Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (278)

Search Parameters:
Keywords = DInSAR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9715 KiB  
Article
Potential and Limitations of the New European Ground Motion Service in Landslides at a Local Scale
by José Cuervas-Mons, María José Domínguez-Cuesta and Montserrat Jiménez-Sánchez
Appl. Sci. 2024, 14(17), 7796; https://doi.org/10.3390/app14177796 - 3 Sep 2024
Viewed by 268
Abstract
Mass movements represent one of the most significant geohazards worldwide. The aim of this research is to highlight the potential and limitations of the European Ground Motion Service (EGMS) in detecting and monitoring mass movements at a local scale, especially in cases where [...] Read more.
Mass movements represent one of the most significant geohazards worldwide. The aim of this research is to highlight the potential and limitations of the European Ground Motion Service (EGMS) in detecting and monitoring mass movements at a local scale, especially in cases where data from in situ instrumental devices are unavailable. The study area corresponds to the La Miera landslide, located in Asturias (NW Spain). The multidisciplinary methodology applied involved the following steps: (1) downloading, acquiring, and analyzing Sentinel-1 A-DInSAR datasets (2015–2021) through the EGMS; (2) conducting a detailed geomorphological map and identifying evidence of movement; (3) classifying building damage by means of a damage inventory; (4) compiling and analyzing daily rainfall records with respect to deformation time series. Sentinel-1 A-DInSAR results revealed maximum LOS and East–West velocities of −11.6 and −7.9 mm/yr related to the landslide activity. Geomorphological mapping allowed for the updating of the landslide boundaries and its characterization as an active, complex movement. Registered building damage, which ranged from moderate to serious, was correlated with LOS and East–West velocities. The displacement recorded by the EGMS closely corresponds with rainfall periods, while periods of reduced rainfall coincide with the stabilization and recovery phases of displacement. This emphasizes a noteworthy quantitative correlation between rainfall events and EGMS data, evident both spatially and temporally. This work highlights that areas in which the EGMS data indicate deformation but lack in situ instrumental records, geomorphological techniques, and building damage surveys can provide spatial validation of the EGMS displacement, while rainfall records can provide temporal validation. Full article
Show Figures

Figure 1

25 pages, 16436 KiB  
Article
The Spatiotemporal Surface Velocity Variations and Analysis of the Amery Ice Shelf from 2000 to 2022, East Antarctica
by Yuanyuan Ma, Zemin Wang, Baojun Zhang, Jiachun An, Hong Geng and Fei Li
Remote Sens. 2024, 16(17), 3255; https://doi.org/10.3390/rs16173255 - 2 Sep 2024
Viewed by 302
Abstract
The surface velocity of the Amery Ice Shelf (AIS) is vital to assessing its stability and mass balance. Previous studies have shown that the AIS basin has a stable multi-year average surface velocity. However, spatiotemporal variations in the surface velocity of the AIS [...] Read more.
The surface velocity of the Amery Ice Shelf (AIS) is vital to assessing its stability and mass balance. Previous studies have shown that the AIS basin has a stable multi-year average surface velocity. However, spatiotemporal variations in the surface velocity of the AIS and the underlying physical mechanism remain poorly understood. This study combined offset tracking and DInSAR methods to extract the monthly surface velocity of the AIS and obtained the inter-annual surface velocity from the ITS_LIVE product. An uneven spatial distribution in inter-annual variation in the surface velocity was observed between 2000 and 2022, although the magnitude of variation was small at less than 20.5 m/yr. The increase and decrease in surface velocity on the eastern and western-central sides of the AIS, respectively, could be attributed to the change in the thickness of the AIS. There was clear seasonal variation in monthly average surface velocity at the eastern side of the AIS between 2017 and 2021, which could be attributed to variations in the area and thickness of fast-ice and also to variations in ocean temperature. This study suggested that changes in fast-ice and ocean temperature are the main factors driving spatiotemporal variation in the surface velocity of the AIS. Full article
(This article belongs to the Section Earth Observation for Emergency Management)
Show Figures

Figure 1

23 pages, 19899 KiB  
Article
InSAR-Driven Dynamic Landslide Hazard Mapping in Highly Vegetated Area
by Liangxuan Yan, Qianjin Xiong, Deying Li, Enok Cheon, Xiangjie She and Shuo Yang
Remote Sens. 2024, 16(17), 3229; https://doi.org/10.3390/rs16173229 - 31 Aug 2024
Viewed by 355
Abstract
Landslide hazard mapping is important to urban construction and landslide risk management. Dynamic landslide hazard mapping considers landslide deformation with changes in the environment. It can show more details of the landslide process state. Landslides in highly vegetated areas are difficult to observe [...] Read more.
Landslide hazard mapping is important to urban construction and landslide risk management. Dynamic landslide hazard mapping considers landslide deformation with changes in the environment. It can show more details of the landslide process state. Landslides in highly vegetated areas are difficult to observe directly, which makes landslide hazard mapping much more challenging. The application of multi-InSAR opens new ideas for dynamic landslide hazard mapping. Specifically, landslide susceptibility mapping reflects the spatial probability of landslides. For rainfall-induced landslides, the scale exceedance probability reflects the temporal probability. Based on the coupling of them, dynamic landslide hazard mapping further considers the landslide deformation intensity at different times. Zigui, a highly vegetation-covered area, was taken as the study area. The landslide displacement monitoring effect of different band SAR datasets (ALOS-2, Sentinel-1A) and different interpretation methods (D-InSAR, PS-InSAR, SBAS-InSAR) were studied to explore a combined application method. The deformation interpreted by SBAS-InSAR was taken as the main part, PS-InSAR data were used in towns and villages, and D-InSAR was used for the rest. Based on the preliminary evaluation and the displacement interpreted by fusion InSAR, the dynamic landslide hazard mappings of the study area from 2019 to 2021 were finished. Compared with the preliminary evaluation, the dynamic mapping approach was more focused and accurate in predicting the deformation of landslides. The false positives in very-high-hazard zones were reduced by 97.8%, 60.4%, and 89.3%. Dynamic landslide hazard mapping can summarize the development of and change in landslides very well, especially in highly vegetated areas. Additionally, it can provide trend prediction for landslide early warning and provide a reference for landslide risk management. Full article
(This article belongs to the Special Issue Application of Remote Sensing Approaches in Geohazard Risk)
Show Figures

Figure 1

18 pages, 46447 KiB  
Article
Improved Coherent Processing of Synthetic Aperture Radar Data through Speckle Whitening of Single-Look Complex Images
by Luciano Alparone, Alberto Arienzo and Fabrizio Lombardini
Remote Sens. 2024, 16(16), 2955; https://doi.org/10.3390/rs16162955 - 12 Aug 2024
Viewed by 645
Abstract
In this study, we investigate the usefulness of the spectral whitening procedure, devised by one of the authors as a preprocessing stage of envelope-detected single-look synthetic aperture radar (SAR) images, in application contexts where phase information is relevant. In the first experiment, each [...] Read more.
In this study, we investigate the usefulness of the spectral whitening procedure, devised by one of the authors as a preprocessing stage of envelope-detected single-look synthetic aperture radar (SAR) images, in application contexts where phase information is relevant. In the first experiment, each of the raw datasets of an interferometric pair of COSMO-SkyMed images, representing industrial buildings amidst vegetated areas, was individually (1) synthesized by the SAR processor without Fourier-domain Hamming windowing; (2) synthesized with Hamming windowing, used to improve the focalization of targets, with the drawback of spatially correlating speckle; and (3) processed for the whitening of complex speckle, using the data obtained in (2). The interferograms were produced in the three cases, and interferometric coherence and phase maps were calculated through 3 × 3 boxcar filtering. In (1), coherence is low on vegetation; the presence of high sidelobes in the system’s point-spread function (PSF) causes the spread of areas featuring high backscattering. In (2), point targets and buildings are better defined, thanks to the sidelobe suppression achieved by the frequency windowing, but the background coherence is abnormally increased because of the spatial correlation introduced by the Hamming window. Case (3) is the most favorable because the whitening operation results in low coherence in vegetation and high coherence in buildings, where the effects of windowing are preserved. An analysis of the phase map reveals that (3) is likely to be facilitated also in terms of unwrapping. Results are presented on a TerraSAR-X/TanDEM-X (TSX-TDX) image pair by processing the interferograms of original and whitened data using a non-local filter. The main results are as follows: (1) with autocorrelated speckle, the estimation error of coherence may attain 16% and inversely depends on the heterogeneity of the scene; and (2) the cleanness and accuracy of the phase are increased by the preliminary whitening stage, as witnessed by the number of residues, reduced by 24%. Benefits are also expected not only for differential InSAR (DInSAR) but also for any coherent analysis and processing carried out performed on SLC data. Full article
Show Figures

Figure 1

22 pages, 11811 KiB  
Article
Research on the Application of Dynamic Process Correlation Based on Radar Data in Mine Slope Sliding Early Warning
by Yuejuan Chen, Yang Liu, Yaolong Qi, Pingping Huang, Weixian Tan, Bo Yin, Xiujuan Li, Xianglei Li and Dejun Zhao
Sensors 2024, 24(15), 4976; https://doi.org/10.3390/s24154976 - 31 Jul 2024
Viewed by 552
Abstract
With the gradual expansion of mining scale in open-pit coal mines, slope safety problems are increasingly diversified and complicated. In order to reduce the potential loss caused by slope sliding and reduce the major threat to the safety of life and property of [...] Read more.
With the gradual expansion of mining scale in open-pit coal mines, slope safety problems are increasingly diversified and complicated. In order to reduce the potential loss caused by slope sliding and reduce the major threat to the safety of life and property of residents in the mining area, this study selected two mining areas in Xinjiang as cases and focused on the relationship between phase noise and deformation. The study predicts the specific time point of slope sliding by analyzing the dynamic history correlation tangent angle between the two. Firstly, the time series data of the micro-variation monitoring radar are used to obtain the small deformation of the study area by differential InSAR (D-InSAR), and the phase noise is extracted from the radar echo in the sequence data. Then, the volume of the deformation body is calculated by analyzing the small deformation at each time point, and the standard deviation of the phase noise is calculated accordingly. Finally, the sliding time of the deformation body is predicted by combining the tangent angle of the ratio of the volume of the deformation body to the standard deviation of the phase noise. The results show that the maximum deformation rates of the deformation bodies in the studied mining areas reach 10.1 mm/h and 6.65 mm/h, respectively, and the maximum deformation volumes are 2,619,521.74 mm3 and 2,503,794.206 mm3, respectively. The predicted landslide time is earlier than the actual landslide time, which verifies the effectiveness of the proposed method. This prediction method can effectively identify the upcoming sliding events and the characteristics of the slope, provide more accurate and reliable prediction results for the slope monitoring staff, and significantly improve the efficiency of slope monitoring and early warning. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

25 pages, 10266 KiB  
Article
Random Forest—Based Identification of Factors Influencing Ground Deformation Due to Mining Seismicity
by Karolina Owczarz and Jan Blachowski
Remote Sens. 2024, 16(15), 2742; https://doi.org/10.3390/rs16152742 - 26 Jul 2024
Viewed by 492
Abstract
The goal of this study was to develop a model describing the relationship between the ground-displacement-caused tremors induced by underground mining, and mining and geological factors using the Random Forest Regression machine learning method. The Rudna mine (Poland) was selected as the research [...] Read more.
The goal of this study was to develop a model describing the relationship between the ground-displacement-caused tremors induced by underground mining, and mining and geological factors using the Random Forest Regression machine learning method. The Rudna mine (Poland) was selected as the research area, which is one of the largest deep copper ore mines in the world. The SAR Interferometry methods, Differential Interferometric Synthetic Aperture Radar (DInSAR) and Small Baseline Subset (SBAS), were used in the first case to detect line-of-sight (LOS) displacements, and in the second case to detect cumulative LOS displacements caused by mining tremors. The best-prediction LOS displacement model was characterized by R2 = 0.93 and RMSE = 5 mm, which proved the high effectiveness and a high degree of explanation of the variation of the dependent variable. The identified statistically significant driving variables included duration of exploitation, the area of the exploitation field, energy, goaf area, and the average depth of field exploitation. The results of the research indicate the great potential of the proposed solutions due to the availability of data (found in the resources of each mine), and the effectiveness of the methods used. Full article
(This article belongs to the Special Issue Machine Learning and Remote Sensing for Geohazards)
Show Figures

Figure 1

18 pages, 44177 KiB  
Article
A Goaf-Locating Method Based on the D-InSAR Technique and Stratified Okada Dislocation Model
by Kewei Zhang, Yunjia Wang, Sen Du, Feng Zhao, Teng Wang, Nianbin Zhang, Dawei Zhou and Xinpeng Diao
Remote Sens. 2024, 16(15), 2741; https://doi.org/10.3390/rs16152741 - 26 Jul 2024
Viewed by 397
Abstract
Illegal coal mining is prevalent worldwide, leading to extensive ground subsidence and land collapse. It is crucial to define the location and spatial dimensions of these areas for the efficient prevention of the induced hazards. Conventional methods for goaf locating using the InSAR [...] Read more.
Illegal coal mining is prevalent worldwide, leading to extensive ground subsidence and land collapse. It is crucial to define the location and spatial dimensions of these areas for the efficient prevention of the induced hazards. Conventional methods for goaf locating using the InSAR technique are mostly based on the probability integral model (PIM). However, The PIM requires detailed mining information to preset model parameters and does not account for the layered structure of the coal overburden, making it challenging to detect underground goaves in cases of illegal mining. In response, a novel method based on the InSAR technique and the Stratified Optimal Okada Dislocation Model, named S-ODM, is proposed for locating goaves with basic geological information. Firstly, the S-ODM employs a numerical model to establish a nonlinear function between the goaf parameters and InSAR-derived ground deformation. Then, in order to mitigate the influence of nearby mining activities, the goaf azimuth angle is estimated using the textures and trends of the InSAR-derived deformation time series. Finally, the goaf’s dimensions and location are estimated by the genetic algorithm–particle swarm optimization (GA-PSO). The effectiveness of the proposed method is validated using both simulation and real data, demonstrating average relative errors of 6.29% and 7.37%, respectively. Compared with the PIM and ODM, the proposed S-ODM shows improvements of 19.48% and 52.46% in geometric parameters. Additionally, the errors introduced by GA-PSO and the influence of ground deformation monitoring errors are discussed in this study. Full article
Show Figures

Graphical abstract

23 pages, 46256 KiB  
Article
Advantages of High-Temporal L-Band SAR Observations for Estimating Active Landslide Dynamics: A Case Study of the Kounai Landslide in Sobetsu Town, Hokkaido, Japan
by Seiya Usami, Satoshi Ishimaru and Takeo Tadono
Remote Sens. 2024, 16(15), 2687; https://doi.org/10.3390/rs16152687 - 23 Jul 2024
Viewed by 510
Abstract
Estimating landslide dynamics is vital for the prevention of landslide disasters. Differential interferometric synthetic aperture radar (DInSAR) based on L-band SAR satellites is an effective tool for estimating the dynamics of forested landslides that occur in Japan. High-temporal L-band SAR observations have been [...] Read more.
Estimating landslide dynamics is vital for the prevention of landslide disasters. Differential interferometric synthetic aperture radar (DInSAR) based on L-band SAR satellites is an effective tool for estimating the dynamics of forested landslides that occur in Japan. High-temporal L-band SAR observations have been planned for the future. Thus, it is necessary to further investigate the specific advantages of high-temporal L-band SAR observations for estimating landslide dynamics. In this study, we used DInSAR data with different time windows to identify active landslides in Hokkaido, Japan. This study is the first attempt to demonstrate the advantages of high-temporal L-band SAR observations for estimating active landslide dynamics. We successfully observed the dynamics of two active landslides, Kounai-1 and Kounai-2, using DInSAR over a time window of 14 days. We present the first spatial observation of the dynamics of Kounai-1 and Kounai-2. In addition, we discuss the dynamics of Kounai-1 and Kounai-2 based on interferograms, and our results suggest that both landslides are subunits of the same landslide, called the Kounai landslide. These results indicate that high-temporal L-band SAR observations can mitigate cycle slips and enable the estimation of active landslide dynamics. Full article
(This article belongs to the Special Issue Monitoring Geohazard from Synthetic Aperture Radar Interferometry)
Show Figures

Graphical abstract

18 pages, 14445 KiB  
Article
Ecological and Geological Environment Risk Assessment of Wangwa Mining Area Based on DInSAR Technology
by Guorui Wang, Liya Yang, Peixian Li and Xuesong Wang
Appl. Sci. 2024, 14(14), 6329; https://doi.org/10.3390/app14146329 - 20 Jul 2024
Viewed by 574
Abstract
Mining activities in coal mining areas have exacerbated ecological and geological environmental risks. To explore the impact of mineral resources on the ecological and geological environment risk (EGER) in coal mining areas, we developed a novel ecological and geological risk assessment framework. This [...] Read more.
Mining activities in coal mining areas have exacerbated ecological and geological environmental risks. To explore the impact of mineral resources on the ecological and geological environment risk (EGER) in coal mining areas, we developed a novel ecological and geological risk assessment framework. This framework first quantifies the impact of mining activities on the surface of coal mining areas using remote sensing interpretation and Differential Interferometric Synthetic Aperture Radar (DInSAR) technology. Then, this framework selected six indicators, including subsidence, surface occupation and damage, FVC, RSEI, precipitation, and temperatures. The weights of the evaluation indicators were calculated using a coupled weighting model combining the Analytic Hierarchy Process (AHP) and the Entropy Method (EM). This approach was applied to the Wangwa mining area to assess its ecological and geological risks. The results show that the surface subsidence increase year by year. The EGER in the study area was medium and the change rate of the EGER index in Wangwa mining area from 2017 to 2022 was −0.460 to 0.598. The EGER index increased southwest of the study area but reduced in the pre-investigation area and north of the investigation area. This study can support decision-making to reduce the adverse environmental impact of coal mining activities. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

21 pages, 6400 KiB  
Article
Extraction of Coal Mine Surface Collapse Information and Design of Comprehensive Management Model Based on Multi-Source Remote Sensing—Taking Zhaogu Mining Area as Example
by Jinyan Peng, Shidong Wang and Zichao Wang
Appl. Sci. 2024, 14(14), 6055; https://doi.org/10.3390/app14146055 - 11 Jul 2024
Viewed by 583
Abstract
Large-scale exploitation of underground mineral resources causes surface collapse, reduces land use efficiency, and brings a series of ecological and environmental problems. This is significantly important for the ecological restoration work of mining areas to accurately extract the subsidence range and depth of [...] Read more.
Large-scale exploitation of underground mineral resources causes surface collapse, reduces land use efficiency, and brings a series of ecological and environmental problems. This is significantly important for the ecological restoration work of mining areas to accurately extract the subsidence range and depth of coal mine surface and formulate the regulation model suitable for coal mine subsidence areas. In this research, we used Differential Interferometric Synthetic Aperture Radar (D-InSAR) technology to extract the subsidence range of the Zhaogu Mining Area in Henan Province based on multi-source remote sensing data. We constructed the Spectral-Spatial Residual Network (SSRN) to classify the land use information within the subsidence range. Finally, we constructed a fuzzy comprehensive evaluation model based on the improved G1 method that assesses the extent of land damage in the subsidence area. Additionally, a suitable governance model for the subsidence area in the Zhaogu Mining Area is proposed. The results can provide technical support and data reference for the comprehensive treatment of subsidence in the Zhaogu Mining Area. Full article
(This article belongs to the Special Issue Intelligent Computing and Remote Sensing—2nd Edition)
Show Figures

Figure 1

20 pages, 18944 KiB  
Article
The Detectability of Post-Seismic Ground Displacement Using DInSAR and SBAS in Longwall Coal Mining: A Case Study in the Upper Silesian Coal Basin, Poland
by K. Pawłuszek-Filipiak, N. Wielgocka and Ł. Rudziński
Remote Sens. 2024, 16(14), 2533; https://doi.org/10.3390/rs16142533 - 10 Jul 2024
Viewed by 524
Abstract
The Upper Silesian coal basin (USCB) in Poland faces significant ground deformation issues resulting from mining activities conducted without backfill, which can persist for years. These activities can cause damage to surface structures and phenomena such as induced seismicity. Ground deformations can be [...] Read more.
The Upper Silesian coal basin (USCB) in Poland faces significant ground deformation issues resulting from mining activities conducted without backfill, which can persist for years. These activities can cause damage to surface structures and phenomena such as induced seismicity. Ground deformations can be monitored using differential synthetic aperture radar interferometry (DInSAR). However, various DInSAR approaches have their own advantages and limitations, particularly regarding accuracy and atmospheric filtering. This is especially important for high-frequency displacement signals associated with seismic activity, which can be filtered out. Therefore, this study aims to assess the detectability of mining-induced seismic events using interferometric techniques, focusing on the USCB area. In this experiment, we tested two InSAR approaches: conventional DInSAR without atmospheric filtering and the small baseline subset (SBAS) approach, where the atmospheric phase screen was estimated and removed using high-pass and low-pass filtering. The results indicate that, in most cases, post-seismic ground displacement is not detectable using both methods. This suggests that mining-related seismic events typically do not cause significant post-seismic ground displacement. Out of the 17 selected seismic events, only two were clearly visible in the DInSAR estimated deformation, while for four other events, some displacement signals could neither be definitively confirmed nor negated. Conversely, only one seismic event was clearly detectable in the SBAS displacement time series, with no evidence of induced tremors found for the other events. DInSAR proved to be more effective in capturing displacement signals compared to SBAS. This could be attributed to the small magnitude of the tremors and, consequently, the small size of the seismic sources. Throughout the investigated period, all registered events had magnitudes less than 4.0. This highlights the challenge of identifying any significant influence of low-magnitude tremors on ground deformation, necessitating further investigations. Moreover, SBAS techniques tend to underestimate mining displacement rates, leading to smoothed deformation estimates, which may render post-seismic effects invisible for events with low magnitudes. However, after an in-depth analysis of the 17 seismic events in the USCB, DInSAR was found to be more effective in capturing displacement signals compared to SBAS. This indicates the need for significant caution when applying atmospheric filtering to high-frequency displacement signals. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

23 pages, 50566 KiB  
Article
Integrated Remote Sensing Investigation of Suspected Landslides: A Case Study of the Genie Slope on the Tibetan Plateau, China
by Wenlong Yu, Weile Li, Zhanglei Wu, Huiyan Lu, Zhengxuan Xu, Dong Wang, Xiujun Dong and Pengfei Li
Remote Sens. 2024, 16(13), 2412; https://doi.org/10.3390/rs16132412 - 1 Jul 2024
Cited by 1 | Viewed by 618
Abstract
The current deformation and stable state of slopes with historical shatter signs is a concern for engineering construction. Suspected landslide scarps were discovered at the rear edge of the Genie slope on the Tibetan Plateau during a field investigation. To qualitatively determine the [...] Read more.
The current deformation and stable state of slopes with historical shatter signs is a concern for engineering construction. Suspected landslide scarps were discovered at the rear edge of the Genie slope on the Tibetan Plateau during a field investigation. To qualitatively determine the current status of the surface deformation of this slope, this study used high-resolution optical remote sensing, airborne light detection and ranging (LiDAR), and interferometric synthetic aperture radar (InSAR) technologies for comprehensive analysis. The interpretation of high-resolution optical and airborne LiDAR data revealed that the rear edge of the slope exhibits three levels of scarps. However, no deformation was detected with differential InSAR (D-InSAR) analysis of ALOS-1 radar images from 2007 to 2008 or with Stacking-InSAR and small baseline subset InSAR (SBAS-InSAR) processing of Sentinel-1A radar images from 2017 to 2020. This study verified the credibility of the InSAR results using the standard deviation of the phase residuals, as well as in-borehole displacement monitoring data. A conceptual model of the slope was developed by combining field investigation, borehole coring, and horizontal exploratory tunnel data, and the results indicated that the slope is composed of steep anti-dip layered dolomite limestone and that the scarps at the trailing edges of the slope were caused by historical shallow toppling. Unlike previous remote sensing studies of deformed landslides, this paper argues that remote sensing results with reliable accuracy are also applicable to the study of undeformed slopes and can help make preliminary judgments about the stability of unexplored slopes. The study demonstrates that the long-term consistency of InSAR results in integrated remote sensing can serve as an indicator for assessing slope stability. Full article
(This article belongs to the Topic Landslides and Natural Resources)
Show Figures

Figure 1

22 pages, 33755 KiB  
Article
Uncovering a Seismogenic Fault in Southern Iran through Co-Seismic Deformation of the Mw 6.1 Doublet Earthquake of 14 November 2021
by Peyman Namdarsehat, Wojciech Milczarek, Natalia Bugajska-Jędraszek, Seyed-Hani Motavalli-Anbaran and Matin Khaledzadeh
Remote Sens. 2024, 16(13), 2318; https://doi.org/10.3390/rs16132318 - 25 Jun 2024
Viewed by 1140
Abstract
On 14 November 2021, a doublet earthquake, each event of which had an Mw of 6.1, struck near Fin in the Simply Folded Belt (SFB) in southern Iran. The first quake occurred at 12:07:04 UTC, followed by a second one just a minute [...] Read more.
On 14 November 2021, a doublet earthquake, each event of which had an Mw of 6.1, struck near Fin in the Simply Folded Belt (SFB) in southern Iran. The first quake occurred at 12:07:04 UTC, followed by a second one just a minute and a half later. The SFB is known for its blind thrust faults, typically not associated with surface ruptures. These earthquakes are usually linked to the middle and lower layers of the sedimentary cover. Identifying the faults that trigger earthquakes in the region remains a significant challenge and is subject to high uncertainty. This study aims to identify and determine the fault(s) that may have caused the doublet earthquake. To achieve this goal, we utilized the DInSAR method using Sentinel-1 to detect deformation, followed by finite-fault inversion and magnetic interpretation to determine the location, geometry, and slip distribution of the fault(s). Bayesian probabilistic joint inversion was used to model the earthquake sources and derive the geometric parameters of potential fault planes. The study presents two potential fault solutions—one dipping to the north and the other to the south. Both solutions showed no significant difference in strike and fault location, suggesting a single fault. Based on the results of the seismic inversion, it appears that a north-dipping fault with a strike, dip, and rake of 257°, 74°, and 77°, respectively, is more consistent with the geological setting of the area. The fault plane has a width of roughly 3.6 km, a length of 13.4 km, and a depth of 5.6 km. Our results revealed maximum displacements along the radar line of sight reaching values of up to −360 mm in the ascending orbit, indicating an unknown fault with horizontal displacements at the surface ranging from −144 to 170 mm and maximum vertical displacements between −204 and 415 mm. Aeromagnetic data for Iran were utilized with an average flight-line spacing of 7.5 km. The middle of the data observation period was considered to apply the RTP filter, and the DRTP method was used. We calculated the gradient of the residual anomaly in the N-S direction due to the direction of the existing faults and folds. The gradient map identified the fault and potential extension of the observed anomalies related to a fault with an ENE-WSW strike, which could extend to the ~ E-W. We suggest that earthquakes occur in the sedimentary cover of the SFB where subsurface faulting is involved, with Hormuz salt acting as an important barrier to rupture. The multidisciplinary approach used in this study, including InSAR and magnetic data, underscores the importance of accurate fault characterization. These findings provide valuable insights into the seismic hazard of the area. Full article
(This article belongs to the Special Issue Remote Sensing for Geology and Mapping)
Show Figures

Figure 1

23 pages, 2885 KiB  
Article
Exploring Spatial Patterns of Tropical Peatland Subsidence in Selangor, Malaysia Using the APSIS-DInSAR Technique
by Betsabé de la Barreda-Bautista, Martha J. Ledger, Sofie Sjögersten, David Gee, Andrew Sowter, Beth Cole, Susan E. Page, David J. Large, Chris D. Evans, Kevin J. Tansey, Stephanie Evers and Doreen S. Boyd
Remote Sens. 2024, 16(12), 2249; https://doi.org/10.3390/rs16122249 - 20 Jun 2024
Viewed by 685
Abstract
Tropical peatlands in Southeast Asia have experienced widespread subsidence due to forest clearance and drainage for agriculture, oil palm and pulp wood production, causing concerns about their function as a long-term carbon store. Peatland drainage leads to subsidence (lowering of peatland surface), an [...] Read more.
Tropical peatlands in Southeast Asia have experienced widespread subsidence due to forest clearance and drainage for agriculture, oil palm and pulp wood production, causing concerns about their function as a long-term carbon store. Peatland drainage leads to subsidence (lowering of peatland surface), an indicator of degraded peatlands, while stability/uplift indicates peatland accumulation and ecosystem health. We used the Advanced Pixel System using the Intermittent SBAS (ASPIS-DInSAR) technique with biophysical and geographical data to investigate the impact of peatland drainage and agriculture on spatial patterns of subsidence in Selangor, Malaysia. Results showed pronounced subsidence in areas subjected to drainage for agricultural and oil palm plantations, while stable areas were associated with intact forests. The most powerful predictors of subsidence rates were the distance from the drainage canal or peat boundary; however, other drivers such as soil properties and water table levels were also important. The maximum subsidence rate detected was lower than that documented by ground-based methods. Therefore, whilst the APSIS-DInSAR technique may underestimate absolute subsidence rates, it gives valuable information on the direction of motion and spatial variability of subsidence. The study confirms widespread and severe peatland degradation in Selangor, highlighting the value of DInSAR for identifying priority zones for restoration and emphasising the need for conservation and restoration efforts to preserve Selangor peatlands and prevent further environmental impacts. Full article
(This article belongs to the Section Biogeosciences Remote Sensing)
Show Figures

Graphical abstract

22 pages, 21441 KiB  
Article
Development of a Proof-of-Concept A-DInSAR-Based Monitoring Service for Land Subsidence
by Margherita Righini, Roberta Bonì, Serena Sapio, Ignacio Gatti, Marco Salvadore and Andrea Taramelli
Remote Sens. 2024, 16(11), 1981; https://doi.org/10.3390/rs16111981 - 31 May 2024
Viewed by 762
Abstract
The increasing availability of SAR images and processing results over wide areas determines the need for systematic procedures to extract the information from this dataset and exploit the enhanced quality of the displacement time series. The aim of the study is to propose [...] Read more.
The increasing availability of SAR images and processing results over wide areas determines the need for systematic procedures to extract the information from this dataset and exploit the enhanced quality of the displacement time series. The aim of the study is to propose a new pre-operational workflow of an A-DInSAR-based land subsidence monitoring and interpretation service. The workflow is tested in Turano Lodigiano (Lombardy region, Italy) using COSMO-SkyMed data, processed using the SqueeSAR™ algorithm, and covering the time span from 2016 to 2019. The test site is a representative peri-urban area of the Po plain susceptible to land subsidence. The results give insight about new value-added products and enable non-expert users to exploit the potential of the interferometric results. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

Back to TopTop