Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,618)

Search Parameters:
Keywords = DFT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5732 KiB  
Article
Highly Efficient Electrospun Silver Decorated Graphene Oxide Nanocomposites on Poly(vinylidene fluoride) (PVDF@GO-Ag) Hybrid Membrane for Reduction of 4-Nitrophenol
by Xiaoben Yang, Zhen He, Lei Jin, Huiyang Chen, Qianglin Li, Ling Wu, Zhenghong Huang and Mingxi Wang
Molecules 2024, 29(16), 3930; https://doi.org/10.3390/molecules29163930 - 20 Aug 2024
Viewed by 186
Abstract
Graphene oxide-silver poly(vinylidene fluoride) membranes (PVDF@GO-Ag) were successfully synthesized by the electrospinning method, which exhibited a high catalytic activity using the hydrogenation of 4-nitrophenol (4-NP) as a model reaction in a batch reaction study. The hybrid membranes doped with 1 wt% GO and [...] Read more.
Graphene oxide-silver poly(vinylidene fluoride) membranes (PVDF@GO-Ag) were successfully synthesized by the electrospinning method, which exhibited a high catalytic activity using the hydrogenation of 4-nitrophenol (4-NP) as a model reaction in a batch reaction study. The hybrid membranes doped with 1 wt% GO and 2 wt% Ag (PVDF-1-2) exhibited the most desired performance for the catalytic reduction of 4-NP. Importantly, PVDF-1-2 exhibited excellent cycling stability in 10 catalytic cycle tests and was highly amenable to separation. This property effectively addresses the significant challenges associated with the practical application of nanocatalysts. Furthermore, density-functional theory (DFT) calculations have demonstrated that the GO-Ag nanocomposites exhibit the strongest adsorption capacity for 4-NP when a specific ratio of GO and Ag is achieved, accompanied by the loading of Ag nanoclusters onto GO. Additionally, the study demonstrated that an increase in temperature significantly accelerated the reaction rate, in line with the van’t Hoff rule. This study provides an effective and environmentally friendly solution for the treatment of 4-NP in wastewater. Full article
Show Figures

Figure 1

19 pages, 9691 KiB  
Article
UAV Tracking via Saliency-Aware and Spatial–Temporal Regularization Correlation Filter Learning
by Liqiang Liu, Tiantian Feng, Yanfang Fu, Lingling Yang, Dongmei Cai and Zijian Cao
Symmetry 2024, 16(8), 1076; https://doi.org/10.3390/sym16081076 - 20 Aug 2024
Viewed by 173
Abstract
Due to their great balance between excellent performance and high efficiency, discriminative correlation filter (DCF) tracking methods for unmanned aerial vehicles (UAVs) have gained much attention. Due to these correlations being capable of being efficiently computed in a Fourier domain by discrete Fourier [...] Read more.
Due to their great balance between excellent performance and high efficiency, discriminative correlation filter (DCF) tracking methods for unmanned aerial vehicles (UAVs) have gained much attention. Due to these correlations being capable of being efficiently computed in a Fourier domain by discrete Fourier transform (DFT), the DFT of an image has symmetry in the Fourier domain. However, DCF tracking methods easily generate unwanted boundary effects where the tracking object suffers from challenging situations, such as deformation, fast motion and occlusion. To tackle the above issue, this work proposes a novel saliency-aware and spatial–temporal regularized correlation filter (SSTCF) model for visual object tracking. First, the introduced spatial–temporal regularization helps build a more robust correlation filter (CF) and improve the temporal continuity and consistency of the model to effectively lower boundary effects and enhance tracking performance. In addition, the relevant objective function can be optimized into three closed-form subproblems which can be addressed by using the alternating direction method of multipliers (ADMM) competently. Furthermore, utilizing a saliency detection method to acquire a saliency-aware weight enables the tracker to adjust to variations in appearance and mitigate disturbances from the surroundings environment. Finally, we conducted numerous experiments based on three different benchmarks, and the results showed that our proposed model had better performance and higher efficiency compared to the most advanced trackers. For example, the distance precision (DP) score was 0.883, and the area under the curve (AUC) score was 0.676 on the OTB2015 dataset. Full article
(This article belongs to the Special Issue Symmetry Applied in Computer Vision, Automation, and Robotics)
Show Figures

Figure 1

13 pages, 2637 KiB  
Article
Tuning Magnetic and Semiconducting Properties of Cr-Doped CaTiO3 Perovskites for Advanced Spintronic Applications
by C. E. Deluque-Toro, E. A. Ariza-Echeverri, D. A. Landínez-Téllez, D. Vergara and J. Roa-Rojas
Appl. Sci. 2024, 14(16), 7326; https://doi.org/10.3390/app14167326 - 20 Aug 2024
Viewed by 214
Abstract
The physical properties of perovskite-type materials are sensitive to their chemical composition and crystallographic structure, which makes them highly versatile for various advanced technological applications. In this theoretical study, density functional theory (DFT) is employed to investigate the electronic properties of the perovskite-like [...] Read more.
The physical properties of perovskite-type materials are sensitive to their chemical composition and crystallographic structure, which makes them highly versatile for various advanced technological applications. In this theoretical study, density functional theory (DFT) is employed to investigate the electronic properties of the perovskite-like material CaTiO3, focusing on the substitution of Ti4+ with the magnetic transition metal Cr4+. The results reveal a systematic increase in the effective magnetic moment and a gradual decrease in the bandgap with increasing Cr4+ content in the CaTi1−xCrxO3 system (x = 0.0, 0.25, 0.5, 0.75, 1.0). The interactions between electronic orbitals associated with Ti-O-Cr inter-octahedral bonds modify the magnetic response of the material, leading to hybridizations between valence and conduction states that alter its semiconductor character. This tunability in electronic and magnetic properties underscores the potential of these materials for applications in spintronics. This study offers novel insights into the design of new magnetic semiconductor materials with tailored functionalities, contributing to the development of next-generation spintronic devices. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

12 pages, 3213 KiB  
Article
Pressure-Induced YbFe2O4-Type to Spinel Structural Change of InGaMgO4
by Takehiro Koike, Hena Das, Kengo Oka, Yoshihiro Kusano, Fernando Cubillas, Francisco Brown Bojorqez, Victor Emmanuel Alvarez-Montano, Shigekazu Ito, Kei Shigematsu, Hayato Togano, Ikuya Yamada, Hiroki Ishibashi, Yoshiki Kubota, Shigeo Mori, Noboru Kimizuka and Masaki Azuma
Solids 2024, 5(3), 422-433; https://doi.org/10.3390/solids5030028 - 19 Aug 2024
Viewed by 294
Abstract
Spinel-type InGaMgO4 with a = 8.56615(3) Å was prepared by treating layered YbFe2O4-type InGaMgO4 at 6 GPa and 1473 K. DFT calculation and Rietveld analysis of synchrotron X-ray powder diffraction data revealed the inverse spinel structure with [...] Read more.
Spinel-type InGaMgO4 with a = 8.56615(3) Å was prepared by treating layered YbFe2O4-type InGaMgO4 at 6 GPa and 1473 K. DFT calculation and Rietveld analysis of synchrotron X-ray powder diffraction data revealed the inverse spinel structure with In3+:Ga3+/Mg2+ = 0.726:0.274 in the tetrahedral site and 0.137:0.863 in the octahedral site. InGaMgO4 spinel is an insulator with an experimental band gap of 2.80 eV, and the attempt at hole doping by post-annealing in a reducing atmosphere to introduce an oxygen defect was unsuccessful. This is the first report of the bulk synthesis of AB2O4 compounds with both YbFe2O4 and spinel polymorphs. Full article
Show Figures

Figure 1

21 pages, 5946 KiB  
Article
Design and Optimization of Molecularly Imprinted Polymer Targeting Epinephrine Molecule: A Theoretical Approach
by Victoria T. Adeleke, Oluwakemi Ebenezer, Madison Lasich, Jack Tuszynski, Scott Robertson and Samuel M. Mugo
Polymers 2024, 16(16), 2341; https://doi.org/10.3390/polym16162341 - 19 Aug 2024
Viewed by 414
Abstract
Molecularly imprinted polymers (MIPs) are a growing highlight in polymer chemistry. They are chemically and thermally stable, may be used in a variety of environments, and fulfill a wide range of applications. Computer-aided studies of MIPs often involve the use of computational techniques [...] Read more.
Molecularly imprinted polymers (MIPs) are a growing highlight in polymer chemistry. They are chemically and thermally stable, may be used in a variety of environments, and fulfill a wide range of applications. Computer-aided studies of MIPs often involve the use of computational techniques to design, analyze, and optimize the production of MIPs. Limited information is available on the computational study of interactions between the epinephrine (EPI) MIP and its target molecule. A rational design for EPI-MIP preparation was performed in this study. First, density functional theory (DFT) and molecular dynamic (MD) simulation were used for the screening of functional monomers suitable for the design of MIPs of EPI in the presence of a crosslinker and a solvent environment. Among the tested functional monomers, acrylic acid (AA) was the most appropriate monomer for EPI-MIP formulation. The trends observed for five out of six DFT functionals assessed confirmed AA as the suitable monomer. The theoretical optimal molar ratio was 1:4 EPI:AA in the presence of ethylene glycol dimethacrylate (EGDMA) and acetonitrile. The effect of temperature was analyzed at this ratio of EPI:AA on mean square displacement, X-ray diffraction, density distribution, specific volume, radius of gyration, and equilibrium energies. The stability observed for all these parameters is much better, ranging from 338 to 353 K. This temperature may determine the processing and operating temperature range of EPI-MIP development using AA as a functional monomer. For cost-effectiveness and to reduce time used to prepare MIPs in the laboratory, these results could serve as a useful template for designing and developing EPI-MIPs. Full article
(This article belongs to the Special Issue Molecularly Imprinted Polymers: Latest Advances and Applications)
Show Figures

Graphical abstract

18 pages, 10803 KiB  
Article
Novel NH4V4O10-Reduced Graphene Oxide Cathodes for Zinc-Ion Batteries: Theoretical Predictions and Experimental Validation
by He Lin, Chenfan Liu and Yu Zhang
Inorganics 2024, 12(8), 225; https://doi.org/10.3390/inorganics12080225 - 17 Aug 2024
Viewed by 464
Abstract
This investigation explores the potential of enhancing aqueous zinc-ion batteries (AZIBs) through the introduction of a novel cathode material, NH4V4O10 (NVO), combined with reduced graphene oxide (rGO). Utilizing Density Functional Theory (DFT), it was hypothesized that the incorporation [...] Read more.
This investigation explores the potential of enhancing aqueous zinc-ion batteries (AZIBs) through the introduction of a novel cathode material, NH4V4O10 (NVO), combined with reduced graphene oxide (rGO). Utilizing Density Functional Theory (DFT), it was hypothesized that the incorporation of rGO would increase the interlayer spacing of NVO and diminish the charge transfer interactions, thus promoting enhanced diffusion of Zn2+ ions. These theoretical predictions were substantiated by experimental data acquired from hydrothermal synthesis, which indicated a marked increase in interlayer spacing. Significantly, the NVO–rGO composite exhibits remarkable cyclic durability, maintaining 95% of its initial specific capacity of 507 mAh g−1 after 600 cycles at a current density of 5 A g−1. The electrochemical performance of NVO–rGO not only surpasses that of pristine NVO but also outperforms the majority of existing vanadium oxide cathode materials reported in the literature. This study underscores the effective integration of theoretical insights and experimental validation, contributing to the advancement of high-performance energy storage technologies. Full article
Show Figures

Graphical abstract

19 pages, 3320 KiB  
Systematic Review
A Systematic Review of Microplastic Contamination in Commercially Important Bony Fish and Its Implications for Health
by Júlia Scarpa de Souza, Júlia Vianna de Pinho, Paloma de Almeida Rodrigues, Anita Corrêa de Melo, Ludmila Rosa Bergsten-Torralba and Carlos Adam Conte-Junior
Environments 2024, 11(8), 174; https://doi.org/10.3390/environments11080174 - 16 Aug 2024
Viewed by 274
Abstract
The increasing production of plastic products has raised concerns about environmental impacts related to microplastic formation, which harms ecosystems and human health. This systematic review aims to present the concentration of microplastics in commercially important bony fish and discuss the impacts on animal [...] Read more.
The increasing production of plastic products has raised concerns about environmental impacts related to microplastic formation, which harms ecosystems and human health. This systematic review aims to present the concentration of microplastics in commercially important bony fish and discuss the impacts on animal health and the possibility of these contaminants reaching the end consumer. The PICO methodology was used, and 517 articles were retrieved from four databases (PubMed, Embase, Web of Science, and Scopus); after selecting articles that complement the research objective, 70 articles were used to compose this review. According to the results, line-shaped microplastics, polypropylene, and polystyrene polymers were the most frequently identified in the articles. Additionally, the effects of microplastics on animal health, including false satiety and physical injuries, as well as risks to human health, such as epithelial inflammation, oxidative stress, and cell contamination, were discussed. Understanding the concentration of microplastics in commercially important bony fish is necessary for protecting human health and maintaining the health of marine ecosystems. It is necessary to adopt legislative measures for proper plastic disposal. Full article
(This article belongs to the Special Issue Plastics Pollution in Aquatic Environments)
Show Figures

Figure 1

16 pages, 9884 KiB  
Article
Enhanced NO2 Gas Sensing Properties Based on Rb-Doped ZnO/In2O3 Heterojunctions at Room Temperature: A Combined DFT and Experimental Study
by Yaning Yang, Jiawen Cui, Zhihua Luo, Zhixin Luo and Yanhui Sun
Sensors 2024, 24(16), 5311; https://doi.org/10.3390/s24165311 - 16 Aug 2024
Viewed by 259
Abstract
In this work, alkali metal Rb-loaded ZnO/In2O3 heterojunctions were synthesized using a combination of hydrothermal and impregnation methods. The morphology and structure of the synthesized samples were characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. [...] Read more.
In this work, alkali metal Rb-loaded ZnO/In2O3 heterojunctions were synthesized using a combination of hydrothermal and impregnation methods. The morphology and structure of the synthesized samples were characterized by X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. The enhancement mechanism of the nitrogen dioxide gas sensing performance of the Rb-loaded ZnO/In2O3 heterojunctions was systematically investigated at room temperature using density-functional theory calculations and experimental validation. The experimental tests showed that the Rb-loaded ZnO/In2O3 sensor achieved an excellent response value of 24.2 for 1 ppm NO2, with response and recovery times of 55 and 21 s, respectively. This result is 20 times higher than that of pure ZnO sensors and two times higher than that of ZnO/In2O3 sensors, indicating that the Rb-loaded ZnO/In2O3 sensor has a more pronounced enhancement in performance for NO2. This study not only revealed the mechanism by which Rb loading affects the electronic structure and gas molecule adsorption behavior on the surface of ZnO/In2O3 heterojunctions but also provides theoretical guidance and technical support for the development of high-performance room-temperature NO2 sensors. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

14 pages, 3239 KiB  
Article
First-Principles Approach to Finite Element Simulation of Flexible Photovoltaics
by Francis Ako Marley, Joseph Asare, Daniel Sekyi-Arthur, Tino Lukas, Augustine Nana Sekyi Appiah, Dennis Charway, Benjamin Agyei-Tuffour, Richard Boadi, Patryk Janasik, Samuel Yeboah, G. Gebreyesus, George Nkrumah-Buandoh, Marcin Adamiak and Henry James Snaith
Energies 2024, 17(16), 4064; https://doi.org/10.3390/en17164064 - 16 Aug 2024
Viewed by 346
Abstract
This study explores the potential of copper-doped nickel oxide (Cu:NiO) as a hole transport layer (HTL) in flexible photovoltaic (PV) devices using a combined first-principles and finite element analysis approach. Density functional theory (DFT) calculations reveal that Cu doping introduces additional states in [...] Read more.
This study explores the potential of copper-doped nickel oxide (Cu:NiO) as a hole transport layer (HTL) in flexible photovoltaic (PV) devices using a combined first-principles and finite element analysis approach. Density functional theory (DFT) calculations reveal that Cu doping introduces additional states in the valence band of NiO, leading to enhanced charge transport. Notably, Cu:NiO exhibits a direct band gap (reduced from 3.04 eV in NiO to 1.65 eV in the stable supercell structure), facilitating the efficient hole transfer from the active layer. Furthermore, the Fermi level shifts towards the valence band in Cu:NiO, promoting hole mobility. This translates to an improved photovoltaic performance, with Cu:NiO-based HTLs achieving ~18% and ~9% power conversion efficiencies (PCEs) in perovskite and poly 3-hexylthiophene: 1-3-methoxycarbonyl propyl-1-phenyl 6,6 C 61 butyric acid methyl ester (P3HT:PCBM) polymer solar cells, respectively. Finally, a finite element analysis demonstrates the potential of these composite HTLs with Poly 3,4-ethylene dioxythiophene)—polystyrene sulfonate (PEDOT:PSS) in flexible electronics design and the optimization of printing processes. Overall, this work highlights Cu:NiO as a promising candidate for high-performance and flexible organic–inorganic photovoltaic cells. Full article
(This article belongs to the Special Issue Photovoltaic Solar Cells and Systems: Fundamentals and Applications)
Show Figures

Figure 1

12 pages, 3269 KiB  
Article
The Adsorption Behavior of Gas Molecules on Mn/N- and Mn-Doped Graphene
by Tingyue Xie, Cuifeng Tian, Ping Wang and Guozheng Zhao
Nanomaterials 2024, 14(16), 1353; https://doi.org/10.3390/nano14161353 - 15 Aug 2024
Viewed by 365
Abstract
By using density functional theory (DFT), the adsorption behavior of gas molecules on defective graphene doped with manganese and nitrogen were investigated. The geometric structure, electronic structure, and magnetic properties of two substrates were calculated and the sensing mechanism was also analyzed. The [...] Read more.
By using density functional theory (DFT), the adsorption behavior of gas molecules on defective graphene doped with manganese and nitrogen were investigated. The geometric structure, electronic structure, and magnetic properties of two substrates were calculated and the sensing mechanism was also analyzed. The results indicate that the MnSV-GP and MnN3-GP have stronger structural stability, in which Mn atoms and their coordination atoms will become the adsorption point for five gas molecules (CH2O, CO, N2O, SO2, and NH3), respectively. Moreover, at room temperature (298 K), the recovery time of the MnSV-GP sensor for N2O gas molecules is approximately 1.1 s. Therefore, it can be concluded that the MnSV-GP matrix as a magnetic gas sensor has a promising potential for detecting N2O. These results also provide a new pathway for the potential application of Mn-doped graphene in the field of gas sensors. Full article
Show Figures

Figure 1

13 pages, 2389 KiB  
Article
An Investigation of Novel Series of 2-Thioxo-1,3-dithiol-carboxamides as Potential Antispasmodic Agents: Design, Synthesis via Coupling Reactions, Density Functional Theory Calculations, and Molecular Docking
by Riham Sghyar, Mouad Lahyaoui, Noura Aflak, Oussama Moussaoui, Alae Chda, Rachid Bencheikh, El Mestafa El Hadrami, Nada Kheira Sebbar, Ashwag S. Alanazi and Mohamed Hefnawy
Molecules 2024, 29(16), 3855; https://doi.org/10.3390/molecules29163855 - 14 Aug 2024
Viewed by 301
Abstract
This study reports the synthesis of 2-thioxo-1,3-dithiol-carboxamides (TDTCAs) under mild conditions at room temperature using HBTU as a coupling agent, which significantly improved amide bond formation. The synthesized compounds were characterized using several analytical techniques, including 1H and 13C [...] Read more.
This study reports the synthesis of 2-thioxo-1,3-dithiol-carboxamides (TDTCAs) under mild conditions at room temperature using HBTU as a coupling agent, which significantly improved amide bond formation. The synthesized compounds were characterized using several analytical techniques, including 1H and 13C NMR spectroscopy, and HRMS, confirming their intended structures and structural integrity. A DFT computational study at the B3LYP/6-31G(d,p) level was conducted on the four synthesized compounds to compare their electronic properties and molecular structures. The results showed that these compounds demonstrated antispasmodic effects on jejunum contractions. Molecular docking revealed that compounds c and d displayed the highest docking scores on potassium and voltage-gated calcium channels and adrenergic receptors. In summary, compounds c and d exhibit antispasmodic effects, potentially blocking alpha-adrenergic receptors and calcium channels, thus providing a scientific basis for their potential use in treating gastrointestinal disorders. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

12 pages, 5631 KiB  
Article
Study on the Gas-Chromic Character of Pd/TiO2 for Fast Room-Temperature CO Detection
by Xinbao Li, Kai Sun, Ying Chen and Ye Yuan
Molecules 2024, 29(16), 3843; https://doi.org/10.3390/molecules29163843 - 13 Aug 2024
Viewed by 342
Abstract
As a widely used support, TiO2 has often been combined with Pd to form highly sensitive gas-chromic materials. Herein, we prepared a series of Pd/TiO2 catalysts with different Pd content (from 0.1 to 5 wt.%) by the impregnation method for their [...] Read more.
As a widely used support, TiO2 has often been combined with Pd to form highly sensitive gas-chromic materials. Herein, we prepared a series of Pd/TiO2 catalysts with different Pd content (from 0.1 to 5 wt.%) by the impregnation method for their utilization in fast room-temperature CO detection. The detection was simply based on visible color change when the Pd/TiO2 was exposed to CO. The sample with 1 wt.% Pd/TiO2 presented an excellent CO gasochromic character, associated with a maximum chromatic aberration value of 90 before and after CO exposure. Systematic catalyst characterizations of XPS, FT-IR, CO-TPD, and N2 adsorption–desorption and density functional theory calculations for the CO adsorption and charge transfer over the Pd and PdO surfaces were further carried out. It was found that the interaction between CO and the Pd surface was strong, associated with a large adsorption energy of −1.99 eV and charge transfer of 0.196 e. The color change was caused by a reduction in Pd2+ to metallic Pd0 over the Pd/TiO2 surface after CO exposure. Full article
Show Figures

Graphical abstract

15 pages, 3288 KiB  
Article
Computational Study of the Kinetics and Mechanisms of Gas-Phase Decomposition of N-Diacetamides Using Density Functional Theory
by Oswaldo Luis Gabidia Torres, Marcos Loroño, Jose Luis Paz Rojas, Cecilio Julio Alberto Garrido Schaeffer, Thais Cleofe Linares Fuentes and Tania Cecilia Cordova Sintjago
Molecules 2024, 29(16), 3833; https://doi.org/10.3390/molecules29163833 - 13 Aug 2024
Viewed by 439
Abstract
In this research work, we examined the decomposition mechanisms of N-substituted diacetamides. We focused on the substituent effect on the nitrogen lone-pair electron delocalization, with electron-withdrawing and electron donor groups. DFT functionals used the following: B1LYP, B3PW91, CAMB3LYP, LC-BLYP, and X3LYP. Dispersion [...] Read more.
In this research work, we examined the decomposition mechanisms of N-substituted diacetamides. We focused on the substituent effect on the nitrogen lone-pair electron delocalization, with electron-withdrawing and electron donor groups. DFT functionals used the following: B1LYP, B3PW91, CAMB3LYP, LC-BLYP, and X3LYP. Dispersion corrections (d3bj) with Becke–Johnson damping were applied when necessary to improve non-covalent interactions in the transition state. Pople basis sets with higher angular moments and def2-TZVP basis sets were also applied and were crucial for obtaining consistent thermodynamic parameters. The proposed mechanism involves a six-membered transition state with the extraction of an α hydrogen. Several conformers of N-diacetamides were used to account for the decrease in entropy in the transition state in the rate-determining state. All calculations, including natural bond orbital (NBO) analyses, were performed using the Gaussian16 computational package and its GaussView 6.0 visualizer, along with VMD and GNUPLOT software. The isosurfaces and IBSIs were calculated using MultiWFN and IGMPlot, respectively. Full article
(This article belongs to the Special Issue Advances in the Theoretical and Computational Chemistry)
Show Figures

Graphical abstract

17 pages, 13401 KiB  
Article
Theoretical Investigations on Free Energy of Binding Cilostazol with Different Cyclodextrins as Complex for Selective PDE3 Inhibition
by Marta Hoelm, Nilkanta Chowdhury, Sima Biswas, Angshuman Bagchi and Magdalena Małecka
Molecules 2024, 29(16), 3824; https://doi.org/10.3390/molecules29163824 - 12 Aug 2024
Viewed by 443
Abstract
Cilostazol is a phosphodiesterase III inhibitor characterized by poor solubility. This limitation can be overcome by using a drug carrier capable of delivering the drug to the target site. Cyclodextrins are essential as drug carriers because of their outstanding complexation abilities and their [...] Read more.
Cilostazol is a phosphodiesterase III inhibitor characterized by poor solubility. This limitation can be overcome by using a drug carrier capable of delivering the drug to the target site. Cyclodextrins are essential as drug carriers because of their outstanding complexation abilities and their capacity to improve drug bioavailability. This study comprises two stages: The first involves verifying different cyclodextrins and their complexation abilities towards cilostazol. This was accomplished using molecular docking simulations (MDS) and density functional theory (DFT). Both techniques indicate that the largest Sulfobutyl Ether-β-Cyclodextrin forms the most stable complex with cilostazol. Additionally, other important parameters of the complex are described, including binding sites, dominant interactions, and thermodynamic parameters such as complexation enthalpy, Gibbs free energy, and Gibbs free energy of solvation. The second stage involves a binding study between cilostazol and Phosphodiesterse3 (PDE3). This study was conducted using molecular docking simulations, and the most important energetic parameters are detailed. This is the first such report, and we believe that the results of our predictions will pave the way for future drug development efforts using cyclodextrin–cilostazol complexes as potential therapeutics. Full article
Show Figures

Graphical abstract

12 pages, 5096 KiB  
Article
Theoretical Analysis of Superior Photodegradation of Methylene Blue by Cerium Oxide/Reduced Graphene Oxide vs. Graphene
by Nguyen Hoang Hao, Phung Thi Lan, Nguyen Ngoc Ha, Le Minh Cam and Nguyen Thi Thu Ha
Molecules 2024, 29(16), 3821; https://doi.org/10.3390/molecules29163821 - 12 Aug 2024
Viewed by 369
Abstract
Density functional theory and a semi-empirical quantum chemical approach were used to evaluate the photocatalytic efficiency of ceria (CeO2) combined with reduced graphene oxide (rGO) and graphene (GP) for degrading methylene blue (MB). Two main aspects were examined: the adsorption ability [...] Read more.
Density functional theory and a semi-empirical quantum chemical approach were used to evaluate the photocatalytic efficiency of ceria (CeO2) combined with reduced graphene oxide (rGO) and graphene (GP) for degrading methylene blue (MB). Two main aspects were examined: the adsorption ability of rGO and GP for MB, and the separation of photogenerated electrons and holes in CeO2/rGO and CeO2/GP. Our results, based on calculations of the adsorption energy, population analysis, bond strength index, and reduced density gradient, show favorable energetics for MB adsorption on both rGO and GP surfaces. The process is driven by weak, non-covalent interactions, with rGO showing better MB adsorption. A detailed analysis involving parameters like fractional occupation density, the centroid distance between molecular orbitals, and the Lewis acid index of the catalysts highlights the effective charge separation in CeO2/rGO compared to CeO2/GP. These findings are crucial for understanding photocatalytic degradation mechanisms of organic dyes and developing efficient photocatalysts. Full article
(This article belongs to the Topic Advances in Computational Materials Sciences)
Show Figures

Graphical abstract

Back to TopTop