Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = ECG signal capture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2569 KiB  
Article
Time–Frequency Transformations for Enhanced Biomedical Signal Classification with Convolutional Neural Networks
by Georgios Lekkas, Eleni Vrochidou and George A. Papakostas
BioMedInformatics 2025, 5(1), 7; https://doi.org/10.3390/biomedinformatics5010007 - 27 Jan 2025
Abstract
Background: Transforming one-dimensional (1D) biomedical signals into two-dimensional (2D) images enables the application of convolutional neural networks (CNNs) for classification tasks. In this study, we investigated the effectiveness of different 1D-to-2D transformation methods to classify electrocardiogram (ECG) and electroencephalogram (EEG) signals. Methods: We [...] Read more.
Background: Transforming one-dimensional (1D) biomedical signals into two-dimensional (2D) images enables the application of convolutional neural networks (CNNs) for classification tasks. In this study, we investigated the effectiveness of different 1D-to-2D transformation methods to classify electrocardiogram (ECG) and electroencephalogram (EEG) signals. Methods: We select five transformation methods: Continuous Wavelet Transform (CWT), Fast Fourier Transform (FFT), Short-Time Fourier Transform (STFT), Signal Reshaping (SR), and Recurrence Plots (RPs). We used the MIT-BIH Arrhythmia Database for ECG signals and the Epilepsy EEG Dataset from the University of Bonn for EEG signals. After converting the signals from 1D to 2D, using the aforementioned methods, we employed two types of 2D CNNs: a minimal CNN and the LeNet-5 model. Our results indicate that RPs, CWT, and STFT are the methods to achieve the highest accuracy across both CNN architectures. Results: These top-performing methods achieved accuracies of 99%, 98%, and 95%, respectively, on the minimal 2D CNN and accuracies of 99%, 99%, and 99%, respectively, on the LeNet-5 model for the ECG signals. For the EEG signals, all three methods achieved accuracies of 100% on the minimal 2D CNN and accuracies of 100%, 99%, and 99% on the LeNet-5 2D CNN model, respectively. Conclusions: This superior performance is most likely related to the methods’ capacity to capture time–frequency information and nonlinear dynamics inherent in time-dependent signals such as ECGs and EEGs. These findings underline the significance of using appropriate transformation methods, suggesting that the incorporation of time–frequency analysis and nonlinear feature extraction in the transformation process improves the effectiveness of CNN-based classification for biological data. Full article
Show Figures

Figure 1

25 pages, 6157 KiB  
Article
Early Driver Fatigue Detection System: A Cost-Effective and Wearable Approach Utilizing Embedded Machine Learning
by Chengyou Lin, Xinying Zhu, Renpeng Wang, Wei Zhou, Na Li and Yu Xie
Vehicles 2025, 7(1), 3; https://doi.org/10.3390/vehicles7010003 - 8 Jan 2025
Viewed by 514
Abstract
Driving fatigue is the cause of many traffic accidents and poses a serious threat to road safety. To address this issue, this paper aims to develop a system for the early detection of driver fatigue. The system leverages heart rate variability (HRV) features [...] Read more.
Driving fatigue is the cause of many traffic accidents and poses a serious threat to road safety. To address this issue, this paper aims to develop a system for the early detection of driver fatigue. The system leverages heart rate variability (HRV) features and embedded machine learning to estimate the driver’s fatigue level. The driver’s HRV is derived from electrocardiogram (ECG) signals captured by a wearable device for analysis. Time- and frequency-domain HRV features are then extracted and used as the input for a machine learning classifier. A dataset of HRV features is collected from a driving simulation experiment involving 18 participants. Four machine learning classifiers are evaluated, and a backpropagation neural network (BPNN) is selected for its superior performance, achieving up to 94.35% accuracy. The optimized classifier is successfully deployed on an embedded system, providing a cost-effective and portable solution for the early detection of driver fatigue. The results demonstrate the feasibility of using HRV-based machine learning models for the early detection of driver fatigue, contributing to enhanced road safety and a reduced accident risk. Full article
Show Figures

Figure 1

22 pages, 1332 KiB  
Article
Accurate Arrhythmia Classification with Multi-Branch, Multi-Head Attention Temporal Convolutional Networks
by Suzhao Bi, Rongjian Lu, Qiang Xu and Peiwen Zhang
Sensors 2024, 24(24), 8124; https://doi.org/10.3390/s24248124 - 19 Dec 2024
Viewed by 609
Abstract
Electrocardiogram (ECG) signals contain complex and diverse features, serving as a crucial basis for arrhythmia diagnosis. The subtle differences in characteristics among various types of arrhythmias, coupled with class imbalance issues in datasets, often hinder existing models from effectively capturing key information within [...] Read more.
Electrocardiogram (ECG) signals contain complex and diverse features, serving as a crucial basis for arrhythmia diagnosis. The subtle differences in characteristics among various types of arrhythmias, coupled with class imbalance issues in datasets, often hinder existing models from effectively capturing key information within these complex signals, leading to a bias towards normal classes. To address these challenges, this paper proposes a method for arrhythmia classification based on a multi-branch, multi-head attention temporal convolutional network (MB-MHA-TCN). The model integrates three convolutional branch layers with different kernel sizes and dilation rates to capture features across varying temporal scales. A multi-head self-attention mechanism dynamically allocates weights, integrating features and correlations from different branches to enhance the recognition capability for difficult-to-classify samples. Additionally, the temporal convolutional network employs multi-layer dilated convolutions to progressively expand the receptive field for extracting long-term dependencies. To tackle data imbalance, a novel data augmentation strategy is implemented, and focal loss is utilized to increase the weight of minority classes, while Bayesian optimization is employed to fine-tune the model’s hyperparameters. The results from five-fold cross-validation on the MIT-BIH Arrhythmia Database demonstrate that the proposed method achieves an overall accuracy of 98.75%, precision of 96.60%, sensitivity of 97.21%, and F1 score of 96.89% across five categories of ECG signals. Compared to other studies, this method exhibits superior performance in arrhythmia classification, significantly improving the recognition rate of minority classes. Full article
(This article belongs to the Special Issue Sensors Technology and Application in ECG Signal Processing)
Show Figures

Figure 1

25 pages, 6009 KiB  
Article
Fused Multi-Domains and Adaptive Variational Mode Decomposition ECG Feature Extraction for Lightweight Bio-Inspired Key Generation and Encryption
by Israel Edem Agbehadji, Richard C. Millham, Emmanuel Freeman, Wanqing Wu and Xianbin Zhang
Sensors 2024, 24(24), 7926; https://doi.org/10.3390/s24247926 - 11 Dec 2024
Viewed by 587
Abstract
Security is one of the increasingly significant issues given advancements in technology that harness data from multiple devices such as the internet of medical devices. While protecting data from unauthorized user access, several techniques are used including fingerprints, passwords, and others. One of [...] Read more.
Security is one of the increasingly significant issues given advancements in technology that harness data from multiple devices such as the internet of medical devices. While protecting data from unauthorized user access, several techniques are used including fingerprints, passwords, and others. One of the techniques that has attracted much attention is the use of human features, which has proven to be most effective because of the difficulties in impersonating human-related features. An example of a human-related attribute includes the electrical signal generated from the heart, mostly referred to as an Electrocardiogram (ECG) signal. The methods to extract features from ECG signals are time domain-based; however, the challenge with relying only on the time-domain or frequency-domain method is the inability to capture the intra-leading relationship of Variational Mode Decomposition signals. In this research, fusing multiple domains ECG feature and adaptive Variational Mode Decomposition approaches are utilized to mitigate the challenge of losing the intra-leading correlations of mode decompositions, which might reduce the robustness of encryption algorithms. The features extracted using the reconstructed signal have a mean (0.0004), standard deviation (0.0391), skewness (0.1562), and kurtosis (1.2205). Among the lightweight encryption methods considered, Chacha20 has a total execution time of 27µs. The study proposes a lightweight encryption technique based on the fused vector representation of extracted features to provide an encryption scheme in addition to a bio-inspired key generation technique for data encryption. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

21 pages, 5973 KiB  
Article
Coronary Artery Disease Detection Based on a Novel Multi-Modal Deep-Coding Method Using ECG and PCG Signals
by Chengfa Sun, Changchun Liu, Xinpei Wang, Yuanyuan Liu and Shilong Zhao
Sensors 2024, 24(21), 6939; https://doi.org/10.3390/s24216939 - 29 Oct 2024
Viewed by 1305
Abstract
Coronary artery disease (CAD) is an irreversible and fatal disease. It necessitates timely and precise diagnosis to slow CAD progression. Electrocardiogram (ECG) and phonocardiogram (PCG), conveying abundant disease-related information, are prevalent clinical techniques for early CAD diagnosis. Nevertheless, most previous methods have relied [...] Read more.
Coronary artery disease (CAD) is an irreversible and fatal disease. It necessitates timely and precise diagnosis to slow CAD progression. Electrocardiogram (ECG) and phonocardiogram (PCG), conveying abundant disease-related information, are prevalent clinical techniques for early CAD diagnosis. Nevertheless, most previous methods have relied on single-modal data, restricting their diagnosis precision due to suffering from information shortages. To address this issue and capture adequate information, the development of a multi-modal method becomes imperative. In this study, a novel multi-modal learning method is proposed to integrate both ECG and PCG for CAD detection. Along with deconvolution operation, a novel ECG-PCG coupling signal is evaluated initially to enrich the diagnosis information. After constructing a modified recurrence plot, we build a parallel CNN network to encode multi-modal information, involving ECG, PCG and ECG-PCG coupling deep-coding features. To remove irrelevant information while preserving discriminative features, we add an autoencoder network to compress feature dimension. Final CAD classification is conducted by combining support vector machine and optimal multi-modal features. The experiment is validated on 199 simultaneously recorded ECG and PCG signals from non-CAD and CAD subjects, and achieves high performance with accuracy, sensitivity, specificity and f1-score of 98.49%, 98.57%,98.57% and 98.89%, respectively. The result demonstrates the superiority of the proposed multi-modal method in overcoming information shortages of single-modal signals and outperforming existing models in CAD detection. This study highlights the potential of multi-modal deep-coding information, and offers a wider insight to enhance CAD diagnosis. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

24 pages, 7237 KiB  
Article
An Embedded System for Real-Time Atrial Fibrillation Diagnosis Using a Multimodal Approach to ECG Data
by Monalisa Akter, Nayeema Islam, Abdul Ahad, Md. Asaduzzaman Chowdhury, Fahim Foysal Apurba and Riasat Khan
Eng 2024, 5(4), 2728-2751; https://doi.org/10.3390/eng5040143 - 24 Oct 2024
Cited by 1 | Viewed by 1577
Abstract
Cardiovascular diseases pose a significant global health threat, with atrial fibrillation representing a critical precursor to more severe heart conditions. In this work, a multimodality-based deep learning model has been developed for diagnosing atrial fibrillation using an embedded system consisting of a Raspberry [...] Read more.
Cardiovascular diseases pose a significant global health threat, with atrial fibrillation representing a critical precursor to more severe heart conditions. In this work, a multimodality-based deep learning model has been developed for diagnosing atrial fibrillation using an embedded system consisting of a Raspberry Pi 4B, an ESP8266 microcontroller, and an AD8232 single-lead ECG sensor to capture real-time ECG data. Our approach leverages a deep learning model that is capable of distinguishing atrial fibrillation from normal ECG signals. The proposed method involves real-time ECG signal acquisition and employs a multimodal model trained on the PTB-XL dataset. This model utilizes a multi-step approach combining a CNN–bidirectional LSTM for numerical ECG series tabular data and VGG16 for image-based ECG representations. A fusion layer is incorporated into the multimodal CNN-BiLSTM + VGG16 model to enhance atrial fibrillation detection, achieving state-of-the-art results with a precision of 94.07% and an F1 score of 0.94. This study demonstrates the efficacy of a multimodal approach in improving the real-time diagnosis of cardiovascular diseases. Furthermore, for edge devices, we have distilled knowledge to train a smaller student model, CNN-BiLSTM, using a larger CNN-BiLSTM model as a teacher, which achieves an accuracy of 83.21% with 0.85 s detection latency. Our work represents a significant advancement towards efficient and preventative cardiovascular health management. Full article
Show Figures

Figure 1

16 pages, 6720 KiB  
Article
Stretchable Ag/AgCl Nanowire Dry Electrodes for High-Quality Multimodal Bioelectronic Sensing
by Tianyu Wang, Shanshan Yao, Li-Hua Shao and Yong Zhu
Sensors 2024, 24(20), 6670; https://doi.org/10.3390/s24206670 - 16 Oct 2024
Viewed by 1399
Abstract
Bioelectrical signal measurements play a crucial role in clinical diagnosis and continuous health monitoring. Conventional wet electrodes, however, present limitations as they are conductive gel for skin irritation and/or have inflexibility. Here, we developed a cost-effective and user-friendly stretchable dry electrode constructed with [...] Read more.
Bioelectrical signal measurements play a crucial role in clinical diagnosis and continuous health monitoring. Conventional wet electrodes, however, present limitations as they are conductive gel for skin irritation and/or have inflexibility. Here, we developed a cost-effective and user-friendly stretchable dry electrode constructed with a flexible network of Ag/AgCl nanowires embedded in polydimethylsiloxane (PDMS). We compared the performance of the stretched Ag/AgCl nanowire electrode with commonly used commercial wet electrodes to measure electrocardiogram (ECG), electromyogram (EMG), and electroencephalogram (EEG) signals. All the signal-to-noise ratios (SNRs) of the as-fabricated or stretched (50% tensile strain) Ag/AgCl nanowire electrodes are higher than that measured by commercial wet electrodes as well as other dry electrodes. The evaluation of ECG signal quality through waveform segmentation, the signal quality index (SQI), and heart rate variability (HRV) reveal that both the as-fabricated and stretched Ag/AgCl nanowire electrode produce high-quality signals similar to those obtained from commercial wet electrodes. The stretchable electrode exhibits high sensitivity and dependability in measuring EMG and EEG data, successfully capturing EMG signals associated with muscle activity and clearly recording α-waves in EEG signals during eye closure. Our stretchable dry electrode shows enhanced comfort, high sensitivity, and convenience for curved surface biosignal monitoring in clinical contexts. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

17 pages, 496 KiB  
Article
Harnessing the Heart’s Magnetic Field for Advanced Diagnostic Techniques
by Tarek Elfouly and Ali Alouani
Sensors 2024, 24(18), 6017; https://doi.org/10.3390/s24186017 - 18 Sep 2024
Viewed by 1505
Abstract
Heart diseases remain one of the leading causes of morbidity and mortality worldwide, necessitating innovative diagnostic methods for early detection and intervention. An electrocardiogram (ECG) is a well-known technique for the preliminary diagnosis of heart conditions. However, it can not be used for [...] Read more.
Heart diseases remain one of the leading causes of morbidity and mortality worldwide, necessitating innovative diagnostic methods for early detection and intervention. An electrocardiogram (ECG) is a well-known technique for the preliminary diagnosis of heart conditions. However, it can not be used for continuous monitoring due to skin irritation. It is well known that every body organ generates a magnetic field, and the heart generates peak amplitudes of about 10 to 100 pT (measured at a distance of about 3 cm above the chest). This poses challenges to capturing such signals. This paper reviews the different techniques used to capture the heart’s magnetic signals along with their limitations. In addition, this paper provides a comprehensive review of the different approaches that use the heart-generated magnetic field to diagnose several heart diseases. This research reveals two aspects. First, as a noninvasive tool, the use of the heart’s magnetic field signal can lead to more sensitive advanced heart disease diagnosis tools, especially when continuous monitoring is possible and affordable. Second, its current use is limited due to the lack of accurate, affordable, and portable sensing technology. Full article
(This article belongs to the Special Issue Advanced Sensing Technologies in E-Health: Trends and Challenges)
Show Figures

Figure 1

14 pages, 7195 KiB  
Article
RHYTHMI: A Deep Learning-Based Mobile ECG Device for Heart Disease Prediction
by Alaa Eleyan, Ebrahim AlBoghbaish, Abdulwahab AlShatti, Ahmad AlSultan and Darbi AlDarbi
Appl. Syst. Innov. 2024, 7(5), 77; https://doi.org/10.3390/asi7050077 - 29 Aug 2024
Cited by 2 | Viewed by 2962
Abstract
Heart disease, a global killer with many variations like arrhythmia and heart failure, remains a major health concern. Traditional risk factors include age, cholesterol, diabetes, and blood pressure. Fortunately, artificial intelligence (AI) offers a promising solution. We have harnessed the power of AI, [...] Read more.
Heart disease, a global killer with many variations like arrhythmia and heart failure, remains a major health concern. Traditional risk factors include age, cholesterol, diabetes, and blood pressure. Fortunately, artificial intelligence (AI) offers a promising solution. We have harnessed the power of AI, specifically deep learning and convolutional neural networks (CNNs), to develop Rhythmi, an innovative mobile ECG diagnosis device for heart disease detection. Rhythmi leverages extensive medical data from databases like MIT-BIH and BIDMC. These data empower the training and testing of the developed deep learning model to analyze ECG signals with accuracy, precision, sensitivity, specificity, and F1-score in identifying arrhythmias and other heart conditions, with performances reaching 98.52%, 98.55%, 98.52%, 99.26%, and 98.52%, respectively. Moreover, we tested Rhythmi in real time using a mobile device with a single-lead ECG sensor. This user-friendly prototype captures the ECG signal, transmits it to Rhythmi’s dedicated website, and provides instant diagnosis and feedback on the patient’s heart health. The developed mobile ECG diagnosis device addresses the main problems of traditional ECG diagnostic devices such as accessibility, cost, mobility, complexity, and data integration. However, we believe that despite the promising results, our system will still need intensive clinical validation in the future. Full article
Show Figures

Figure 1

17 pages, 4111 KiB  
Article
Enhancing Inter-Patient Performance for Arrhythmia Classification with Adversarial Learning Using Beat-Score Maps
by Yeji Jeong, Jaewon Lee and Miyoung Shin
Appl. Sci. 2024, 14(16), 7227; https://doi.org/10.3390/app14167227 - 16 Aug 2024
Cited by 2 | Viewed by 1055
Abstract
Research on computer-aided arrhythmia classification is actively conducted, but the limited generalization capacity constrains its applicability in practical clinical settings. One of the primary challenges in deploying such techniques in real-world scenarios is the inter-patient variability and the consequent performance degradation. In this [...] Read more.
Research on computer-aided arrhythmia classification is actively conducted, but the limited generalization capacity constrains its applicability in practical clinical settings. One of the primary challenges in deploying such techniques in real-world scenarios is the inter-patient variability and the consequent performance degradation. In this study, we leverage our previous innovation, the n-beat-score map (n-BSM), to introduce an adversarial framework to mitigate the issue of poor performance in arrhythmia classification within the inter-patient paradigm. The n-BSM is a 2D representation of the ECG signal, capturing its constituent beat characteristics through beat-score vectors derived from a pre-trained beat classifier. We employ adversarial learning to eliminate patient-dependent features during the training of the beat classifier, thereby generating the patient-independent n-BSM (PI-BSM). This approach enables us to concentrate primarily on the learning characteristics associated with beat type rather than patient-specific features. Through a beat classifier pre-trained with adversarial learning, a series of beat-score vectors are generated for the beat segments that make up a given ECG signal. These vectors are then concatenated chronologically to form a PI-BSM. Utilizing PI-BSMs as the input, an arrhythmia classifier is trained to differentiate between distinct types of rhythms. This approach yields a 14.27% enhancement in the F1-score in the MIT-BIH arrhythmia database and a 4.97% improvement in cross-database evaluation using the Chapman–Shaoxing 12-lead ECG database. Full article
(This article belongs to the Special Issue Artificial Intelligence in Medicine and Healthcare)
Show Figures

Figure 1

15 pages, 3143 KiB  
Article
Development and Validation of a Real-Time Service Model for Noise Removal and Arrhythmia Classification Using Electrocardiogram Signals
by Yeonjae Park, You Hyun Park, Hoyeon Jeong, Kise Kim, Ji Ye Jung, Jin-Bae Kim and Dae Ryong Kang
Sensors 2024, 24(16), 5222; https://doi.org/10.3390/s24165222 - 12 Aug 2024
Viewed by 1247
Abstract
Arrhythmias range from mild nuisances to potentially fatal conditions, detectable through electrocardiograms (ECGs). With advancements in wearable technology, ECGs can now be monitored on-the-go, although these devices often capture noisy data, complicating accurate arrhythmia detection. This study aims to create a new deep [...] Read more.
Arrhythmias range from mild nuisances to potentially fatal conditions, detectable through electrocardiograms (ECGs). With advancements in wearable technology, ECGs can now be monitored on-the-go, although these devices often capture noisy data, complicating accurate arrhythmia detection. This study aims to create a new deep learning model that utilizes generative adversarial networks (GANs) for effective noise removal and ResNet for precise arrhythmia classification from wearable ECG data. We developed a deep learning model that cleans ECG measurements from wearable devices and detects arrhythmias using refined data. We pretrained our model using the MIT-BIH Arrhythmia and Noise databases. Least squares GANs were used for noise reduction, maintaining the integrity of the original ECG signal, while a residual network classified the type of arrhythmia. After initial training, we applied transfer learning with actual ECG data. Our noise removal model significantly enhanced data clarity, achieving over 30 dB in a signal-to-noise ratio. The arrhythmia detection model was highly accurate, with an F1-score of 99.10% for noise-free data. The developed model is capable of real-time, accurate arrhythmia detection using wearable ECG devices, allowing for immediate patient notification and facilitating timely medical response. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

12 pages, 1799 KiB  
Article
Subject-Independent Model for Reconstructing Electrocardiography Signals from Photoplethysmography Signals
by Yanke Guo, Shiyong Li, Zhencheng Chen and Qunfeng Tang
Appl. Sci. 2024, 14(13), 5773; https://doi.org/10.3390/app14135773 - 2 Jul 2024
Viewed by 1148
Abstract
Electrocardiography (ECG) is the gold standard for monitoring vital signs and for diagnosing, controlling, and preventing cardiovascular diseases (CVDs). However, ECG requires continuous user participation, and cannot be used for continuous cardiac monitoring. In contrast to ECG, photoplethysmography (PPG) devices do not require [...] Read more.
Electrocardiography (ECG) is the gold standard for monitoring vital signs and for diagnosing, controlling, and preventing cardiovascular diseases (CVDs). However, ECG requires continuous user participation, and cannot be used for continuous cardiac monitoring. In contrast to ECG, photoplethysmography (PPG) devices do not require continued user involvement, and can offer ongoing and long-term detection capabilities. However, from a medical perspective, ECG can provide more information about the heart. Currently, most existing work contains different signals recorded from the same subject in training and test sets. This study proposes a neural network model based on a 1D convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM) network. This neural network model can directly reconstruct ECG signals from PPG signals. The learned features are captured from the CNN model and fed into the BiLSTM model. In order to verify the validity of the model, it is evaluated using the MIMIC II dataset in the completely subject-independent model (records are placed in a training set, and a test set appears once, but the test signal belongs to a record that is not in the training set). The Pearson’s correlation coefficient between the reconstructed ECG and the reference ECG of the proposed model is 0.963 in the completely subject-independence model. The results of the proposed model are better than those of several cited state-of-the-art models. The results of our trained model indicate that we can obtain reconstructed ECGs that are highly similar to reference ECGs in the completely subject-independent model. Full article
(This article belongs to the Special Issue Machine Learning Based Biomedical Signal Processing)
Show Figures

Figure 1

24 pages, 8919 KiB  
Article
Design, Fabrication, and Evaluation of 3D Biopotential Electrodes and Intelligent Garment System for Sports Monitoring
by Deyao Shen, Jianping Wang, Vladan Koncar, Krittika Goyal and Xuyuan Tao
Sensors 2024, 24(13), 4114; https://doi.org/10.3390/s24134114 - 25 Jun 2024
Cited by 2 | Viewed by 1351
Abstract
This study presents the development and evaluation of an innovative intelligent garment system, incorporating 3D knitted silver biopotential electrodes, designed for long-term sports monitoring. By integrating advanced textile engineering with wearable monitoring technologies, we introduce a novel approach to real-time physiological signal acquisition, [...] Read more.
This study presents the development and evaluation of an innovative intelligent garment system, incorporating 3D knitted silver biopotential electrodes, designed for long-term sports monitoring. By integrating advanced textile engineering with wearable monitoring technologies, we introduce a novel approach to real-time physiological signal acquisition, focusing on enhancing athletic performance analysis and fatigue detection. Utilizing low-resistance silver fibers, our electrodes demonstrate significantly reduced skin-to-electrode impedance, facilitating improved signal quality and reliability, especially during physical activities. The garment system, embedded with these electrodes, offers a non-invasive, comfortable solution for continuous ECG and EMG monitoring, addressing the limitations of traditional Ag/AgCl electrodes, such as skin irritation and signal degradation over time. Through various experimentation, including impedance measurements and biosignal acquisition during cycling activities, we validate the system’s effectiveness in capturing high-quality physiological data. Our findings illustrate the electrodes’ superior performance in both dry and wet conditions. This study not only advances the field of intelligent garments and biopotential monitoring, but also provides valuable insights for the application of intelligent sports wearables in the future. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

12 pages, 1901 KiB  
Article
Visualized Lead Selection for Arrhythmia Classification Based on a Lead Activation Heatmap Using Multi-Lead ECGs
by Heng Wang, Tengqun Shen, Shoufen Jiang, Jilin Wang, Yijun Ma and Yatao Zhang
Bioengineering 2024, 11(6), 578; https://doi.org/10.3390/bioengineering11060578 - 7 Jun 2024
Viewed by 1192
Abstract
Visualizing the decision-making process is a key aspect of research regarding explainable arrhythmia recognition. This study proposed a visualized lead selection method to classify arrhythmia for multi-lead ECG signals. The proposed method has several advantages, as it uses a visualized approach to select [...] Read more.
Visualizing the decision-making process is a key aspect of research regarding explainable arrhythmia recognition. This study proposed a visualized lead selection method to classify arrhythmia for multi-lead ECG signals. The proposed method has several advantages, as it uses a visualized approach to select effective leads, avoiding redundant leads and invalid information. It also captures the temporal dependencies of ECG signals and the complementary information between leads. The method deployed a lead activation heatmap (LA heatmap) based on a lead-wise network to select the proper 5 leads from 12-lead ECG heartbeats extracted from the public 2018 Chinese Physiological Signal Challenge database (CPSC 2018 DB), which were then fed into a ResBiTime network combining bidirectional long short-term memory (Bi-LSTM) networks and residual connections for a classification task of nine heartbeat categories (i.e., N, AF, I-AVB, RBBB, PAC, PVC, STD, LBBB, and STE). The results indicate an average precision of 93.25%, an average recall of 93.03%, an average F1-score of 0.9313, and that the proposed method can effectively extract additional information from ECG heartbeat data. Full article
(This article belongs to the Special Issue 10th Anniversary of Bioengineering: Biosignal Processing)
Show Figures

Figure 1

14 pages, 4036 KiB  
Article
A Comprehensive Study on a Deep-Learning-Based Electrocardiography Analysis for Estimating the Apnea-Hypopnea Index
by Seola Kim, Hyun-Soo Choi, Dohyun Kim, Minkyu Kim, Seo-Young Lee, Jung-Kyeom Kim, Yoon Kim and Woo Hyun Lee
Diagnostics 2024, 14(11), 1134; https://doi.org/10.3390/diagnostics14111134 - 29 May 2024
Viewed by 1058
Abstract
This study introduces a deep-learning-based automatic sleep scoring system to detect sleep apnea using a single-lead electrocardiography (ECG) signal, focusing on accurately estimating the apnea–hypopnea index (AHI). Unlike other research, this work emphasizes AHI estimation, crucial for the diagnosis and severity evaluation of [...] Read more.
This study introduces a deep-learning-based automatic sleep scoring system to detect sleep apnea using a single-lead electrocardiography (ECG) signal, focusing on accurately estimating the apnea–hypopnea index (AHI). Unlike other research, this work emphasizes AHI estimation, crucial for the diagnosis and severity evaluation of sleep apnea. The suggested model, trained on 1465 ECG recordings, combines the deep-shallow fusion network for sleep apnea detection network (DSF-SANet) and gated recurrent units (GRUs) to analyze ECG signals at 1-min intervals, capturing sleep-related respiratory disturbances. Achieving a 0.87 correlation coefficient with actual AHI values, an accuracy of 0.82, an F1 score of 0.71, and an area under the receiver operating characteristic curve of 0.88 for per-segment classification, our model was effective in identifying sleep-breathing events and estimating the AHI, offering a promising tool for medical professionals. Full article
(This article belongs to the Special Issue Diagnosis of Sleep Disorders Using Machine Learning Approaches)
Show Figures

Figure 1

Back to TopTop