Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,004)

Search Parameters:
Keywords = DG

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4612 KiB  
Article
RD-SLAM: Real-Time Dense SLAM Using Gaussian Splatting
by Chaoyang Guo, Chunyan Gao, Yiyang Bai and Xiaoling Lv
Appl. Sci. 2024, 14(17), 7767; https://doi.org/10.3390/app14177767 - 3 Sep 2024
Viewed by 268
Abstract
Simultaneous localization and mapping (SLAM) is fundamental for intelligent mobile units to perform diverse tasks. Recent work has shown that integrating neural rendering and SLAM showed promising results in photorealistic environment reconstruction. However, existing methods estimate pose by minimizing the error between rendered [...] Read more.
Simultaneous localization and mapping (SLAM) is fundamental for intelligent mobile units to perform diverse tasks. Recent work has shown that integrating neural rendering and SLAM showed promising results in photorealistic environment reconstruction. However, existing methods estimate pose by minimizing the error between rendered and input images, which is time-consuming and cannot be run in real-time, deviating from the original intention of SLAM. In this paper, we propose a dense RGB-D SLAM based on 3D Gaussian splatting (3DGS) while employing generalized iterative closest point (G-ICP) for pose estimation. We actively utilize 3D point cloud information to improve the tracking accuracy and operating speed of the system. At the same time, we propose a dual keyframe selection strategy and its corresponding densification method, which can effectively reconstruct new observation scenes and improve the quality of previously constructed maps. In addition, we introduce regularization loss to address the scale explosion of the 3D Gaussians and over-elongate in the camera viewing direction. Experiments on the Replica, TUM-RGBD, and ScanNet datasets show that our method achieves state-of-the-art tracking accuracy and runtime while being competitive in rendering quality. Full article
Show Figures

Figure 1

49 pages, 5903 KiB  
Systematic Review
Techno-Economic Analysis of Hybrid Renewable Energy Systems for Power Interruptions: A Systematic Review
by Bonginkosi A. Thango and Lawrence Obokoh
Eng 2024, 5(3), 2108-2156; https://doi.org/10.3390/eng5030112 - 2 Sep 2024
Viewed by 195
Abstract
The challenge of providing reliable electricity during power interruptions, especially in rural and remote regions, has prompted the exploration of Hybrid Renewable Energy Systems (HRESs). This systematic review employs the PRISMA framework to conduct a comparative analysis of HRES configurations, specifically those integrating [...] Read more.
The challenge of providing reliable electricity during power interruptions, especially in rural and remote regions, has prompted the exploration of Hybrid Renewable Energy Systems (HRESs). This systematic review employs the PRISMA framework to conduct a comparative analysis of HRES configurations, specifically those integrating rooftop solar photovoltaic (PV), diesel generators (DGs), converters, and battery energy storage systems (BESSs). This review assesses the techno-economic performance of these systems in various countries, highlighting the cost efficiency, reliability, and environmental impact compared to traditional single-resource systems. The analysis reveals that HRESs offer significant advantages in managing energy supply during power interruptions, particularly in regions with high solar potential but unreliable grid access. A comparative analysis with other countries demonstrates that while HRES configurations are tailored to local conditions, the integration of solar PV with diesel generators is a consistently effective strategy across different contexts. This review provides essential insights for policymakers and stakeholders, facilitating the optimization of energy solutions tailored to regional needs. Full article
(This article belongs to the Special Issue Green Engineering for Sustainable Development 2024)
Show Figures

Figure 1

15 pages, 1358 KiB  
Article
Effect of Two Different Sperm Selection Methods on Boar Sperm Parameters and In Vitro Fertilisation Outcomes
by Maria Serrano-Albal, Marie Claire Aquilina, Lucas G. Kiazim, Louisa J. Zak, Darren K. Griffin and Peter J. Ellis
Animals 2024, 14(17), 2544; https://doi.org/10.3390/ani14172544 - 1 Sep 2024
Viewed by 394
Abstract
Porcine in vitro embryo production (IVP) protocols have conventionally used density gradient selection (DGS) by centrifugation to prepare sperm samples and achieve successful fertilisation. However, the possible toxicity of the solutions used and the potential damage caused by the centrifugation step may have [...] Read more.
Porcine in vitro embryo production (IVP) protocols have conventionally used density gradient selection (DGS) by centrifugation to prepare sperm samples and achieve successful fertilisation. However, the possible toxicity of the solutions used and the potential damage caused by the centrifugation step may have a negative effect on the quality of the sample. Microfluidic chip-based sperm (MCS) sorting has been proposed as an alternative technique for the selection of high-quality sperm with the purpose of improving reproductive outcomes in IVF. This device does not require centrifugation or any toxic solution to prepare the sample for fertilisation. The sample is not subjected to unnecessary stress, and the process is less operator-dependent. In this study, we compared the sperm parameters of unselected extender-diluted boar semen samples with selected samples using DGS and MCS methods. The results show an expected reduction in sperm concentration after both methods. All the groups were significantly different from one another, with MCS being the group with the lowest concentration. Though the three groups had a similar overall motility, significant differences were found in progressive motility when comparing the unselected group (control, 19.5 ± 1.4%) with DGS and MCS. Progressive motility in DGS was also significantly higher than in MCS (65.2 ± 4.9% and 45.7% ± 5.3, respectively). However, MCS selection resulted in enriched sperm samples with a significantly lower proportion of morphologically abnormal sperm compared to DGS. After fertilisation, no statistical differences were found between the two methods for embryological parameters such as cleavage rates, blastulation rates, and embryo quality. The number of cells in blastocysts derived from MCS was significantly greater than those derived from DGS sperm. Thus, we demonstrate that MCS is at least as good as the standard DGS for most measures. As a more gentle and reproducible approach for sperm selection, however, it could improve consistency and improve IVP outcomes as mediated by a greater proportion of morphologically normal sperm and manifested by a higher cell count in blastocysts. Full article
(This article belongs to the Special Issue Research Advances in Pig Reproduction)
Show Figures

Figure 1

11 pages, 5774 KiB  
Interesting Images
Discrepancies between Coronary Artery Calcium Score and Coronary Artery Disease Severity in Computed Tomography Angiography Studies
by Paweł Gać, Arkadiusz Jaworski, Agnieszka Parfianowicz, Jakub Karwacki, Andrzej Wysocki and Rafał Poręba
Diagnostics 2024, 14(17), 1928; https://doi.org/10.3390/diagnostics14171928 - 1 Sep 2024
Viewed by 273
Abstract
The aim of this paper is to demonstrate the difference in usefulness of the coronary artery calcium score (CACS) and the full assessment of the severity of coronary artery disease in coronary computed tomography angiography (CCTA) studies. The difference between the population risk [...] Read more.
The aim of this paper is to demonstrate the difference in usefulness of the coronary artery calcium score (CACS) and the full assessment of the severity of coronary artery disease in coronary computed tomography angiography (CCTA) studies. The difference between the population risk of coronary artery disease (CAD) assessed by the CACS and the severity of CAD was demonstrated in images from two CCTA studies. The first image is from a patient with a CACS of 0 and significant coronary artery stenosis. In the native phase of CCTA examination, no calcified changes were detected in the topography of the coronary arteries. In the middle section of the left descending artery (LAD), at the level of the second diagonal branch (Dg2), a large non-calcified atherosclerotic plaque was visible. Mid-LAD stenosis was estimated to be approximately 70%. The second image features a patient with a high CACS but no significant coronary artery stenosis. The calcium score of individual coronary arteries calculated using the Agatston method was as follows: left main (LM) 0, LAD 403, left circumflex (LCx) 207.7, right coronary artery (RCA) 12. CACS was 622.7, representing a significant population risk of significant CAD. In the proximal and middle sections of the LAD, numerous calcified and mixed atherosclerotic plaques with positive remodeling were visible, causing stenosis of 25–50%. Similarly, in the proximal and middle sections of the LCx, numerous calcified and mixed atherosclerotic plaques with positive remodeling were visualized, causing stenoses of 25–50%. Calcified atherosclerotic plaques were found in the RCA, causing stenosis <25%. The entire CCTA image met CAD-RADS 2 (coronary artery disease reporting and data system) criteria. In summary, CACS may be applicable in population-based studies to assess the risk of significant CAD. In the evaluation of individual patients, a comprehensive assessment of CAD severity based on the angiographic phase of the CCTA examination should be used. Full article
(This article belongs to the Special Issue Diagnosis and Prognosis of Heart Disease, 2nd Edition)
Show Figures

Figure 1

22 pages, 6571 KiB  
Article
Integrated Optimal Energy Management of Multi-Microgrid Network Considering Energy Performance Index: Global Chance-Constrained Programming Framework
by Mohammad Hemmati, Navid Bayati and Thomas Ebel
Energies 2024, 17(17), 4367; https://doi.org/10.3390/en17174367 - 1 Sep 2024
Viewed by 364
Abstract
Distributed generation (DG) sources play a special role in the operation of active energy networks. The microgrid (MG) is known as a suitable substrate for the development and installation of DGs. However, the future of energy distribution networks will consist of more interconnected [...] Read more.
Distributed generation (DG) sources play a special role in the operation of active energy networks. The microgrid (MG) is known as a suitable substrate for the development and installation of DGs. However, the future of energy distribution networks will consist of more interconnected and complex MGs, called multi-microgrid (MMG) networks. Therefore, energy management in such an energy system is a major challenge for distribution network operators. This paper presents a new energy management method for the MMG network in the presence of battery storage, renewable sources, and demand response (DR) programs. To show the performance of each connected MG’s inefficient utilization of its available generation capacity, an index called unused power capacity (UPC) is defined, which indicates the availability and individual performance of each MG. The uncertainties associated with load and the power output of wind and solar sources are handled by employing the chance-constrained programming (CCP) optimization framework in the MMG energy management model. The proposed CCP ensures the safe operation of the system at the desired confidence level by involving various uncertainties in the problem while optimizing operating costs under Mixed-Integer Linear Programming (MILP). The proposed energy management model is assessed on a sample network concerning DC power flow limitations. The procured power of each MG and power exchanges at the distribution network level are investigated and discussed. Full article
(This article belongs to the Special Issue Novel Energy Management Approaches in Microgrid Systems)
Show Figures

Figure 1

26 pages, 4646 KiB  
Article
Optimal Scheduling of the Active Distribution Network with Microgrids Considering Multi-Timescale Source-Load Forecasting
by Jiangang Lu, Hongwei Du, Ruifeng Zhao, Haobin Li, Yonggui Tan and Wenxin Guo
Electronics 2024, 13(17), 3455; https://doi.org/10.3390/electronics13173455 - 30 Aug 2024
Viewed by 308
Abstract
Integrating distributed generations (DGs) into distribution networks poses a challenge for active distribution networks (ADNs) when managing distributed resources for optimal scheduling. To address this issue, this paper proposes a day-ahead and intra-day scheduling approach based on a multi-microgrid system. It starts with [...] Read more.
Integrating distributed generations (DGs) into distribution networks poses a challenge for active distribution networks (ADNs) when managing distributed resources for optimal scheduling. To address this issue, this paper proposes a day-ahead and intra-day scheduling approach based on a multi-microgrid system. It starts with a CNN-LSTM-based generation and load forecasting model to address the impact of generation and load uncertainties on the power grid scheduling. Then, an optimal day-ahead and intra-day scheduling framework for ADN and microgrids is introduced using predicted generation and load information. The day-ahead scheduling is responsible for optimizing the power interactions between ADN and the connected microgrids, while intra-day scheduling focuses on minimizing the operational costs of microgrids. The effectiveness of the proposed scheduling strategy is verified via case studies performed on a modified IEEE 33-node ADN. The results show that the network loss of ADN and the operation costs of microgrids are reduced by 17.31% and 32.81% after the microgrid is integrated into the ADN. The peak-valley difference in microgrids decreased by 13.12%. The simulation shows a significant reduction in operational costs and load fluctuations after implementing the proposed day-ahead and intra-day scheduling strategy. The seamless coordination between the day-ahead scheduling and intra-day scheduling allows for the precise adjustment of transfer power, alleviating peak load demand and minimizing network losses in the ADN system. Full article
(This article belongs to the Section Electrical and Autonomous Vehicles)
Show Figures

Figure 1

20 pages, 5089 KiB  
Article
Herbal Formula Extract Ameliorates Anxiety and Cognitive Impairment via Regulation of the Reelin/Dab-1 Pathway in a Murine Model of Post-Traumatic Stress Disorder
by Hee Ra Park, Mudan Cai and Eun Jin Yang
Pharmaceutics 2024, 16(9), 1150; https://doi.org/10.3390/pharmaceutics16091150 - 30 Aug 2024
Viewed by 264
Abstract
We investigated the effects of epigenetic modifications on post-traumatic stress disorder (PTSD) using a novel combination of herbal medicines from Panax ginseng, Astragalus membranaceus, Atractylodes macrocephala, and Glycyrrhiza uralensis. The herbal formula extract (HFE) (250 mg/kg) was administered orally [...] Read more.
We investigated the effects of epigenetic modifications on post-traumatic stress disorder (PTSD) using a novel combination of herbal medicines from Panax ginseng, Astragalus membranaceus, Atractylodes macrocephala, and Glycyrrhiza uralensis. The herbal formula extract (HFE) (250 mg/kg) was administered orally once daily for 14 days to determine its effects on PTSD in mice by combining prolonged stress and foot shock. The open field and Y-maze tests determined the effect of HFE on PTSD-induced anxiety and cognition. Hippocampal neuronal plastic changes and molecular mechanism were verified. Treatment with HFE decreased anxiety-like behavior and enhanced cognition. Moreover, it reduced the number of PTSD-related hilar ectopic granule cells in the dentate gyrus (DG). PTSD mice showed reduced neuronal plasticity of doublecortin+ cells in the DG, which was restored by HFE treatment. HFE reversed PTSD-induced inhibition of the Reelin/Dab1 pathway, a critical signaling cascade involved in brain development, and regulated Reelin methylation. Furthermore, DNA methylation, methyl-CpG binding protein 2, and DNA methyltransferase 1, which were elevated in the hippocampus of PTSD mice, were restored following HFE treatment. HFE increased the expression of synaptic plasticity-related factors in the hippocampus of PTSD mice. Our findings suggest that HFE can facilitate PTSD treatment by alleviating behavioral abnormalities through the restoration of hippocampal dysfunction via regulation of the Reelin/Dab-1 pathway and DNA methylation in the hippocampus. Full article
(This article belongs to the Special Issue Recent Advances in Natural Product Drugs, 2nd Edition)
Show Figures

Figure 1

20 pages, 6395 KiB  
Article
A Dispatch Strategy for the Analysis of the Technical, Economic, and Environmental Performance of a Hybrid Renewable Energy System
by Mehmet Ali Köprü, Dursun Öztürk and Burak Yıldırım
Sustainability 2024, 16(17), 7490; https://doi.org/10.3390/su16177490 - 29 Aug 2024
Viewed by 391
Abstract
The use of renewable energy sources (RESs) is increasing every day to meet increasing energy demands and reduce dependence on fossil fuels. When designing hybrid renewable energy systems (HRESs), it is necessary to examine their technical, economic, and environmental feasibility. In this study, [...] Read more.
The use of renewable energy sources (RESs) is increasing every day to meet increasing energy demands and reduce dependence on fossil fuels. When designing hybrid renewable energy systems (HRESs), it is necessary to examine their technical, economic, and environmental feasibility. In this study, a new strategy is proposed using the HOMER Matlab Link (ML) connection for an HRES model consisting of a photovoltaic (PV) system, a wind turbine (WT), a biogas generator (BGG), and a battery storage system (BSS) designed to meet the electrical energy needs of Doğanevler village located in the rural area of Bingöl province. The data obtained as a result of the proposed strategy (PS) are compared with HOMER’s loop charging (CC) and load following (LF) optimization results. According to the PS, the optimum capacity values for the HRES components are 10 kW for WT, 10 kW for PV, 8 kW for BGG, 12 kWh for BSS, and 12 kW for the converter. According to the optimum design, 16,205 kWh of the annual energy produced was generated by PV systems, 22,927 kWh by WTs, and 22,817 kWh by BGGs. This strategy’s NPC and LCOE (Levelized Cost of Energy) values are calculated as USD 130,673.91 and USD 0.207/kWh, respectively. For the CC dispatch strategy, the NPC and LCOE values are calculated as USD 141,892.28 and USD 0.240/kWh, while for the LF dispatch strategy, these values are USD 152,456.89 and USD 0.257/kWh. The CO2 emission value for the system using a BGG was calculated as 480 kg/year, while for the system using a DG, this value increased approximately 57 times and was calculated to be 27,709 kg/year. The results show that the PS is more economical than the other two strategies. The PS provides energy security, reduces costs, and increases environmental sustainability. Finally, a sensitivity analysis was conducted based on the availability of renewable resources, fuel cost, and inflation parameters, and the results were analyzed. Full article
Show Figures

Figure 1

23 pages, 880 KiB  
Article
Optimal Reconfiguration of Bipolar DC Networks Using Differential Evolution
by Wesley Peres and Raphael Paulo Braga Poubel
Energies 2024, 17(17), 4316; https://doi.org/10.3390/en17174316 - 28 Aug 2024
Viewed by 294
Abstract
The search for more efficient power grids has led to the concept of microgrids, based on the integration of new-generation technologies and energy storage systems. These devices inherently operate in DC, making DC microgrids a potential solution for improving power system operation. In [...] Read more.
The search for more efficient power grids has led to the concept of microgrids, based on the integration of new-generation technologies and energy storage systems. These devices inherently operate in DC, making DC microgrids a potential solution for improving power system operation. In particular, bipolar DC microgrids offer more flexibility due to their two voltage levels. However, more complex tools, such as optimal power flow (OPF) analysis, are required to analyze these systems. In line with these requirements, this paper proposes an OPF for bipolar DC microgrid reconfiguration aimed at minimizing power losses, considering dispersed generation (DG) and asymmetrical loads. This is a mixed-integer nonlinear optimization problem in which integer variables are associated with the switch statuses, and continuous variables are associated with the nodal voltages in each pole. The problem is formulated based on current injections and is solved by a hybridization of the differential evolution algorithm (to handle the integer variables) and the interior point method-based OPF (to minimize power losses). The results show a reduction in power losses of approximately 48.22% (33-bus microgrid without DG), 2.87% (33-bus microgrid with DG), 50.90% (69-bus microgrid without DG), and 50.50% (69-bus microgrid with DG) compared to the base case. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

16 pages, 11472 KiB  
Article
Microcystin-LR Regulates Interaction between Tumor Cells and Macrophages via the IRE1α/XBP1 Signaling Pathway to Promote the Progression of Colorectal Cancer
by Xiaochang Wang, Yuechi Song, Xiaohui Lu, Hengshuo Zhang and Ting Wang
Cells 2024, 13(17), 1439; https://doi.org/10.3390/cells13171439 - 27 Aug 2024
Viewed by 362
Abstract
Microcystin-LR (MC-LR), a cyanobacterial toxin, is a potent carcinogen implicated in colorectal cancer (CRC) progression. However, its impact on the tumor microenvironment (TME) during CRC development remains poorly understood. This study investigates the interaction between tumor cells and macrophages mediated by MC-LR within [...] Read more.
Microcystin-LR (MC-LR), a cyanobacterial toxin, is a potent carcinogen implicated in colorectal cancer (CRC) progression. However, its impact on the tumor microenvironment (TME) during CRC development remains poorly understood. This study investigates the interaction between tumor cells and macrophages mediated by MC-LR within the TME and its influence on CRC progression. CRC mice exposed to MC-LR demonstrated a significant transformation from adenoma to adenocarcinoma. The infiltration of macrophages increased, and the IRE1α/XBP1 pathway was activated in CRC cells after MC-LR exposure, influencing macrophage M2 polarization under co-culture conditions. Additionally, hexokinase 2 (HK2), a downstream target of the IRE1α/XBP1 pathway, was identified, regulating glycolysis and lactate production. The MC-LR-induced IRE1α/XBP1/HK2 axis enhanced lactate production in CRC cells, promoting M2 macrophage polarization. Furthermore, co-culturing MC-LR-exposed CRC cells with macrophages, along with the IRE1α/XBP1 pathway inhibitor 4μ8C and the hexokinase inhibitor 2-DG, suppressed M2 macrophage-induced CRC cell migration, clonogenicity, and M2 macrophage polarization. This study elucidates the mechanism by which MC-LR-mediated interactions through the IRE1α/XBP1 pathway promote CRC progression, highlighting potential therapeutic targets. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Graphical abstract

20 pages, 4050 KiB  
Article
Pleurocinus ostreatus Polysaccharide Alleviates Cyclophosphamide-Induced Immunosuppression through the Gut Microbiome, Metabolome, and JAK/STAT1 Signaling Pathway
by Daiyao Liu, Abdul Mueed, He Ma, Tianci Wang, Ling Su and Qi Wang
Foods 2024, 13(17), 2679; https://doi.org/10.3390/foods13172679 - 25 Aug 2024
Viewed by 461
Abstract
This study investigated the structure of Pleurocinus ostreatus polysaccharide (POP-1) and its effect on immunocompromised mice induced by cyclophosphamide (CY). Novel POP-1 was α- and β-glucopyranose, its molecular weight was 4.78 × 104 Da, it was mainly composed of glucose (88.9%), and it [...] Read more.
This study investigated the structure of Pleurocinus ostreatus polysaccharide (POP-1) and its effect on immunocompromised mice induced by cyclophosphamide (CY). Novel POP-1 was α- and β-glucopyranose, its molecular weight was 4.78 × 104 Da, it was mainly composed of glucose (88.9%), and it also contained galactose (2.97%), mannose (5.02%), fucose (0.3%), arabinose (0.21%), ribose (0.04%), galactose acid (0.17%), and glucose acid (1.45%). After POP-1 was administered to immunosuppressed mice, results showed that POP-1 increased the body weight, spleen, and thymus index and enhanced T lymphocyte proliferation in mice. POP-1 up-regulated the expression of CD3+, CD4+, and CD8+ lymphocytes and the ratio of CD4+/CD8+ in the mouse spleen to increase immunoglobulin (IgM, IgG, and IgA) and secrete cytokines (IL-2, IL-6, TNF-α, and IFN-γ) through activation of the JAK/STAT1 signaling pathway. Moreover, POP-1 remarkably reversed the gut-microbiota dysbiosis in immunosuppressed mice by increasing the abundance of Muribaculaceae, Lactobacillaceae, Blautia, and Ligilactobacillus and altered the fecal metabolites by increasing hexahomomethionine, DG(8:0/20:4(5Z, 8Z, 11Z, 14Z)-OH(20)/0:0, 2-((3-aminopyridin-2-yl)methylene)hydrazinecarbothioamide, Ginkgoic acid, and carboxy-ethyl-hydroxychroman, which is closely related to the immunity function. This study indicates that P. ostreatus polysaccharide effectively restores immunosuppressive activity and can be a functional ingredient in food and pharmaceutical products. Full article
Show Figures

Figure 1

16 pages, 12812 KiB  
Article
Design of a Compact Multiband Monopole Antenna with MIMO Mutual Coupling Reduction
by Chang-Keng Lin, Ding-Bing Lin, Han-Chang Lin and Chang-Ching Lin
Sensors 2024, 24(17), 5495; https://doi.org/10.3390/s24175495 - 24 Aug 2024
Viewed by 501
Abstract
In this article, the authors present the design of a compact multiband monopole antenna measuring 30 × 10 × 1.6 mm3, which is aimed at optimizing performance across various communication bands, with a particular focus on Wi-Fi and sub-6G bands. These [...] Read more.
In this article, the authors present the design of a compact multiband monopole antenna measuring 30 × 10 × 1.6 mm3, which is aimed at optimizing performance across various communication bands, with a particular focus on Wi-Fi and sub-6G bands. These bands include the 2.4 GHz band, the 3.5 GHz band, and the 5–6 GHz band, ensuring versatility in practical applications. Another important point is that this paper demonstrates effective methods for reducing mutual coupling through two meander slits on the common ground, resembling a defected ground structure (DGS) between two antenna elements. This approach achieves mutual coupling suppression from −6.5 dB and −9 dB to −26 dB and −13 dB at 2.46 GHz and 3.47 GHz, respectively. Simulated and measured results are in good agreement, demonstrating significant improvements in isolation and overall multiple-input multiple-output (MIMO) antenna system performance. This research proposes a compact multiband monopole antenna and demonstrates a method to suppress coupling in multiband antennas, making them suitable for internet of things (IoT) sensor devices and Wi-Fi infrastructure systems. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

21 pages, 793 KiB  
Article
A Path-Conservative ADER Discontinuous Galerkin Method for Non-Conservative Hyperbolic Systems: Applications to Shallow Water Equations
by Xiaoxu Zhao, Baining Wang, Gang Li and Shouguo Qian
Mathematics 2024, 12(16), 2601; https://doi.org/10.3390/math12162601 - 22 Aug 2024
Viewed by 315
Abstract
In this article, we propose a new path-conservative discontinuous Galerkin (DG) method to solve non-conservative hyperbolic partial differential equations (PDEs). In particular, the method here applies the one-stage ADER (Arbitrary DERivatives in space and time) approach to fulfill the temporal discretization. In addition, [...] Read more.
In this article, we propose a new path-conservative discontinuous Galerkin (DG) method to solve non-conservative hyperbolic partial differential equations (PDEs). In particular, the method here applies the one-stage ADER (Arbitrary DERivatives in space and time) approach to fulfill the temporal discretization. In addition, this method uses the differential transformation (DT) procedure rather than the traditional Cauchy–Kowalewski (CK) procedure to achieve the local temporal evolution. Compared with the classical ADER methods, the current method is free of solving generalized Riemann problems at inter-cells. In comparison with the Runge–Kutta DG (RKDG) methods, the proposed method needs less computer storage, thanks to the absence of intermediate stages. In brief, this current method is one-step, one-stage, and fully-discrete. Moreover, this method can easily obtain arbitrary high-order accuracy both in space and in time. Numerical results for one- and two-dimensional shallow water equations (SWEs) show that the method enjoys high-order accuracy and keeps good resolution for discontinuous solutions. Full article
Show Figures

Figure 1

8 pages, 462 KiB  
Review
Bacterial Porins and Their Procoagulant Role: Implication in the Pathophysiology of Several Thrombotic Complications during Sepsis
by Carmine Siniscalchi, Alessandro Perrella, Ugo Trama, Francesca Futura Bernardi, Egidio Imbalzano, Giuseppe Camporese, Vincenzo Russo, Olga Scudiero, Tiziana Meschi and Pierpaolo Di Micco
Toxins 2024, 16(8), 368; https://doi.org/10.3390/toxins16080368 - 20 Aug 2024
Viewed by 505
Abstract
The association between sepsis and thrombotic complications is still not well known. Different mechanisms have been shown to be involved in the sepsis-induced prothrombotic state, but clinical scenarios may differ. In this review, we have summarized the role that bacterial products such as [...] Read more.
The association between sepsis and thrombotic complications is still not well known. Different mechanisms have been shown to be involved in the sepsis-induced prothrombotic state, but clinical scenarios may differ. In this review, we have summarized the role that bacterial products such as porins and toxins can have in the induction of the prothrombotic state during sepsis and the interaction that they can have with each other. Furthermore, the above-mentioned mechanisms might be involved in the pattern of the clinical presentation of thrombotic events during bacterial sepsis, which would secondarily explain the association between sepsis and venous thromboembolism, the association between sepsis and disseminated intravascular coagulation, and the association between sepsis and microangiopathic venous thromboembolism. Full article
Show Figures

Figure 1

16 pages, 17053 KiB  
Article
Polygonatum sibiricum Polysaccharides Alleviate Depressive-like Symptoms in Chronic Restraint Stress-Induced Mice via Microglial Regulation in Prefrontal Cortex
by Zhong-Yu Yuan, Xuan Zhang, Zong-Zhong Yu, Xin-Yu Wang, Zi-Heng Zeng, Meng-Xuan Wei, Meng-Ting Qiu, Jun Wang, Jie Cheng and Li-Tao Yi
Polymers 2024, 16(16), 2358; https://doi.org/10.3390/polym16162358 - 20 Aug 2024
Viewed by 342
Abstract
Microglia respond to stressors by secreting cytokines or growth factors, playing a crucial role in maintaining brain homeostasis. While the antidepressant-like effects of Polygonatum sibiricum polysaccharides (PSPs) have been observed in mice, their potential effectiveness involving microglial regulation remains unknown. This study investigates [...] Read more.
Microglia respond to stressors by secreting cytokines or growth factors, playing a crucial role in maintaining brain homeostasis. While the antidepressant-like effects of Polygonatum sibiricum polysaccharides (PSPs) have been observed in mice, their potential effectiveness involving microglial regulation remains unknown. This study investigates the antidepressant-like mechanism of PSP by regulating microglial phenotype and signaling pathways in the prefrontal cortex of chronic restraint stress (CRS)-induced mice. PSP was extracted, purified, characterized, and orally administered to CRS mice. High-performance gel permeation chromatography (HPGPC) revealed that PSP has a molecular weight of 5.6 kDa. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that PSP exhibited a layered structure with densely packed, irregular surfaces. PSP treatment significantly increased sucrose preference (low: 71%, p < 0.01; medium: 69%, p < 0.05; high: 75%, p < 0.001 vs. CRS: 58%) and reduced immobility time (low: 74 s, p < 0.01; medium: 68 s, p < 0.01; high: 79 s, p < 0.05 vs. CRS: 129 s), indicating the alleviation of depressive-like behaviors. PSP inhibited microglial activation (PSP, 131/mm2 vs. CRS, 173/mm2, p = 0.057), reversing CRS-induced microglial hypertrophy and hyper-ramification. Furthermore, PSP inactivated microglial activation by inhibiting NLRP3/ASC/caspase-1/IL-1β signaling pathways, increasing BDNF synthesis and activating brain-derived neurotrophic factor (BDNF)-mediated neurogenesis (PSP, 80/per DG vs. CRS, 49/per DG, p < 0.01). In conclusion, PSP exerts antidepressant-like effects through the regulation of microglial activity and neuroinflammatory pathways, indicating it as a potential natural compound for depression treatment. Full article
(This article belongs to the Special Issue Biopolymer-Based Materials in Medical Applications)
Show Figures

Figure 1

Back to TopTop