Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (295)

Search Parameters:
Keywords = ConvLSTM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 15279 KiB  
Article
Reconstruction of OFDM Signals Using a Dual Discriminator CGAN with BiLSTM and Transformer
by Yuhai Li, Youchen Fan, Shunhu Hou, Yufei Niu, You Fu and Hanzhe Li
Sensors 2024, 24(14), 4562; https://doi.org/10.3390/s24144562 - 14 Jul 2024
Viewed by 363
Abstract
Communication signal reconstruction technology represents a critical area of research within communication countermeasures and signal processing. Considering traditional OFDM signal reconstruction methods’ intricacy and suboptimal reconstruction performance, a dual discriminator CGAN model incorporating LSTM and Transformer is proposed. When reconstructing OFDM signals using [...] Read more.
Communication signal reconstruction technology represents a critical area of research within communication countermeasures and signal processing. Considering traditional OFDM signal reconstruction methods’ intricacy and suboptimal reconstruction performance, a dual discriminator CGAN model incorporating LSTM and Transformer is proposed. When reconstructing OFDM signals using the traditional CNN network, it becomes challenging to extract intricate temporal information. Therefore, the BiLSTM network is incorporated into the first discriminator to capture timing details of the IQ (In-phase and Quadrature-phase) sequence and constellation map information of the AP (Amplitude and Phase) sequence. Subsequently, following the addition of fixed position coding, these data are fed into the core network constructed based on the Transformer Encoder for further learning. Simultaneously, to capture the correlation between the two IQ signals, the VIT (Vision in Transformer) concept is incorporated into the second discriminator. The IQ sequence is treated as a single-channel two-dimensional image and segmented into pixel blocks containing IQ sequence through Conv2d. Fixed position coding is added and sent to the Transformer core network for learning. The generator network transforms input noise data into a dimensional space aligned with the IQ signal and embedding vector dimensions. It appends identical position encoding information to the IQ sequence before sending it to the Transformer network. The experimental results demonstrate that, under commonly utilized OFDM modulation formats such as BPSK, QPSK, and 16QAM, the time series waveform, constellation diagram, and spectral diagram exhibit high-quality reconstruction. Our algorithm achieves improved signal quality while managing complexity compared to other reconstruction methods. Full article
(This article belongs to the Special Issue Computer Vision Recognition and Communication Sensing System)
Show Figures

Figure 1

18 pages, 5522 KiB  
Article
Application of Fast MEEMD–ConvLSTM in Sea Surface Temperature Predictions
by R. W. W. M. U. P. Wanigasekara, Zhenqiu Zhang, Weiqiang Wang, Yao Luo and Gang Pan
Remote Sens. 2024, 16(13), 2468; https://doi.org/10.3390/rs16132468 - 5 Jul 2024
Viewed by 289
Abstract
Sea Surface Temperature (SST) is of great importance to study several major phenomena due to ocean interactions with other earth systems. Previous studies on SST based on statistical inference methods were less accurate for longer prediction lengths. A considerable number of studies in [...] Read more.
Sea Surface Temperature (SST) is of great importance to study several major phenomena due to ocean interactions with other earth systems. Previous studies on SST based on statistical inference methods were less accurate for longer prediction lengths. A considerable number of studies in recent years involve machine learning for SST modeling. These models were able to mitigate this problem to some length by modeling SST patterns and trends. Sequence analysis by decomposition is used for SST forecasting in several studies. Ensemble Empirical Mode Decomposition (EEMD) has been proven in previous studies as a useful method for this. The application of EEMD in spatiotemporal modeling has been introduced as Multidimensional EEMD (MEEMD). The aim of this study is to employ fast MEEMD methods to decompose the SST spatiotemporal dataset and apply a Convolutional Long Short-Term Memory (ConvLSTM)-based model to model and forecast SST. The results show that the fast MEEMD method is capable of enhancing spatiotemporal SST modeling compared to the Linear Inverse Model (LIM) and ConvLSTM model without decomposition. The model was further validated by making predictions from April to May 2023 and comparing them to original SST values. There was a high consistency between predicted and real SST values. Full article
(This article belongs to the Special Issue Artificial Intelligence and Big Data for Oceanography)
Show Figures

Figure 1

18 pages, 2578 KiB  
Article
Prediction on Demand for Regional Online Car-Hailing Travel Based on Self-Attention Memory and ConvLSTM
by Jianqi Li, Wenbao Zeng, Weiqi Liu and Rongjun Cheng
Sustainability 2024, 16(13), 5725; https://doi.org/10.3390/su16135725 - 4 Jul 2024
Viewed by 391
Abstract
High precision in forecasting travel demand for online car-hailing is crucial for traffic management to schedule vehicles, hence reducing energy consumption and achieving sustainable development. Netflix demand forecasting relies on the capture of spatiotemporal correlations. To extract the spatiotemporal information more fully, this [...] Read more.
High precision in forecasting travel demand for online car-hailing is crucial for traffic management to schedule vehicles, hence reducing energy consumption and achieving sustainable development. Netflix demand forecasting relies on the capture of spatiotemporal correlations. To extract the spatiotemporal information more fully, this study designs and develops a novel spatiotemporal prediction model with multidimensional inputs (MSACL) by embedding a self-attention memory (SAM) module into a convolutional long short-term memory neural network (ConvLSTM). The SAM module can extract features with long-range spatiotemporal dependencies. The experimental data are derived from the Chengdu City online car-hailing trajectory data set and the external factors data set. Comparative experiments demonstrate that the proposed model has higher accuracy. The proposed model outperforms the Sa-ConvLSTM model and has the highest prediction accuracy, shows a reduction in the mean absolute error (MAE) by 1.72, a reduction in the mean squared error (MSE) by 0.43, and an increase in the R-squared (R2) by 4%. In addition, ablation experiments illustrate the effectiveness of each component, where the external factor inputs have the least impact on the model accuracy, but the removal of the SAM module results in the most significant decrease in model accuracy. Full article
(This article belongs to the Special Issue Sustainable Transportation and Data Science Application)
Show Figures

Figure 1

27 pages, 5261 KiB  
Article
Convformer: A Model for Reconstructing Ocean Subsurface Temperature and Salinity Fields Based on Multi-Source Remote Sensing Observations
by Tao Song, Guangxu Xu, Kunlin Yang, Xin Li and Shiqiu Peng
Remote Sens. 2024, 16(13), 2422; https://doi.org/10.3390/rs16132422 - 1 Jul 2024
Viewed by 637
Abstract
Observational data on ocean subsurface temperature and salinity are patently insufficient because in situ observations are complex and costly, while satellite remote-sensed measurements are abundant but mainly focus on sea surface data. To make up for the ocean interior data shortage and entirely [...] Read more.
Observational data on ocean subsurface temperature and salinity are patently insufficient because in situ observations are complex and costly, while satellite remote-sensed measurements are abundant but mainly focus on sea surface data. To make up for the ocean interior data shortage and entirely use the abundant satellite data, we developed a data-driven deep learning model named Convformer to reconstruct ocean subsurface temperature and salinity fields from satellite-observed sea surface data. Convformer is designed by deeply optimizing Vision Transformer and ConvLSTM, consisting of alternating residual connections between multiple temporal and spatial attention blocks. The input variables consist of sea surface temperature (SST), sea surface salinity (SSS), sea surface height (SSH), and sea surface wind (SSW). Our results demonstrate that Convformer exhibits superior performance in estimating the temperature-salinity structure of the tropical Pacific Ocean. The all-depth average root mean square error (RMSE) of the reconstructed subsurface temperature (ST)/subsurface salinity (SS) is 0.353 °C/0.0695 PSU, with correlation coefficients (R²) of 0.98663/0.99971. In the critical thermocline, although the root mean square errors of ST and SS reach 0.85 °C and 0.121 PSU, respectively, they remain smaller compared to other models. Furthermore, we assessed Convformer’s performance from various perspectives. Notably, we also delved into the potential of Convformer to extract physical and dynamic information from a model mechanism perspective. Our study offers a practical approach to reconstructing the subsurface temperature and salinity fields from satellite-observed sea surface data. Full article
(This article belongs to the Special Issue Artificial Intelligence and Big Data for Oceanography)
Show Figures

Figure 1

18 pages, 10425 KiB  
Article
Simulation of Full Wavefield Data with Deep Learning Approach for Delamination Identification
by Saeed Ullah, Pawel Kudela, Abdalraheem A. Ijjeh, Eleni Chatzi and Wieslaw Ostachowicz
Appl. Sci. 2024, 14(13), 5438; https://doi.org/10.3390/app14135438 - 23 Jun 2024
Viewed by 404
Abstract
In this work, a novel approach of guided wave-based damage identification in composite laminates is proposed. The novelty of this research lies in the implementation of ConvLSTM-based autoencoders for the generation of full wavefield data of propagating guided waves in composite structures. The [...] Read more.
In this work, a novel approach of guided wave-based damage identification in composite laminates is proposed. The novelty of this research lies in the implementation of ConvLSTM-based autoencoders for the generation of full wavefield data of propagating guided waves in composite structures. The developed surrogate deep learning model takes as input full wavefield frames of propagating waves in a healthy plate, along with a binary image representing delamination, and predicts the frames of propagating waves in a plate, which contains single delamination. The evaluation of the surrogate model is ultrafast (less than 1 s). Therefore, unlike traditional forward solvers, the surrogate model can be employed efficiently in the inverse framework of damage identification. In this work, particle swarm optimisation is applied as a suitable tool to this end. The proposed method was tested on a synthetic dataset, thus showing that it is capable of estimating the delamination location and size with good accuracy. The test involved full wavefield data in the objective function of the inverse method, but it should be underlined as well that partial data with measurements can be implemented. This is extremely important for practical applications in structural health monitoring where only signals at a finite number of locations are available. Full article
Show Figures

Figure 1

22 pages, 5466 KiB  
Article
A Hybrid Convolutional–Long Short-Term Memory–Attention Framework for Short-Term Photovoltaic Power Forecasting, Incorporating Data from Neighboring Stations
by Feng Hu, Linghua Zhang and Jiaqi Wang
Appl. Sci. 2024, 14(12), 5189; https://doi.org/10.3390/app14125189 - 14 Jun 2024
Viewed by 349
Abstract
To enhance the safety of grid operations, this paper proposes a high-precision short-term photovoltaic (PV) power forecasting method that integrates information from surrounding PV stations and deep learning prediction models. The proposed method utilizes numerical weather prediction (NWP) data of the target PV [...] Read more.
To enhance the safety of grid operations, this paper proposes a high-precision short-term photovoltaic (PV) power forecasting method that integrates information from surrounding PV stations and deep learning prediction models. The proposed method utilizes numerical weather prediction (NWP) data of the target PV station and highly correlated features from nearby stations as inputs. This study first analyzes the correlation between irradiance and power sequences and calculates a comprehensive similarity index based on distance factors. Stations with high-similarity indices are selected as data sources. Subsequently, Bayesian optimization is employed to determine the optimal data fusion ratio. The selected data are then used to model power predictions through the convolutional long short-term memory with attention (Conv-LSTM-ATT) deep neural network. Experimental results show that the proposed model significantly outperforms three classical models in terms of forecasting accuracy. The data fusion strategy determined by Bayesian optimization reduces the root mean square error (RMSE) of the test set by 20.04%, 28.24%, and 30.94% under sunny, cloudy, and rainy conditions, respectively. Full article
Show Figures

Figure 1

15 pages, 4923 KiB  
Article
Research on Grain Futures Price Prediction Based on a Bi-DSConvLSTM-Attention Model
by Bensheng Yun, Jiannan Lai, Yingfeng Ma and Yanan Zheng
Systems 2024, 12(6), 204; https://doi.org/10.3390/systems12060204 - 11 Jun 2024
Viewed by 593
Abstract
Grain is a commodity related to the livelihood of the nation’s people, and the volatility of its futures price affects risk management, investment decisions, and policy making. Therefore, it is very necessary to establish an accurate and efficient futures price prediction model. Aiming at [...] Read more.
Grain is a commodity related to the livelihood of the nation’s people, and the volatility of its futures price affects risk management, investment decisions, and policy making. Therefore, it is very necessary to establish an accurate and efficient futures price prediction model. Aiming at improving the accuracy and efficiency of the prediction model, so as to support reasonable decision making, this paper proposes a Bi-DSConvLSTM-Attention model for grain futures price prediction, which is based on the combination of a bidirectional long short-term memory neural network (BiLSTM), a depthwise separable convolutional long short-term memory neural network (DSConvLSTM), and an attention mechanism. Firstly, the mutual information is used to evaluate, sort, and select the features for dimension reduction. Secondly, the lightweight depthwise separable convolution (DSConv) is introduced to replace the standard convolution (SConv) in ConvLSTM without sacrificing its performance. Then, the self-attention mechanism is adopted to improve the accuracy. Finally, taking the wheat futures price prediction as an example, the model is trained and its performance is evaluated. Under the Bi-DSConvLSTM-Attention model, the experimental results of selecting the most relevant 1, 2, 3, 4, 5, 6, and 7 features as the inputs showed that the optimal number of features to be selected was 4. When the four best features were selected as the inputs, the RMSE, MAE, MAPE, and R2 of the prediction result of the Bi-DSConvLSTM-Attention model were 5.61, 3.63, 0.55, and 0.9984, respectively, which is a great improvement compared with the existing price-prediction models. Other experimental results demonstrated that the model also possesses a certain degree of generalization and is capable of obtaining positive returns. Full article
Show Figures

Figure 1

33 pages, 2156 KiB  
Article
Identification of Optimal Data Augmentation Techniques for Multimodal Time-Series Sensory Data: A Framework
by Nazish Ashfaq, Muhammad Hassan Khan and Muhammad Adeel Nisar
Information 2024, 15(6), 343; https://doi.org/10.3390/info15060343 - 11 Jun 2024
Viewed by 674
Abstract
Recently, the research community has shown significant interest in the continuous temporal data obtained from motion sensors in wearable devices. These data are useful for classifying and analysing different human activities in many application areas such as healthcare, sports and surveillance. The literature [...] Read more.
Recently, the research community has shown significant interest in the continuous temporal data obtained from motion sensors in wearable devices. These data are useful for classifying and analysing different human activities in many application areas such as healthcare, sports and surveillance. The literature has presented a multitude of deep learning models that aim to derive a suitable feature representation from temporal sensory input. However, the presence of a substantial quantity of annotated training data is crucial to adequately train the deep networks. Nevertheless, the data originating from the wearable devices are vast but ineffective due to a lack of labels which hinders our ability to train the models with optimal efficiency. This phenomenon leads to the model experiencing overfitting. The contribution of the proposed research is twofold: firstly, it involves a systematic evaluation of fifteen different augmentation strategies to solve the inadequacy problem of labeled data which plays a critical role in the classification tasks. Secondly, it introduces an automatic feature-learning technique proposing a Multi-Branch Hybrid Conv-LSTM network to classify human activities of daily living using multimodal data of different wearable smart devices. The objective of this study is to introduce an ensemble deep model that effectively captures intricate patterns and interdependencies within temporal data. The term “ensemble model” pertains to fusion of distinct deep models, with the objective of leveraging their own strengths and capabilities to develop a solution that is more robust and efficient. A comprehensive assessment of ensemble models is conducted using data-augmentation techniques on two prominent benchmark datasets: CogAge and UniMiB-SHAR. The proposed network employs a range of data-augmentation methods to improve the accuracy of atomic and composite activities. This results in a 5% increase in accuracy for composite activities and a 30% increase for atomic activities. Full article
(This article belongs to the Special Issue Human Activity Recognition and Biomedical Signal Processing)
Show Figures

Figure 1

13 pages, 7278 KiB  
Article
Short-Term and Imminent Rainfall Prediction Model Based on ConvLSTM and SmaAT-UNet
by Yuanyuan Liao, Shouqian Lu and Gang Yin
Sensors 2024, 24(11), 3576; https://doi.org/10.3390/s24113576 - 1 Jun 2024
Viewed by 391
Abstract
Short-term precipitation forecasting methods are mainly divided into statistical forecasting, numerical model-based forecasting, and radar image extrapolation techniques. The two methods based on statistical prediction and numerical model have the disadvantages of being unstable and generating large errors. Therefore, this study proposes the [...] Read more.
Short-term precipitation forecasting methods are mainly divided into statistical forecasting, numerical model-based forecasting, and radar image extrapolation techniques. The two methods based on statistical prediction and numerical model have the disadvantages of being unstable and generating large errors. Therefore, this study proposes the use of deep learning for radar image extrapolation for precipitation forecasting, in particular by developing algorithms for ConvLSTM and SmaAT-UNet. The ConvLSTM model is a fusion of a CNN (Convolutional Neural Network) and LSTM (Long Short-Term Memory network), which solves the challenge of processing spatial sequence data, which is a task that traditional LSTM models cannot accomplish. At the same time, SmaAT-UNet enhances the traditional UNet structure by incorporating the CBAM (Convolutional Block Attention Module) attention mechanism and replacing the standard convolutional layer with depthwise separable convolution. This innovative approach aims to improve the efficiency and accuracy of short-term precipitation forecasting by improving feature extraction and data processing techniques. Evaluation and analysis of experimental data show that both models exhibit good predictive ability, with the SmaAT-UNet model outperforming ConvLSTM in terms of accuracy. The results show that the performance indicators of precipitation prediction, especially detection probability (POD) and the Critical Success index (CSI), show a downward trend with the extension of the prediction time. This trend highlights the inherent challenges of maintaining predictive accuracy over longer periods of time and highlights the superior performance and resilience of the SmaAT-UNet model under these conditions. Compared with the statistical forecasting method and numerical model forecasting method, its accuracy in short-term rainfall forecasting is improved. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

23 pages, 5805 KiB  
Article
Deep Learning Approaches for Water Stress Forecasting in Arboriculture Using Time Series of Remote Sensing Images: Comparative Study between ConvLSTM and CNN-LSTM Models
by Ismail Bounoua, Youssef Saidi, Reda Yaagoubi and Mourad Bouziani
Technologies 2024, 12(6), 77; https://doi.org/10.3390/technologies12060077 - 1 Jun 2024
Viewed by 590
Abstract
Irrigation is crucial for crop cultivation and productivity. However, traditional methods often waste water and energy due to neglecting soil and crop variations, leading to inefficient water distribution and potential crop water stress. The crop water stress index (CWSI) has become a widely [...] Read more.
Irrigation is crucial for crop cultivation and productivity. However, traditional methods often waste water and energy due to neglecting soil and crop variations, leading to inefficient water distribution and potential crop water stress. The crop water stress index (CWSI) has become a widely accepted index for assessing plant water status. However, it is necessary to forecast the plant water stress to estimate the quantity of water to irrigate. Deep learning (DL) models for water stress forecasting have gained prominence in irrigation management to address these needs. In this paper, we present a comparative study between two deep learning models, ConvLSTM and CNN-LSTM, for water stress forecasting using remote sensing data. While these DL architectures have been previously proposed and studied in various applications, our novelty lies in studying their effectiveness in the field of water stress forecasting using time series of remote sensing images. The proposed methodology involves meticulous preparation of time series data, where we calculate the crop water stress index (CWSI) using Landsat 8 satellite imagery through Google Earth Engine. Subsequently, we implemented and fine-tuned the hyperparameters of the ConvLSTM and CNN-LSTM models. The same processes of model compilation, optimization of hyperparameters, and model training were applied for the two architectures. A citrus farm in Morocco was chosen as a case study. The analysis of the results reveals that the CNN-LSTM model excels over the ConvLSTM model for long sequences (nine images) with an RMSE of 0.119 and 0.123, respectively, while ConvLSTM provides better results for short sequences (three images) than CNN-LSTM with an RMSE of 0.153 and 0.187, respectively. Full article
Show Figures

Figure 1

19 pages, 8687 KiB  
Article
Contribution of Atmospheric Factors in Predicting Sea Surface Temperature in the East China Sea Using the Random Forest and SA-ConvLSTM Model
by Qiyan Ji, Xiaoyan Jia, Lifang Jiang, Minghong Xie, Ziyin Meng, Yuting Wang and Xiayan Lin
Atmosphere 2024, 15(6), 670; https://doi.org/10.3390/atmos15060670 - 31 May 2024
Viewed by 293
Abstract
Atmospheric forcings are significant physical factors that influence the variation of sea surface temperature (SST) and are often used as essential input variables for ocean numerical models. However, their contribution to the prediction of SST based on machine-learning methods still needs to be [...] Read more.
Atmospheric forcings are significant physical factors that influence the variation of sea surface temperature (SST) and are often used as essential input variables for ocean numerical models. However, their contribution to the prediction of SST based on machine-learning methods still needs to be tested. This study presents a prediction model for SST in the East China Sea (ECS) using two machine-learning methods: Random Forest and SA-ConvLSTM algorithms. According to the Random Forest feature importance scores and correlation coefficients R, 2 m air temperature and longwave radiation were selected as the two most important key atmospheric factors that can affect the SST prediction performance of machine-learning methods. Four datasets were constructed as input to SA-ConvLSTM: SST-only, SST-T2m, SST-LWR, and SST-T2m-LWR. Using the SST-T2m and SST-LWR, the prediction skill of the model can be improved by about 9.9% and 9.43% for the RMSE and by about 8.97% and 8.21% for the MAE, respectively. Using the SST-T2m-LWR dataset, the model’s prediction skill can be improved by 10.75% for RMSE and 9.06% for MAE. The SA-ConvLSTM can represent the SST in ECS well, but with the highest RMSE and AE in summer. The findings of the presented study requires much more exploration in future studies. Full article
Show Figures

Figure 1

28 pages, 682 KiB  
Article
Predicting Machine Failures from Multivariate Time Series: An Industrial Case Study
by Nicolò Oreste Pinciroli Vago, Francesca Forbicini and Piero Fraternali
Machines 2024, 12(6), 357; https://doi.org/10.3390/machines12060357 - 22 May 2024
Viewed by 745
Abstract
Non-neural machine learning (ML) and deep learning (DL) are used to predict system failures in industrial maintenance. However, only a few studies have assessed the effect of varying the amount of past data used to make a prediction and the extension in the [...] Read more.
Non-neural machine learning (ML) and deep learning (DL) are used to predict system failures in industrial maintenance. However, only a few studies have assessed the effect of varying the amount of past data used to make a prediction and the extension in the future of the forecast. This study evaluates the impact of the size of the reading window and of the prediction window on the performances of models trained to forecast failures in three datasets of (1) an industrial wrapping machine working in discrete sessions, (2) an industrial blood refrigerator working continuously, and (3) a nitrogen generator working continuously. A binary classification task assigns the positive label to the prediction window based on the probability of a failure to occur in such an interval. Six algorithms (logistic regression, random forest, support vector machine, LSTM, ConvLSTM, and Transformers) are compared on multivariate time series. The dimension of the prediction windows plays a crucial role and the results highlight the effectiveness of DL approaches in classifying data with diverse time-dependent patterns preceding a failure and the effectiveness of ML approaches in classifying similar and repetitive patterns preceding a failure. Full article
(This article belongs to the Special Issue Machinery Condition Monitoring and Intelligent Fault Diagnosis)
Show Figures

Figure 1

29 pages, 2777 KiB  
Article
Research on Active Safety Situation of Road Passenger Transportation Enterprises: Evaluation, Prediction, and Analysis
by Lili Zheng, Shiyu Cao, Tongqiang Ding, Jian Tian and Jinghang Sun
Entropy 2024, 26(6), 434; https://doi.org/10.3390/e26060434 - 21 May 2024
Viewed by 471
Abstract
The road passenger transportation enterprise is a complex system, requiring a clear understanding of their active safety situation (ASS), trends, and influencing factors. This facilitates transportation authorities to promptly receive signals and take effective measures. Through exploratory factor analysis and confirmatory factor analysis, [...] Read more.
The road passenger transportation enterprise is a complex system, requiring a clear understanding of their active safety situation (ASS), trends, and influencing factors. This facilitates transportation authorities to promptly receive signals and take effective measures. Through exploratory factor analysis and confirmatory factor analysis, we delved into potential factors for evaluating ASS and extracted an ASS index. To predict obtaining a higher ASS information rate, we compared multiple time series models, including GRU (gated recurrent unit), LSTM (long short-term memory), ARIMA, Prophet, Conv_LSTM, and TCN (temporal convolutional network). This paper proposed the WDA-DBN (water drop algorithm-Deep Belief Network) model and employed DEEPSHAP to identify factors with higher ASS information content. TCN and GRU performed well in the prediction. Compared to the other models, WDA-DBN exhibited the best performance in terms of MSE and MAE. Overall, deep learning models outperform econometric models in terms of information processing. The total time spent processing alarms positively influences ASS, while variables such as fatigue driving occurrences, abnormal driving occurrences, and nighttime driving alarm occurrences have a negative impact on ASS. Full article
(This article belongs to the Special Issue Recent Advances in Statistical Inference for High Dimensional Data)
Show Figures

Figure 1

15 pages, 6500 KiB  
Article
Enhancing Oil–Water Flow Prediction in Heterogeneous Porous Media Using Machine Learning
by Gaocheng Feng, Kai Zhang, Huan Wan, Weiying Yao, Yuande Zuo, Jingqi Lin, Piyang Liu, Liming Zhang, Yongfei Yang, Jun Yao, Ang Li and Chen Liu
Water 2024, 16(10), 1411; https://doi.org/10.3390/w16101411 - 16 May 2024
Viewed by 762
Abstract
The rapid and accurate forecasting of two-phase flow in porous media is a critical challenge in oil field development, exerting a substantial impact on optimization and decision-making processes. Although the Convolutional Long Short-Term Memory (ConvLSTM) network effectively captures spatiotemporal dynamics, its generalization in [...] Read more.
The rapid and accurate forecasting of two-phase flow in porous media is a critical challenge in oil field development, exerting a substantial impact on optimization and decision-making processes. Although the Convolutional Long Short-Term Memory (ConvLSTM) network effectively captures spatiotemporal dynamics, its generalization in predicting complex engineering problems remains limited. Similarly, although the Fourier Neural Operator (FNO) demonstrates adeptness at learning operators for solving partial differential equations (PDEs), it struggles with three-dimensional, long-term prediction. In response to these limitations, we introduce an innovative hybrid model, the Convolutional Long Short-Term Memory-Fourier Neural Operator (CL-FNO), specifically designed for the long-term prediction of three-dimensional two-phase flows. This model integrates a 3D convolutional encoder–decoder structure to extract and generate hierarchical spatial features of the flow fields. It incorporates physical constraints to enhance the model’s forecasts with robustness through the infusion of prior knowledge. Additionally, a temporal function, constructed using gated memory-forgetting mechanisms, augments the model’s capacity to analyze time series data. The efficacy and practicality of the CL-FNO model are validated using a synthetic three-dimensional case study and application to an actual reservoir model. Full article
Show Figures

Figure 1

15 pages, 3558 KiB  
Technical Note
Operational Forecasting of Global Ionospheric TEC Maps 1-, 2-, and 3-Day in Advance by ConvLSTM Model
by Jiayue Yang, Wengeng Huang, Guozhen Xia, Chen Zhou and Yanhong Chen
Remote Sens. 2024, 16(10), 1700; https://doi.org/10.3390/rs16101700 - 10 May 2024
Cited by 1 | Viewed by 649
Abstract
In this paper, we propose a global ionospheric total electron content (TEC) maps (GIM) prediction model based on deep learning methods that is both straightforward and practical, meeting the requirements of various applications. The proposed model utilizes an encoder-decoder structure with a Convolution [...] Read more.
In this paper, we propose a global ionospheric total electron content (TEC) maps (GIM) prediction model based on deep learning methods that is both straightforward and practical, meeting the requirements of various applications. The proposed model utilizes an encoder-decoder structure with a Convolution Long Short-Term Memory (ConvLSTM) network and has a spatial resolution of 5° longitude and 2.5° latitude, with a time resolution of 1 h. We utilized the Center for Orbit Determination in Europe (CODE) GIM dataset for 18 years from 2002 to 2019, without requiring any other external input parameters, to train the ConvLSTM models for forecasting GIM 1, 2, and 3 days in advance. Using the CODE GIM data from 1 January 2020 to 31 December 2023 as the test dataset, the performance evaluation results show that the average root mean square errors (RMSE) for 1, 2 and 3 days of forecasts are 2.81 TECU, 3.16 TECU, and 3.41 TECU, respectively. These results show improved performance compared to the IRI-Plas model and CODE’s 1-day forecast product c1pg, and comparable to CODE’s 2-day forecast c2pg. The model’s predictions get worse as the intensity of the storm increases, and the prediction error of the model increases with the lead time. Full article
Show Figures

Graphical abstract

Back to TopTop