Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (285)

Search Parameters:
Keywords = Envisat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 18749 KiB  
Article
Nonlinear Evolutionary Pattern Recognition of Land Subsidence in the Beijing Plain
by Mingyuan Lyu, Xiaojuan Li, Yinghai Ke, Jiyi Jiang, Zhenjun Sun, Lin Zhu, Lin Guo, Zhihe Xu, Panke Tang, Huili Gong and Lan Wang
Remote Sens. 2024, 16(15), 2829; https://doi.org/10.3390/rs16152829 - 1 Aug 2024
Viewed by 381
Abstract
Beijing is a city on the North China Plain with severe land subsidence. In recent years, Beijing has implemented effective measures to control land subsidence. Since this implementation, the development of time-series land subsidence in Beijing has slowed and has shown nonlinearity. Most [...] Read more.
Beijing is a city on the North China Plain with severe land subsidence. In recent years, Beijing has implemented effective measures to control land subsidence. Since this implementation, the development of time-series land subsidence in Beijing has slowed and has shown nonlinearity. Most previous studies have focused on the linear evolution of land subsidence; the nonlinear evolutionary patterns of land subsidence require further discussion. Therefore, we aimed to identify the evolution of land subsidence in Beijing, based on Envisat ASAR and Radarsat-2 images from 2003 to 2020, using permanent scatterer interferometric synthetic aperture radar (PS-InSAR) and cubic curve polynomial fitting methods. The dates of the extreme and inflection points were identified from the polynomial coefficients. From 2003 to 2020, the subsidence rate reached 138.55 mm/year, and the area with a subsidence rate > 15 mm/year reached 1688.81 km2. The cubic polynomials fit the time-series deformation well, with R2 ranging from 0.86 to 0.99 and the RMSE ranging from 1.97 to 60.28 mm. Furthermore, the subsidence rate at 96.64% of permanent scatterer (PS) points first increased and then decreased. The subsidence rate at 86.58% of the PS points began to decrease from 2010 to 2015; whereas the subsidence rate at 30.51% of the PS point reached a maximum between 2015 and 2019 and then decreased. The cumulative settlement continued to increase at 69.49% of the PS points. These findings imply that groundwater levels are highly correlated with the temporal evolution of subsidence in areas with pattern D (Vs+-, S+), with increasing and then decelerating rates and increasing amounts. In regions with a thickness of compressible clay layer over 210 m, subsidence follows pattern E (Vs+, S+), with increasing rates and amounts. Fractures such as the Gaoliying and Sunhe fractures significantly influence the spatial distribution of subsidence patterns, showing distinct differences on either side. Near the Global Resort Station, pattern E (Vs+, S+) intensifies in subsidence, potentially due to factors like land use changes and construction activities. Full article
(This article belongs to the Special Issue Analysis of SAR/InSAR Data in Geoscience)
Show Figures

Figure 1

20 pages, 7205 KiB  
Article
Recovery of Time Series of Water Volume in Lake Ranco (South Chile) through Satellite Altimetry and Its Relationship with Climatic Phenomena
by Patricio Fuentes-Aguilera, Lien Rodríguez-López, Luc Bourrel and Frédéric Frappart
Water 2024, 16(14), 1997; https://doi.org/10.3390/w16141997 - 14 Jul 2024
Viewed by 1061
Abstract
In the context of escalating climate change-induced impacts on water resources, robust monitoring tools are imperative. Satellite altimetry, benefiting from technical improvement such as the use of SAR and InSAR techniques and tracking modes considering topography, is emerging as a crucial means of [...] Read more.
In the context of escalating climate change-induced impacts on water resources, robust monitoring tools are imperative. Satellite altimetry, benefiting from technical improvement such as the use of SAR and InSAR techniques and tracking modes considering topography, is emerging as a crucial means of estimating lake levels, data that are fundamental to understanding climate dynamics. This study delves into the use of satellite-altimetry-determined water levels to analyze changes in water storage and superficial area in Lake Ranco, in south-central Chile, from 1995 to 2023. The main objective is to provide valuable information for water-resource management and policy formulation. Leveraging AlTiS software (v2.2.9-0-gf5938ab), radar-altimetry data from the missions ERS-2, ENVISAT, SARAL, and Sentinel-3A were processed, generating a complete time series of water levels. The lake-level data were complemented by the bathymetric data for the lake to obtain the variation in the area and volume in the period 1995–2023. These results were analyzed with respect to hydrometeorological data from the study area, such as precipitation, temperature, relative humidity, and potential evapotranspiration. Additionally, the effects of ENSO (ENSO 3.4 index) and the Pacific Decadal Oscillation index (PDO) were considered. Results reveal a strong correlation between altimetry-derived lake levels and observed in situ data, with a mean square error of 0.04 m, a coefficient of determination of 0.99, an index of agreement of 0.99, and a Kling−Gupta efficiency of 0.90. The analysis of climatic variables showed that variations in lake level coincide with changes in precipitation within the study area and also showed the influence of variations in temperature and potential evapotranspiration. Additionally, the effects of the ENSO phenomenon can be seen within the study area for its cold phase (i.e., La Niña) in the 2010–2012 period and for its warm phase (i.e., El Niño) in the 2015–2016 period, with a decrease and increase in precipitation, respectively. These effects were enhanced when the cold and warm phases of the ENSO and PDO phenomena occured. The successful application of satellite altimetry demonstrated in this study underscores its critical role in advancing our understanding and management of water resources amidst changing climate scenarios. Full article
Show Figures

Figure 1

13 pages, 2277 KiB  
Technical Note
Early Radiometric Assessment of NOAA-21 Visible Infrared Imaging Radiometer Suite Reflective Solar Bands Using Vicarious Techniques
by Aisheng Wu, Xiaoxiong Xiong, Qiaozhen Mu, Amit Angal, Rajendra Bhatt and Yolanda Shea
Remote Sens. 2024, 16(14), 2528; https://doi.org/10.3390/rs16142528 - 10 Jul 2024
Viewed by 412
Abstract
The VIIRS instrument on the JPSS-2 (renamed NOAA-21 upon reaching orbit) spacecraft was launched in November 2022, making it the third sensor in the VIIRS series, following those onboard the SNPP and NOAA-20 spacecrafts, which are operating nominally. As a multi-disciplinary instrument, the [...] Read more.
The VIIRS instrument on the JPSS-2 (renamed NOAA-21 upon reaching orbit) spacecraft was launched in November 2022, making it the third sensor in the VIIRS series, following those onboard the SNPP and NOAA-20 spacecrafts, which are operating nominally. As a multi-disciplinary instrument, the VIIRS provides the worldwide user community with high-quality imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans. This study provides an early assessment of the calibration stability and radiometric consistency of the NOAA-21 VIIRS RSBs using the latest NASA SIPS C2 L1B products. Vicarious approaches are employed, relying on reflectance data obtained from the Libya-4 desert and Dome C sites, deep convective clouds, and simultaneous nadir overpasses, as well as intercomparison with the first two VIIRS instruments using MODIS as a transfer radiometer. The impact of existing band spectral differences on sensor-to-sensor comparison is corrected using scene-specific a priori hyperspectral observations from the SCIAMACHY sensor onboard the ENVISAT platform. The results indicate that the overall radiometric performance of the newly launched NOAA-21 VIIRS is quantitatively comparable to the NOAA-20 for the VIS and NIR bands. For some SWIR bands, the measured reflectances are lower by more than 2%. An upward adjustment of 6.1% in the gain of band M11 (2.25 µm), based on lunar intercomparison results, generates more consistent results with the NOAA-20 VIIRS. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

21 pages, 16372 KiB  
Article
A Localized Particle Filtering Approach to Advance Flood Frequency Estimation at Large Scale Using Satellite Synthetic Aperture Radar Image Collection and Hydrodynamic Modelling
by Marina Zingaro, Renaud Hostache, Marco Chini, Domenico Capolongo and Patrick Matgen
Remote Sens. 2024, 16(12), 2179; https://doi.org/10.3390/rs16122179 - 15 Jun 2024
Viewed by 713
Abstract
This study describes a method that combines synthetic aperture radar (SAR) data with shallow-water modeling to estimate flood hazards at a local level. The method uses particle filtering to integrate flood probability maps derived from SAR imagery with simulated flood maps for various [...] Read more.
This study describes a method that combines synthetic aperture radar (SAR) data with shallow-water modeling to estimate flood hazards at a local level. The method uses particle filtering to integrate flood probability maps derived from SAR imagery with simulated flood maps for various flood return periods within specific river sub-catchments. We tested this method in a section of the Severn River basin in the UK. Our research involves 11 SAR flood observations from ENVISAT ASAR images, an ensemble of 15 particles representing various pre-computed flood scenarios, and 4 masks of spatial units corresponding to different river segmentations. Empirical results yield maps of maximum flood extent with associated return periods, reflecting the local characteristics of the river. The results are validated through a quantitative comparison approach, demonstrating that our method improves the accuracy of flood extent and scenario estimation. This provides spatially distributed return periods in sub-catchments, making flood hazard monitoring effective at a local scale. Full article
Show Figures

Graphical abstract

29 pages, 5377 KiB  
Article
On the Initial Phase of the Ongoing Unrest at Campi Flegrei and Its Relation with Subsidence at Vesuvio (Italy)
by Antonella Amoruso, Adriano Gualandi and Luca Crescentini
Remote Sens. 2024, 16(10), 1717; https://doi.org/10.3390/rs16101717 - 12 May 2024
Viewed by 1024
Abstract
The densely inhabited area of Naples (Italy), between the Campi Flegrei and Vesuvio volcanoes, is one of the most hazardous regions in the world. After two decades of sustained subsidence, Campi Flegrei has been experiencing an accelerating uplift since 2005. The uplift is [...] Read more.
The densely inhabited area of Naples (Italy), between the Campi Flegrei and Vesuvio volcanoes, is one of the most hazardous regions in the world. After two decades of sustained subsidence, Campi Flegrei has been experiencing an accelerating uplift since 2005. The uplift is currently associated with unusual seismicity and increased degassing. To try to identify the cause of the shift from subsidence to uplift and explore any connection between Campi Flegrei and Vesuvio, we analysed the ground displacement time series of the two volcanoes from 1993 to 2010, obtained from ERS/ENVISAT Synthetic Aperture Radar imagery. To distinguish between the various sources of deformation, we used simple scatter plots and a blind source separation technique called variational Bayesian independent component analysis (vbICA). We obtained consistent results using both approaches. Specifically, with vbICA, we identified two significant independent components (ICs). IC1 describes the subsidence that occurred at Campi Flegrei prior to 2000, including the mini-uplifts of 2000 and 2005, and part of the post-2005 uplift. The expansion and contraction of two volumes beneath Campi Flegrei satisfy IC1: a sill-shaped volume at a depth of approximately 3 km and a small volume at a depth of 1–2 km, respectively. The two sources of deformation reproduce the large-scale deformation in the Campi Flegrei area and the local deformation in the Solfatara area, respectively. In the Campi Flegrei area, IC2 exhibits primarily uplift, which is concentrated in the eastern part of the caldera. The deformation pattern is complex and difficult to interpret. If we model it using simple spheroidal deformation sources, the pattern suggests that two volumes at depths of approximately 9 and 8 km are experiencing opposite activity, namely contraction (beneath the southwestern part of the caldera) and expansion (beneath the central part of the caldera). In the Vesuvio area, IC2 is consistent with the deformation induced by the contraction of a volume at a depth of around 9 km. The contraction beneath Vesuvio is smaller in magnitude than the expansion/contraction beneath Campi Flegrei. The correlation observed after 2002 between uplift at Campi Flegrei and subsidence at Vesuvio suggests the transfer of magma and/or magmatic fluids between the two plumbing systems at 8–9 km depth. This implies that part of the ongoing unrest at Campi Flegrei may have been promoted by mass transfer from below Vesuvio. Full article
Show Figures

Graphical abstract

16 pages, 5629 KiB  
Article
A Multi-Satellite SBAS for Retrieving Long-Term Ground Displacement Time Series
by Doha Amr, Xiao-Li Ding and Reda Fekry
Remote Sens. 2024, 16(9), 1520; https://doi.org/10.3390/rs16091520 - 25 Apr 2024
Viewed by 728
Abstract
Ground deformation is one of the crucial issues threatening many cities in both societal and economic aspects. Interferometric synthetic aperture radar (InSAR) has been widely used for deformation monitoring. Recently, there has been an increasing availability of massive archives of SAR images from [...] Read more.
Ground deformation is one of the crucial issues threatening many cities in both societal and economic aspects. Interferometric synthetic aperture radar (InSAR) has been widely used for deformation monitoring. Recently, there has been an increasing availability of massive archives of SAR images from various satellites or sensors. This paper introduces Multi-Satellite SBAS that exploits complementary information from different SAR data to generate integrated long-term ground displacement time series. The proposed method is employed to create the vertical displacement maps of Almokattam City in Egypt from 2000 to 2020. The experimental results are promising using ERS, ENVISAT ASAR, and Sentinel-1A displacement integration. There is a remarkable deformation in the vertical direction along the west area while the mean deformation velocity is −2.32 mm/year. Cross-validation confirms that the root mean square error (RMSE) did not exceed 2.8 mm/year. In addition, the research findings are comparable to those of the previous research in the study area. Consequently, the proposed integration method has great potential to generate displacement time series based on multi-satellite SAR data; however, it still requires further evaluation using field measurements. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

21 pages, 3291 KiB  
Article
Generation of Secondary Space Debris Risks from Net Capturing in Active Space Debris Removal Missions
by Michal Cuadrat-Grzybowski and Eberhard Gill
Aerospace 2024, 11(3), 236; https://doi.org/10.3390/aerospace11030236 - 18 Mar 2024
Viewed by 1215
Abstract
Mitigation strategies to eliminate existing space debris, such as with Active Space Debris Removal (ASDR) missions, have become increasingly important. Among the considered ASDR approaches, one involves using a net as a capturing mechanism. A fundamental requirement for any ASDR mission is that [...] Read more.
Mitigation strategies to eliminate existing space debris, such as with Active Space Debris Removal (ASDR) missions, have become increasingly important. Among the considered ASDR approaches, one involves using a net as a capturing mechanism. A fundamental requirement for any ASDR mission is that the capture process itself should not give rise to new space debris. However, in simulations of net capturing, the potential for structural breaking is often overlooked. A discrete Multi-Spring-Damper net model was employed to simulate the impact of a 30 m × 30 m net travelling at 20 m/s onto an ESA Envisat mock-up. The Envisat was modelled as a two-rigid-body system comprised of the main body and a large solar array with a hinge connection. The analysis revealed that more than two significant substructures had a notable likelihood of breaking, prompting the recommendation of limiting the impacting velocity. The generation of secondary space debris indicates that net capturing is riskier than previously assumed in the literature. Full article
Show Figures

Figure 1

13 pages, 1938 KiB  
Article
Global Investigation of Wind–Wave Interaction Using Spaceborne SAR Measurements
by Huimin Li and Yijun He
J. Mar. Sci. Eng. 2024, 12(3), 433; https://doi.org/10.3390/jmse12030433 - 28 Feb 2024
Viewed by 950
Abstract
Spaceborne synthetic aperture radar (SAR) has been widely acknowledged for its advantages in collecting ocean surface measurements under all weather conditions during day and night. Despite the strongly nonlinear imaging process, SAR measurements of ocean waves provide an invaluable resource for studies into [...] Read more.
Spaceborne synthetic aperture radar (SAR) has been widely acknowledged for its advantages in collecting ocean surface measurements under all weather conditions during day and night. Despite the strongly nonlinear imaging process, SAR measurements of ocean waves provide an invaluable resource for studies into wave dynamics at the global scale. In this study, we take advantage of a newly defined parameter, the mean cross-spectrum (MACS) at a discrete wavenumber along the sensor line-of-sight axis, to further investigate the ocean wave properties. With the range peak wavenumber extracted from the MACS profile, together with the collocated model winds, the inverse wave age (iwa) is estimated. As an indicator of local wind–wave coupling, the global map of the iwa depicts a distinct pattern, with larger iwa values observed in the storm tracks. In addition to the mean, stronger variability in the iwa is also found in the storm tracks, while the iwa remains relatively steady in the trade winds with lower variability. This makes the SAR-derived iwa a significant parameter in reflecting the varying degrees of wind–wave coupling in variable geographical locations across the ocean basins. It will help to promote the practical application of SAR measurements, as well as advancing our understanding of ocean wave dynamics. Full article
(This article belongs to the Special Issue New Advances in Marine Remote Sensing Applications)
Show Figures

Figure 1

15 pages, 6907 KiB  
Article
Long-Term SAR Data Analysis for Subsidence Monitoring and Correlation Study at Beijing Capital Airport
by Yueze Zheng, Junhuan Peng, Chuyu Li, Xue Chen, Yun Peng, Xu Ma and Meng Huang
Remote Sens. 2024, 16(3), 445; https://doi.org/10.3390/rs16030445 - 23 Jan 2024
Cited by 3 | Viewed by 1194
Abstract
Land subsidence, resulting from natural or human activities, is a global environmental geological disaster. The Interferometric Synthetic Aperture Radar (InSAR) time-series analysis technique offers high spatial and continuous temporal resolution, providing data and a foundation for investigating regional land subsidence and its evolution [...] Read more.
Land subsidence, resulting from natural or human activities, is a global environmental geological disaster. The Interferometric Synthetic Aperture Radar (InSAR) time-series analysis technique offers high spatial and continuous temporal resolution, providing data and a foundation for investigating regional land subsidence and its evolution mechanism. Beijing Capital International Airport (BCIA) has experienced uneven land subsidence since 1935, together with severe fissures significantly affecting its normal operations. In this study, the time-series InSAR method was successfully applied to monitor the gradual increase in uneven local subsidence and ground fissures activity at BCIA from June 2003 to March 2023. Initially, ENVISAT-ASAR, Cosmo-SkyMed, and Sentinel-1 data were processed by time-series InSAR techniques to generate deformation rate maps and time series for the airport area. Subsequently, a comparison was made between the displacement time series from InSAR and ground leveling measurements to assess the accuracy of InSAR-derived measurements. Through a comprehensive analysis of the distribution characteristics of land subsidence at the airport, a long-standing ground fault was located within the airport was identified. A preliminary discussion on the development status of this ground fissure was carried out based on the visual interpretation of optical images. Lastly, the inducing factors and evolutionary conditions of land subsidence were discussed. This case demonstrates the applicability of InSAR technology in identifying and monitoring geological processes such as land subsidence and ground fissure activities. It provides a scientific approach to exploring and studying the causes and formation mechanisms of land subsidence and ground fissures in the Beijing Capital Airport area. Full article
Show Figures

Figure 1

22 pages, 10018 KiB  
Article
Monitoring and Analysis of Land Subsidence in Cangzhou Based on Small Baseline Subsets Interferometric Point Target Analysis Technology
by Xinyue Xu, Chaofan Zhou, Huili Gong, Beibei Chen and Lin Wang
Land 2023, 12(12), 2114; https://doi.org/10.3390/land12122114 - 28 Nov 2023
Cited by 2 | Viewed by 1237
Abstract
Cangzhou is located in the northeast part of the North China Plain; here, groundwater is the main water source for production and living. Due to the serious regional land subsidence caused by long-term overexploitation of groundwater, the monitoring of land subsidence in this [...] Read more.
Cangzhou is located in the northeast part of the North China Plain; here, groundwater is the main water source for production and living. Due to the serious regional land subsidence caused by long-term overexploitation of groundwater, the monitoring of land subsidence in this area is significant. In this paper, we used the Small Baseline Subsets Interferometric Point Target Analysis (SBAS-IPTA) technique to process the Envisat-ASAR, Radarsat-2, and Sentinel-1A data and obtained the land subsidence of Cangzhou from 2004 to 2020. Additionally, we obtained winter wheat distribution information in Cangzhou using the Pixel Information Expert Engine (PIE-Engine) remote sensing cloud platform. On this basis, we analyzed the relationship between ground water level, winter wheat planting area, and the response of land subsidence according to the land use type and groundwater level monitoring data near the winter wheat growing area. The results show that during 2004–2020, the average annual subsidence rate of many places in Cangzhou was higher than 30 mm/year, and the maximum subsidence rate was 115 mm/year in 2012. From 2004 to 2020, the area of the subsidence funnel showed a trend of first increasing and then decreasing. In 2020, the subsidence funnel area reached 6.9 × 103 km2. The winter wheat planting area in the urban area showed a trend of first decreasing, then increasing and then decreasing, and it accounted for a large proportion in the funnel area. At the same time, we studied the relationship between the land subsidence rate and the water level at different burial depths and the response of winter wheat planting area. The results showed that the change of confined water level had a stronger response with the other two variables. Full article
(This article belongs to the Special Issue Ground Deformation Monitoring via Remote Sensing Time Series Data)
Show Figures

Figure 1

21 pages, 7257 KiB  
Article
Constructing a Consistent and Continuous Cyanobacteria Bloom Monitoring Product from Multi-Mission Ocean Color Instruments
by Sachidananda Mishra, Richard P. Stumpf and Andrew Meredith
Remote Sens. 2023, 15(22), 5291; https://doi.org/10.3390/rs15225291 - 9 Nov 2023
Viewed by 1239
Abstract
Satellite-based monitoring of cyanobacterial harmful algal blooms (CyanoHABs) heavily utilizes historical Envisat-MERIS and current Sentinel-OLCI observations due to the availability of the 620 nm and 709 nm bands. The permanent loss of communication with Envisat in April 2012 created an observational gap from [...] Read more.
Satellite-based monitoring of cyanobacterial harmful algal blooms (CyanoHABs) heavily utilizes historical Envisat-MERIS and current Sentinel-OLCI observations due to the availability of the 620 nm and 709 nm bands. The permanent loss of communication with Envisat in April 2012 created an observational gap from 2012 until the operationalization of OLCI in 2016. Although MODIS-Terra has been used to bridge the gap from 2012 to 2015, differences in band architecture and the absence of the 709 nm band have complicated generating a consistent and continuous CyanoHAB monitoring product. Moreover, several Terra bands often saturate during extreme high-concentration CyanoHAB events. This study trained a fully connected deep network (CyanNet) to model MERIS-Cyanobacteria Index (CI)—a key satellite algorithm for detecting and quantifying cyanobacteria. The network was trained with Rayleigh-corrected surface reflectance at 12 Terra bands from 2002–2008, 2010–2012, and 2017–2021 and validated with data from 2009 and 2016 in Lake Okeechobee. Model performance was satisfactory, with a ~17% median difference in Lake Okeechobee annual bloom magnitude. The median difference was ~36% with 10-day Chlorophyll-a time series data, with differences often due to variations in data availability, clouds or glint. Without further regional training, the same network performed well in Lake Apopka, Lake George, and western Lake Erie. Validation success, especially in Lake Erie, shows the generalizability of CyanNet and transferability to other geographic regions. Full article
Show Figures

Figure 1

13 pages, 3536 KiB  
Technical Note
Present-Day Crustal Deformation of the Northwestern Tibetan Plateau Based on InSAR Measurements
by Guifang Zhang, Chunyan Qu, Xinjian Shan, Xiaogang Song, Yingfeng Zhang and Yanchuan Li
Remote Sens. 2023, 15(21), 5195; https://doi.org/10.3390/rs15215195 - 31 Oct 2023
Viewed by 973
Abstract
In this study, The ENVISAT advanced synthetic aperture radar observations from 2003 to 2010 of a descending track covering an area of 100 km × 300 km were used to map the surface velocity field in northwestern Tibet. The derived line-of-sight (LOS) velocity [...] Read more.
In this study, The ENVISAT advanced synthetic aperture radar observations from 2003 to 2010 of a descending track covering an area of 100 km × 300 km were used to map the surface velocity field in northwestern Tibet. The derived line-of-sight (LOS) velocity map revealed that interseismic deformation was mainly located on the Altyn Tagh Fault (ATF) and other four immature subsidiary faults (i.e., Tashikule Fault, Muzitage-jingyuhe Fault, Heishibeihu Fault, and Woniuhu Fault). A 2D elastic screw dislocation model was used to interpret the interferometric synthetic aperture radar (InSAR) velocity profiles, which revealed the following results. (a) The oblique movement is partitioned between left-lateral slip at a rate of 6.3 ± 1.4 mm/y on the ATF and 5.9 ± 2.8 mm/y on the subsidiary faults. The low slip rate of the ATF indicates that the ATF does not drive the northeastward extrusion of material, with most of the extrusion occurring in the eastern interior of the plateau and the four subsidiary faults localizing the oblique convergence partitioned in the west. This can reasonably explain why catastrophic earthquakes and rapid slip do not occur all over along the ATF. (b) Based on the four subsidiary faults accommodating the oblique movement and the traces amalgamation with the EKLF (delineated Bayan Har plate boundary to the northeast), we concluded guardedly that the four subsidiary faults are the evoluting plate boundary of the Bayan Har block to the northwest. (c) The Tanan top-up structure had an uplift rate of ~0.6 mm/y at the south of the Tarim Basin. Full article
(This article belongs to the Special Issue Monitoring Subtle Ground Deformation of Geohazards from Space)
Show Figures

Graphical abstract

5 pages, 1311 KiB  
Proceeding Paper
On the Methane Emissions of the Greater Thessaloniki Area
by Konstantinos Kourtidis, Apostolos Tzivleris, Stavros Stathopoulos, Alexandra Gemitzi and Aristeidis K. Georgoulias
Environ. Sci. Proc. 2023, 26(1), 39; https://doi.org/10.3390/environsciproc2023026039 - 24 Aug 2023
Cited by 1 | Viewed by 591
Abstract
We examine the atmospheric concentrations of methane (CH4) over the Greater Thessaloniki Area using data from the periods 2003–2004 and 2018–2022. Earlier data are from SCIAMACHY on ENVISAT, while the later years are from TROPOMI on Sentinel 5P. Large increases are [...] Read more.
We examine the atmospheric concentrations of methane (CH4) over the Greater Thessaloniki Area using data from the periods 2003–2004 and 2018–2022. Earlier data are from SCIAMACHY on ENVISAT, while the later years are from TROPOMI on Sentinel 5P. Large increases are observed over this period, as expected from the overall global trend. The data show increased concentrations over the rice fields of Chalastra, biological waste treatment units and biogas plants, and garbage burial sites. The highest concentrations are observed during autumn, while the lower ones are observed during spring. The 2022 levels are around 1900 ppb. Annual increases in the examined period up to 16 ppbv (2019–2020) have been observed. During December 2021, very high CH4 was observed over an area when no high CH4 concentrations had been observed prior to or after this episode. Full article
Show Figures

Figure 1

22 pages, 16212 KiB  
Article
DInSAR Data Reveal an Intriguing Contemporaneous Onset of Deep Deflation below Vesuvio and the Ongoing Campi Flegrei Uplift
by Antonella Amoruso and Luca Crescentini
Remote Sens. 2023, 15(12), 3038; https://doi.org/10.3390/rs15123038 - 10 Jun 2023
Cited by 1 | Viewed by 1347
Abstract
Campi Flegrei and Vesuvio volcanoes are only about 25 km apart, located on opposite sides of the densely inhabited area of Naples (Italy). Since neighbouring volcanoes may influence each other’s activity, it is of great interest to identify signs of any mutual interaction [...] Read more.
Campi Flegrei and Vesuvio volcanoes are only about 25 km apart, located on opposite sides of the densely inhabited area of Naples (Italy). Since neighbouring volcanoes may influence each other’s activity, it is of great interest to identify signs of any mutual interaction between Campi Flegrei and Vesuvio, or at least note coincidences in their recent deformation dynamics. After a large uplift, Campi Flegrei was generally subsiding from 1985 to 2001, while it has been uplifting—probably driven by deep magma inflation—at an accelerating rate since then. Here, we analysed the ground displacement in the whole Vesuvian area and its surroundings around the early 2000s using 1993–2010 ERS/ENVISAT ascending- and descending-orbit line-of-sight displacements obtained through the Small BAseline Subset Differential Synthetic Aperture Radar Interferometry technique. Although ground deformation is slow—a few millimetres per year—Empirical Orthogonal Function analysis shows a sudden trend change around 2001. Pre-2001 velocity maps confirm previously published results: subsidence mainly occurred inside the caldera rim—probably because of the sliding and compaction of young incoherent materials—and in a few spots around 10 km from the summital crater; eastward displacement occurred in a lobe east of Vesuvio, and westward displacement occurred in a lobe west of Vesuvio, as in the case of the spreading of the volcanic edifice and/or extensional tectonics. We attribute the subsidence spots to the previous high local number of new buildings per year. Post-2002 velocity maps provide evidence of a very different scenario: general subsidence in the whole Vesuvian area, westward displacement in a lobe east of Vesuvio, and eastward displacement in a lobe west of Vesuvio. This last arrangement of the ground displacement field is made even clearer by subtracting the post-2002 velocity from the pre-2001 value. The results of our analyses are consistent with the deflation of a deep pressurised source. Additionally, Vesuvio’s deep seismicity decreased at the beginning of 2002. The coincidence between the transition from deflation to inflation at Campi Flegrei and the onset of deflation below Vesuvio may suggest the possible transfer of magma and/or magmatic fluids between the two plumbing systems. Full article
(This article belongs to the Section Earth Observation for Emergency Management)
Show Figures

Graphical abstract

25 pages, 23610 KiB  
Article
MT-InSAR and Dam Modeling for the Comprehensive Monitoring of an Earth-Fill Dam: The Case of the Benínar Dam (Almería, Spain)
by Miguel Marchamalo-Sacristán, Antonio Miguel Ruiz-Armenteros, Francisco Lamas-Fernández, Beatriz González-Rodrigo, Rubén Martínez-Marín, José Manuel Delgado-Blasco, Matus Bakon, Milan Lazecky, Daniele Perissin, Juraj Papco and Joaquim J. Sousa
Remote Sens. 2023, 15(11), 2802; https://doi.org/10.3390/rs15112802 - 28 May 2023
Cited by 4 | Viewed by 2357
Abstract
The Benínar Dam, located in Southeastern Spain, is an earth-fill dam that has experienced filtration issues since its construction in 1985. Despite the installation of various monitoring systems, the data collected are sparse and inadequate for the dam’s lifetime. The present research integrates [...] Read more.
The Benínar Dam, located in Southeastern Spain, is an earth-fill dam that has experienced filtration issues since its construction in 1985. Despite the installation of various monitoring systems, the data collected are sparse and inadequate for the dam’s lifetime. The present research integrates Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) and dam modeling to validate the monitoring of this dam, opening the way to enhanced integrated monitoring systems. MT-InSAR was proved to be a reliable and continuous monitoring system for dam deformation, surpassing previously installed systems in terms of precision. MT-InSAR allowed the almost-continuous monitoring of this dam since 1992, combining ERS, Envisat, and Sentinel-1A/B data. Line-of-sight (LOS) velocities of settlement in the crest of the dam evolved from maximums of −6 mm/year (1992–2000), −4 mm/year (2002–2010), and −2 mm/year (2015–2021) with median values of −2.6 and −3.0 mm/year in the first periods (ERS and Envisat) and −1.3 mm/year in the Sentinel 1-A/B period. These results are consistent with the maximum admissible modeled deformation from construction, confirming that settlement was more intense in the dam’s early stages and decreased over time. MT-InSAR was also used to integrate the monitoring of the dam basin, including critical slopes, quarries, and infrastructures, such as roads, tracks, and spillways. This study allows us to conclude that MT-InSAR and dam modeling are important elements for the integrated monitoring systems of embankment dams. This conclusion supports the complete integration of MT-InSAR and 3D modeling into the monitoring systems of embankment dams, as they are a key complement to traditional geotechnical monitoring and can overcome the main limitations of topographical monitoring. Full article
(This article belongs to the Special Issue Dam Stability Monitoring with Satellite Geodesy)
Show Figures

Graphical abstract

Back to TopTop