relational knowledge. It also builds and customised IDS model with partial retraining through local learning based on globally shared server knowledge. Finally, the customised IDS in the FT-CID model enforces the detection of intrusions in heterogeneous IoT networks. Moreover, the FT-CID model accomplishes high RPL security by implicitly utilising the local and global parameters of different IoTs with the assistance of FTL. The FT-CID detects RPL intrusions with an accuracy of 85.52% in tests on a heterogeneous IoT network. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

19 pages, 5464 KiB  
Article
Elastic Hop Count Trickle Timer Algorithm in Internet of Things
by Raja Masadeh, Bayan AlSaaidah, Esraa Masadeh, Moh’d Rasoul Al-Hadidi and Omar Almomani
Sustainability 2022, 14(19), 12417; https://doi.org/10.3390/su141912417 - 29 Sep 2022
Cited by 9 | Viewed by 1932
Abstract
The Internet of Things (IoT) is a technology that allows machines to communicate with each other without the need for human interaction. Usually, IoT devices are connected via a network. A wide range of network technologies are required to make the IoT concept [...] Read more.
The Internet of Things (IoT) is a technology that allows machines to communicate with each other without the need for human interaction. Usually, IoT devices are connected via a network. A wide range of network technologies are required to make the IoT concept operate successfully; as a result, protocols at various network layers are used. One of the most extensively used network layer routing protocols is the Routing Protocol for Low Power and Lossy Networks (RPL). One of the primary components of RPL is the trickle timer method. The trickle algorithm directly impacts the time it takes for control messages to arrive. It has a listen-only period, which causes load imbalance and delays for nodes in the trickle algorithm. By making the trickle timer method run dynamically based on hop count, this research proposed a novel way of dealing with the difficulties of the traditional algorithm, which is called the Elastic Hop Count Trickle Timer Algorithm. Simulation experiments have been implemented using the Contiki Cooja 3.0 simulator to study the performance of RPL employing the dynamic trickle timer approach. Simulation results proved that the proposed algorithm outperforms the results of the traditional trickle algorithm, dynamic algorithm, and e-trickle algorithm in terms of consumed power, convergence time, and packet delivery ratio. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

Back to TopTop