Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (561)

Search Parameters:
Keywords = FY-3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 454 KiB  
Article
Evaluation of Ability of Inactivated Biomasses of Lacticaseibacillus rhamnosus and Saccharomyces cerevisiae to Adsorb Aflatoxin B1 In Vitro
by Rogério Cury Pires, Julia da Costa Calumby, Roice Eliana Rosim, Rogério D’Antonio Pires, Aline Moreira Borowsky, Sher Ali, Esther Lima de Paiva, Ramon Silva, Tatiana Colombo Pimentel, Adriano Gomes da Cruz, Carlos Augusto Fernandes de Oliveira and Carlos Humberto Corassin
Foods 2024, 13(20), 3299; https://doi.org/10.3390/foods13203299 - 17 Oct 2024
Viewed by 326
Abstract
Biological decontamination strategies using microorganisms to adsorb aflatoxins have shown promising results for reducing the dietary exposure to these contaminants. In this study, the ability of inactivated biomasses of Lacticaseibacillus rhamnosus (LRB) and Saccharomyces cerevisiae (SCB) incorporated alone or in combination into functional [...] Read more.
Biological decontamination strategies using microorganisms to adsorb aflatoxins have shown promising results for reducing the dietary exposure to these contaminants. In this study, the ability of inactivated biomasses of Lacticaseibacillus rhamnosus (LRB) and Saccharomyces cerevisiae (SCB) incorporated alone or in combination into functional yogurts (FY) at 0.5–4.0% (w/w) to adsorb aflatoxin B1 (AFB1) was evaluated in vitro. Higher adsorption percentages (86.9–91.2%) were observed in FY containing 1.0% LR + SC or 2.0% SC (w/w). The survival of mouse embryonic fibroblasts increased after exposure to yogurts containing LC + SC at 1.0–4.0% (w/w). No significant differences were noted in the physicochemical and sensory characteristics between aflatoxin-free FY and control yogurts (no biomass) after 30 days of storage. The incorporation of combined LRB and SCB into yogurts as vehicles for these inactivated biomasses is a promising alternative for reducing the exposure to dietary AFB1. The results of this trial support further studies to develop practical applications aiming at the scalability of using the biomasses evaluated in functional foods to mitigate aflatoxin exposure. Full article
Show Figures

Figure 1

22 pages, 5856 KiB  
Article
Assessment of FY-3E GNOS II Radio Occultation Data Using an Improved Three-Cornered Hat Method
by Jiahui Liang, Congliang Liu, Xi Wang, Xiangguang Meng, Yueqiang Sun, Mi Liao, Xiuqing Hu, Wenqiang Lu, Jinsong Wang, Peng Zhang, Guanglin Yang, Na Xu, Weihua Bai, Qifei Du, Peng Hu, Guangyuan Tan, Xianyi Wang, Junming Xia, Feixiong Huang, Cong Yin, Yuerong Cai and Peixian Liadd Show full author list remove Hide full author list
Remote Sens. 2024, 16(20), 3808; https://doi.org/10.3390/rs16203808 - 13 Oct 2024
Viewed by 589
Abstract
The spatial–temporal sampling errors arising from the differences in geographical locations and measurement times between co-located Global Navigation Satellite System (GNSS) radio occultation (RO) and radiosonde (RS) data represent systematic errors in the three-cornered hat (3CH) method. In this study, we propose a [...] Read more.
The spatial–temporal sampling errors arising from the differences in geographical locations and measurement times between co-located Global Navigation Satellite System (GNSS) radio occultation (RO) and radiosonde (RS) data represent systematic errors in the three-cornered hat (3CH) method. In this study, we propose a novel spatial–temporal sampling correction method to mitigate the sampling errors associated with both RO–RS and RS–model pairs. We analyze the 3CH processing chain with this new correction method in comparison to traditional approaches, utilizing Fengyun-3E (FY-3E) GNSS Occultation Sounder II (GNOS II) RO data, atmospheric models, and RS datasets from the Hailar and Xisha stations. Overall, the results demonstrate that the improved 3CH method performs better in terms of spatial–temporal sampling errors and the variances of atmospheric parameters, including refractivity, temperature, and specific humidity. Subsequently, we assess the error variances of the FY-3E GNOS II RO, RS and model atmospheric parameters in China, in particular the northern China and southern China regions, based on large ensemble datasets using the improved 3CH data processing chain. The results indicate that the FY-3E GNOS II BeiDou navigation satellite system (BDS) RO and Global Positioning System (GPS) RO show good consistency, with the average error variances of refractivity, temperature, and specific humidity being less than 1.12%2, 0.13%2, and 700%2, respectively. A comparison of the datasets from northern and southern China reveals that the error variances for refractivity are smaller in northern China, while temperature and specific humidity exhibit smaller error variances in southern China, which is attributable to the differing climatic conditions. Full article
(This article belongs to the Special Issue International GNSS Service Validation, Application and Calibration)
Show Figures

Figure 1

18 pages, 12939 KiB  
Article
Dust Monitoring and Three-Dimensional Transport Characteristics of Dust Aerosol in Beijing, Tianjin, and Hebei
by Siqin Zhang, Jianjun Wu, Jiaqi Yao, Xuefeng Quan, Haoran Zhai, Qingkai Lu, Haobin Xia, Mengran Wang and Jinquan Guo
Atmosphere 2024, 15(10), 1212; https://doi.org/10.3390/atmos15101212 - 10 Oct 2024
Viewed by 346
Abstract
Global dust events have become more frequent due to climate change and increased human activity, significantly impacting air quality and human health. Previous studies have mainly focused on determining atmospheric dust pollution levels through atmospheric parameter simulations or AOD values obtained from satellite [...] Read more.
Global dust events have become more frequent due to climate change and increased human activity, significantly impacting air quality and human health. Previous studies have mainly focused on determining atmospheric dust pollution levels through atmospheric parameter simulations or AOD values obtained from satellite remote sensing. However, research on the quantitative description of dust intensity and its cross-regional transport characteristics still faces numerous challenges. Therefore, this study utilized Fengyun-4A (FY-4A) satellite Advanced Geostationary Radiation Imager (AGRI) imagery, Cloud-Aerosol Lidar, and Infrared Pathfinder Satellite Observation (CALIPSO) lidar, and other auxiliary data, to conduct three-dimensional spatiotemporal monitoring and a cross-regional transport analysis of two typical dust events in the Beijing–Tianjin–Hebei (BTH) region of China using four dust intensity indices Infrared Channel Shortwave Dust (Icsd), Dust Detection Index (DDI), dust value (DV), and Dust Strength Index (DSI)) and the HYSPLIT model. We found that among the four indices, DDI was the most suitable for studying dust in the BTH region, with a detection accuracy (POCD) of >88% at all times and reaching a maximum of 96.14%. Both the 2021 and 2023 dust events originated from large-scale deforestation in southern Mongolia and the border area of Inner Mongolia, with dust plumes distributed between 2 and 12 km being transported across regions to the BTH area. Further, when dust aerosols are primarily concentrated below 4 km and PM10 concentrations consistently exceed 600 µg/m3, large dust storms are more likely to occur in the BTH region. The findings of this study provide valuable insights into the sources, transport pathways, and environmental impacts of dust aerosols. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

20 pages, 1195 KiB  
Article
Evaluating Executives and Non-Executives’ Impact toward ESG Performance in Banking Sector: An Entropy Weight and TOPSIS Method
by Georgia Zournatzidou
Adm. Sci. 2024, 14(10), 255; https://doi.org/10.3390/admsci14100255 - 10 Oct 2024
Viewed by 647
Abstract
Financial institutions should prioritize the adoption of comprehensive Environmental, Social, and Corporate Governance (ESG) disclosure policies to improve their market reputation and decrease capital expenditures. The current study’s research objective is to investigate the impact of both inside and outside executives on the [...] Read more.
Financial institutions should prioritize the adoption of comprehensive Environmental, Social, and Corporate Governance (ESG) disclosure policies to improve their market reputation and decrease capital expenditures. The current study’s research objective is to investigate the impact of both inside and outside executives on the successive adoption of ESG strategies, based on the sustainable leadership theoretical framework and the bottom-up corporate governance theory. Data for the current study were obtained from the Refinitiv Eikon database and analyzed through using the entropy weight and TOPSIS techniques. The research suggests that including fully autonomous board members has the potential to improve the transparency of firms’ ESG criteria. This result was derived from an analysis of data pertaining to the behavior of CEOs and non-executives at the company level in Fiscal Year (FY) 2023. The verification of the soundness and dependability of this finding has been carried out by scrutinizing the problem of endogeneity and diverse techniques of data representation. Furthermore, our study has disproven the idea that having CEOs on the board of directors may significantly improve the ESG performance of financial institutions. Consequently, the research proposes that adopting a strict policy of board independence has the capacity to alleviate the environmental, social, and governance repercussions that arise from the control of internal executives, namely CEOs. Full article
Show Figures

Figure 1

35 pages, 7235 KiB  
Article
Change in Fractional Vegetation Cover and Its Prediction during the Growing Season Based on Machine Learning in Southwest China
by Xiehui Li, Yuting Liu and Lei Wang
Remote Sens. 2024, 16(19), 3623; https://doi.org/10.3390/rs16193623 - 28 Sep 2024
Viewed by 415
Abstract
Fractional vegetation cover (FVC) is a crucial indicator for measuring the growth of surface vegetation. The changes and predictions of FVC significantly impact biodiversity conservation, ecosystem health and stability, and climate change response and prediction. Southwest China (SWC) is characterized by complex topography, [...] Read more.
Fractional vegetation cover (FVC) is a crucial indicator for measuring the growth of surface vegetation. The changes and predictions of FVC significantly impact biodiversity conservation, ecosystem health and stability, and climate change response and prediction. Southwest China (SWC) is characterized by complex topography, diverse climate types, and rich vegetation types. This study first analyzed the spatiotemporal variation of FVC at various timescales in SWC from 2000 to 2020 using FVC values derived from pixel dichotomy model. Next, we constructed four machine learning models—light gradient boosting machine (LightGBM), support vector regression (SVR), k-nearest neighbor (KNN), and ridge regression (RR)—along with a weighted average heterogeneous ensemble model (WAHEM) to predict growing-season FVC in SWC from 2000 to 2023. Finally, the performance of the different ML models was comprehensively evaluated using tenfold cross-validation and multiple performance metrics. The results indicated that the overall FVC in SWC predominantly increased from 2000 to 2020. Over the 21 years, the FVC spatial distribution in SWC generally showed a high east and low west pattern, with extremely low FVC in the western plateau of Tibet and higher FVC in parts of eastern Sichuan, Chongqing, Guizhou, and Yunnan. The determination coefficient R2 scores from tenfold cross-validation for the four ML models indicated that LightGBM had the strongest predictive ability whereas RR had the weakest. WAHEM and LightGBM models performed the best overall in the training, validation, and test sets, with RR performing the worst. The predicted spatial change trends were consistent with the MODIS-MOD13A3-FVC and FY3D-MERSI-FVC, although the predicted FVC values were slightly higher but closer to the MODIS-MOD13A3-FVC. The feature importance scores from the LightGBM model indicated that digital elevation model (DEM) had the most significant influence on FVC among the six input features. In contrast, soil surface water retention capacity (SSWRC) was the most influential climate factor. The results of this study provided valuable insights and references for monitoring and predicting the vegetation cover in regions with complex topography, diverse climate types, and rich vegetation. Additionally, they offered guidance for selecting remote sensing products for vegetation cover and optimizing different ML models. Full article
Show Figures

Figure 1

22 pages, 1777 KiB  
Review
Recent Insights into the Physio-Biochemical and Molecular Mechanisms of Low Temperature Stress in Tomato
by Kwanuk Lee and Hunseung Kang
Plants 2024, 13(19), 2715; https://doi.org/10.3390/plants13192715 - 28 Sep 2024
Viewed by 480
Abstract
Climate change has emerged as a crucial global issue that significantly threatens the survival of plants. In particular, low temperature (LT) is one of the critical environmental factors that influence plant morphological, physiological, and biochemical changes during both the vegetative and reproductive growth [...] Read more.
Climate change has emerged as a crucial global issue that significantly threatens the survival of plants. In particular, low temperature (LT) is one of the critical environmental factors that influence plant morphological, physiological, and biochemical changes during both the vegetative and reproductive growth stages. LT, including abrupt drops in temperature, as well as winter conditions, can cause detrimental effects on the growth and development of tomato plants, ranging from sowing, transplanting, truss appearance, flowering, fertilization, flowering, fruit ripening, and yields. Therefore, it is imperative to understand the comprehensive mechanisms underlying the adaptation and acclimation of tomato plants to LT, from the morphological changes to the molecular levels. In this review, we discuss the previous and current knowledge of morphological, physiological, and biochemical changes, which contain vegetative and reproductive parameters involving the leaf length (LL), plant height (PH) stem diameter (SD), fruit set (FS), fruit ripening (FS), and fruit yield (FY), as well as photosynthetic parameters, cell membrane stability, osmolytes, and ROS homeostasis via antioxidants scavenging systems during LT stress in tomato plants. Moreover, we highlight recent advances in the understanding of molecular mechanisms, including LT perception, signaling transduction, gene regulation, and fruit ripening and epigenetic regulation. The comprehensive understanding of LT response provides a solid basis to develop the LT-resistant varieties for sustainable tomato production under the ever-changing temperature fluctuations. Full article
Show Figures

Figure 1

21 pages, 7177 KiB  
Article
Neural Network-Based Estimation of Near-Surface Air Temperature in All-Weather Conditions Using FY-4A AGRI Data over China
by Hai-Lei Liu, Min-Zheng Duan, Xiao-Qing Zhou, Sheng-Lan Zhang, Xiao-Bo Deng and Mao-Lin Zhang
Remote Sens. 2024, 16(19), 3612; https://doi.org/10.3390/rs16193612 - 27 Sep 2024
Viewed by 315
Abstract
Near-surface air temperature (Ta) estimation by geostationary meteorological satellites is mainly carried out under clear-sky conditions. In this study, we propose an all-weather Ta estimation method utilizing FY-4A Advanced Geostationary Radiation Imager (AGRI) and the Global Forecast System (GFS), [...] Read more.
Near-surface air temperature (Ta) estimation by geostationary meteorological satellites is mainly carried out under clear-sky conditions. In this study, we propose an all-weather Ta estimation method utilizing FY-4A Advanced Geostationary Radiation Imager (AGRI) and the Global Forecast System (GFS), along with additional auxiliary data. The method includes two neural-network-based Ta estimation models for clear and cloudy skies, respectively. For clear skies, AGRI LST was utilized to estimate the Ta (Ta,clear), whereas cloud top temperature and cloud top height were employed to estimate the Ta for cloudy skies (Ta,cloudy). The estimated Ta was validated using the 2020 data from 1211 stations in China, and the RMSE values of the Ta,clear and Ta,cloudy were 1.80 °C and 1.72 °C, while the correlation coefficients were 0.99 and 0.986, respectively. The performance of the all-weather Ta estimation model showed clear temporal and spatial variation characteristics, with higher accuracy in summer (RMSE = 1.53 °C) and lower accuracy in winter (RMSE = 1.88 °C). The accuracy in southeastern China was substantially better than in western and northern China. In addition, the dependence of the accuracy of the Ta estimation model for LST, CTT, CTH, elevation, and air temperature were analyzed. The global sensitivity analysis shows that AGRI and GFS data are the most important factors for accurate Ta estimation. The AGRI-estimated Ta showed higher accuracy compared to the ERA5-Land data. The proposed models demonstrated potential for Ta estimation under all-weather conditions and are adaptable to other geostationary satellites. Full article
(This article belongs to the Special Issue Advances in Thermal Infrared Remote Sensing II)
Show Figures

Figure 1

15 pages, 3797 KiB  
Technical Note
Estimation of IFOV Inter-Channel Deviation for Microwave Radiation Imager Onboard FY-3G Satellite
by Pengjuan Yao, Shengli Wu, Yang Guo, Jian Shang, Kesong Dong, Weiwei Xu and Jiachen Wang
Remote Sens. 2024, 16(19), 3571; https://doi.org/10.3390/rs16193571 - 25 Sep 2024
Viewed by 380
Abstract
The Microwave Radiation Imager (MWRI) onboard the FengYun satellite plays a crucial role in global change monitoring and numerical weather prediction. Estimating and correcting geolocation errors are important to retrieving accurate geophysical variables. However, the instantaneous field of view (IFOV) inter-channel deviation, which [...] Read more.
The Microwave Radiation Imager (MWRI) onboard the FengYun satellite plays a crucial role in global change monitoring and numerical weather prediction. Estimating and correcting geolocation errors are important to retrieving accurate geophysical variables. However, the instantaneous field of view (IFOV) inter-channel deviation, which is mainly caused by the structure mounting error and measurement error of feedhorns, is less studied. In this present study, we constructed a general theoretical model to automatically estimate the IFOV inter-channel deviations suitable for conical-scanning instruments. The model can automatically detect the along-track and across-track vectors that pass through the land–sea boundary points and are perpendicular to the actual coastlines. Regarding the midpoints of the vectors as the brightness temperature (Tb) inflection points, the IFOV inter-channel deviation is the pixel offset or distance of the maximum gradients of the Tb near the inflection points for each channel relative to the 89-GHz V-pol channel. We tested the model’s operational performance using the FY-3G/MWRI-Rainfall Mission (MWRI-RM) observations. Considering that parameter uploading adjusted the IFOV inter-channel deviations, the model’s validity was verified by comparing the adjustments calculated by the model with the theoretical changes caused by parameter uploading. The result shows that the differences between them for all window channels are less than 100 m, indicating the model’s effectiveness in evaluating the IFOV inter-channel deviation for the MWRI-RM. Furthermore, the estimated on-orbit IFOV inter-channel deviations for the MWRI-RM show that all channel deviations are less than 1 km, meeting the instrument’s design requirement of 2 km. We believe this study will provide a foundation for IFOV inter-channel registration of passive microwave payloads and spatial matching of multiple payloads. Full article
Show Figures

Graphical abstract

19 pages, 4308 KiB  
Article
Identification of Genomic Regions Associated with Differences in Flowering Time and Inflorescence Architecture between Melastoma candidum and M. normale
by Jingfang Chen, Yan Zhong, Peishan Zou, Jianzhong Ni, Ying Liu, Seping Dai and Renchao Zhou
Int. J. Mol. Sci. 2024, 25(19), 10250; https://doi.org/10.3390/ijms251910250 - 24 Sep 2024
Viewed by 326
Abstract
Understanding the genetic basis of species differences in flowering time and inflorescence architecture can shed light on speciation and molecular breeding. Melastoma shows rapid speciation, with about 100 species formed in the past few million years, and, meanwhile, possesses high ornamental values. Two [...] Read more.
Understanding the genetic basis of species differences in flowering time and inflorescence architecture can shed light on speciation and molecular breeding. Melastoma shows rapid speciation, with about 100 species formed in the past few million years, and, meanwhile, possesses high ornamental values. Two largely sympatric and closely related species of this genus, M. candidum and M. normale, differ markedly in flowering time and flower number per inflorescence. Here, we constructed an F2 population between M. candidum and M. normale, and used extreme bulks for flowering time and flower number per inflorescence in this population to identify genomic regions underlying the two traits. We found high differentiation on nearly the whole chromosome 7 plus a few regions on other chromosomes between the two extreme bulks for flowering time. Large chromosomal inversions on chromosome 7 between the two species, which contain flowering-related genes, can explain recombinational suppression on the chromosome. We identified 1872 genes with one or more highly differentiated SNPs between the two bulks for flowering time, including CSTF77, FY, SPA3, CDF3, AGL8, AGL15, FHY1, COL9, CIB1, FKF1 and FAR1, known to be related to flowering. We also identified 680 genes with one or more highly differentiated SNPs between the two bulks for flower number per inflorescence, including PNF, FIL and LAS, knows to play important roles in inflorescence development. These large inversions on chromosome 7 prevent us from narrowing down the genomic region(s) associated with flowering time differences between the two species. Flower number per inflorescence in Melastoma appears to be controlled by multiple genes, without any gene of major effect. Our study indicates that large chromosomal inversions can hamper the identification of the genetic basis of important traits, and the inflorescence architecture of Melastoma species may have a complex genetic basis. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 277 KiB  
Article
Association of Production and Selected Dimensional Conformation Traits in Holstein Friesian Cows
by Zsolt Jenő Kőrösi, Gabriella Holló, Szabolcs Bene, László Bognár and Ferenc Szabó
Animals 2024, 14(18), 2753; https://doi.org/10.3390/ani14182753 - 23 Sep 2024
Viewed by 532
Abstract
The objective of this study was to estimate the heritability of dairy production traits and that for dimensional traits and to calculate the correlation between the two heritability values in a Holstein Friesian cow herd bred in Hungary. Data of 15,032 Holstein Friesian [...] Read more.
The objective of this study was to estimate the heritability of dairy production traits and that for dimensional traits and to calculate the correlation between the two heritability values in a Holstein Friesian cow herd bred in Hungary. Data of 15,032 Holstein Friesian cows born in the period 2008–2018 from 666 sires were collected for the study in 6 large dairy herds. Among the conformation traits, stature (ST), chest width (CW), body depth (BD), and rump width (RW), and for production traits, in the first lactation of cows, the 305-day milk yield (MY), milk butterfat yield (FY), and milk protein yield (MY) were evaluated. Heritability estimates of ST, CW, BD, and RW were 0.49, 0.25, 0.31, and 0.30, and those of MY, FY, and PY were 0.40, 0.35, and 0.30, respectively. BD and RW had no phenotypic (b = −0.01) or genetic (b = 0.00–0.01) change. The production traits (MY, FY, PY) increased to a greater extent (b = 2.2–43.3) than the examined conformation traits over time. Consequently, it is indicated that the selection for dairy production did not result in an increase in the studied dimensional traits. Full article
(This article belongs to the Special Issue Advances in Cattle Genetics and Breeding)
21 pages, 9876 KiB  
Article
Estimation of Leaf Area Index across Biomes and Growth Stages Combining Multiple Vegetation Indices
by Fangyi Lv, Kaimin Sun, Wenzhuo Li, Shunxia Miao and Xiuqing Hu
Sensors 2024, 24(18), 6106; https://doi.org/10.3390/s24186106 - 21 Sep 2024
Viewed by 617
Abstract
The leaf area index (LAI) is a key indicator of vegetation canopy structure and growth status, crucial for global ecological environment research. The Moderate Resolution Spectral Imager-II (MERSI-II) aboard Fengyun-3D (FY-3D) covers the globe twice daily, providing a reliable data source for large-scale [...] Read more.
The leaf area index (LAI) is a key indicator of vegetation canopy structure and growth status, crucial for global ecological environment research. The Moderate Resolution Spectral Imager-II (MERSI-II) aboard Fengyun-3D (FY-3D) covers the globe twice daily, providing a reliable data source for large-scale and high-frequency LAI estimation. VI-based LAI estimation is effective, but species and growth status impacts on the sensitivity of the VI–LAI relationship are rarely considered, especially for MERSI-II. This study analyzed the VI–LAI relationship for eight biomes in China with contrasting leaf structures and canopy architectures. The LAI was estimated by adaptively combining multiple VIs and validated using MODIS, GLASS, and ground measurements. Results show that (1) species and growth stages significantly affect VI–LAI sensitivity. For example, the EVI is optimal for broadleaf crops in winter, while the RDVI is best for evergreen needleleaf forests in summer. (2) Combining vegetation indices can significantly optimize sensitivity. The accuracy of multi-VI-based LAI retrieval is notably higher than using a single VI for the entire year. (3) MERSI-II shows good spatial–temporal consistency with MODIS and GLASS and is more sensitive to vegetation growth fluctuation. Direct validation with ground-truth data also demonstrates that the uncertainty of retrievals is acceptable (R2 = 0.808, RMSE = 0.642). Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

22 pages, 6915 KiB  
Article
Enhancing Significant Wave Height Retrieval with FY-3E GNSS-R Data: A Comparative Analysis of Deep Learning Models
by Zhenxiong Zhou, Boheng Duan, Kaijun Ren, Weicheng Ni and Ruixin Cao
Remote Sens. 2024, 16(18), 3468; https://doi.org/10.3390/rs16183468 - 18 Sep 2024
Viewed by 382
Abstract
Significant Wave Height (SWH) is a crucial parameter in oceanographic research, essential for understanding various marine and atmospheric processes. Traditional methods for obtaining SWH, such as ship-based and buoy measurements, face limitations like limited spatial coverage and high operational costs. With the advancement [...] Read more.
Significant Wave Height (SWH) is a crucial parameter in oceanographic research, essential for understanding various marine and atmospheric processes. Traditional methods for obtaining SWH, such as ship-based and buoy measurements, face limitations like limited spatial coverage and high operational costs. With the advancement of Global Navigation Satellite Systems reflectometry (GNSS-R) technology, a new method for retrieving SWH has emerged, demonstrating promising results. This study utilizes Radio occultation sounder (GNOS) data from the FY-3E satellite and incorporates the latest Vision Transformer (ViT) technology to investigate GNSS-R-based SWH retrieval. We designed and evaluated various deep learning models, including ANN-Wave, CNN-Wave, Hybrid-Wave, Trans-Wave, and ViT-Wave. Through comparative training using ERA5 data, the ViT-Wave model was identified as the optimal retrieval model. The ViT-Wave model achieved a Root Mean Square Error (RMSE) accuracy of 0.4052 m and Mean Absolute Error (MAE) accuracy of 0.2700 m, significantly outperforming both traditional methods and newer deep learning approaches utilizing Cyclone Global Navigation Satellite Systems (CYGNSS) data. These results underscore the potential of integrating GNSS-R technology with advanced deep-learning models to enhance SWH retrieval accuracy and reliability in oceanographic research. Full article
Show Figures

Figure 1

21 pages, 13421 KiB  
Article
Near-Surface Air Temperature Estimation Based on an Improved Conditional Generative Adversarial Network
by Jiaqi Zheng, Xi Wu, Xiaojie Li and Jing Peng
Sensors 2024, 24(18), 5972; https://doi.org/10.3390/s24185972 - 14 Sep 2024
Viewed by 334
Abstract
To address the issue of missing near-surface air temperature data caused by the uneven distribution of ground meteorological observation stations, we propose a method for near-surface air temperature estimation based on an improved conditional generative adversarial network (CGAN) framework. Leveraging the all-weather coverage [...] Read more.
To address the issue of missing near-surface air temperature data caused by the uneven distribution of ground meteorological observation stations, we propose a method for near-surface air temperature estimation based on an improved conditional generative adversarial network (CGAN) framework. Leveraging the all-weather coverage advantage of Fengyun meteorological satellites, Fengyun-4A (FY-4A) satellite remote sensing data are utilized as conditional guiding information for the CGAN, helping to direct and constrain the near-surface air temperature estimation process. In the proposed network model of the method based on the conditional generative adversarial network structure, the generator combining a self-attention mechanism and cascaded residual blocks is designed with U-Net as the backbone, which extracts implicit feature information and suppresses the irrelevant information in the Fengyun satellite data. Furthermore, a discriminator with multi-level and multi-scale spatial feature fusion is constructed to enhance the network’s perception of details and the global structure, enabling accurate air temperature estimation. The experimental results demonstrate that, compared with Attention U-Net, Pix2pix, and other deep learning models, the method presents significant improvements of 68.75% and 10.53%, respectively in the root mean square error (RMSE) and Pearson’s correlation coefficient (CC). These results indicate the superior performance of the proposed model for near-surface air temperature estimation. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

19 pages, 6287 KiB  
Article
Research on Multiscale Atmospheric Chaos Based on Infrared Remote-Sensing and Reanalysis Data
by Zhong Wang, Shengli Sun, Wenjun Xu, Rui Chen, Yijun Ma and Gaorui Liu
Remote Sens. 2024, 16(18), 3376; https://doi.org/10.3390/rs16183376 - 11 Sep 2024
Viewed by 527
Abstract
The atmosphere is a complex nonlinear system, with the information of its temperature, water vapor, pressure, and cloud being crucial aspects of remote-sensing data analysis. There exist intricate interactions among these internal components, such as convection, radiation, and humidity exchange. Atmospheric phenomena span [...] Read more.
The atmosphere is a complex nonlinear system, with the information of its temperature, water vapor, pressure, and cloud being crucial aspects of remote-sensing data analysis. There exist intricate interactions among these internal components, such as convection, radiation, and humidity exchange. Atmospheric phenomena span multiple spatial and temporal scales, from small-scale thunderstorms to large-scale events like El Niño. The dynamic interactions across different scales, along with external disturbances to the atmospheric system, such as variations in solar radiation and Earth surface conditions, contribute to the chaotic nature of the atmosphere, making long-term predictions challenging. Grasping the intrinsic chaotic dynamics is essential for advancing atmospheric analysis, which holds profound implications for enhancing meteorological forecasts, mitigating disaster risks, and safeguarding ecological systems. To validate the chaotic nature of the atmosphere, this paper reviewed the definitions and main features of chaotic systems, elucidated the method of phase space reconstruction centered on Takens’ theorem, and categorized the qualitative and quantitative methods for determining the chaotic nature of time series data. Among quantitative methods, the Wolf method is used to calculate the Largest Lyapunov Exponents, while the G–P method is used to calculate the correlation dimensions. A new method named Improved Saturated Correlation Dimension method was proposed to address the subjectivity and noise sensitivity inherent in the traditional G–P method. Subsequently, the Largest Lyapunov Exponents and saturated correlation dimensions were utilized to conduct a quantitative analysis of FY-4A and Himawari-8 remote-sensing infrared observation data, and ERA5 reanalysis data. For both short-term remote-sensing data and long-term reanalysis data, the results showed that more than 99.91% of the regional points have corresponding sequences with positive Largest Lyapunov exponents and all the regional points have correlation dimensions that tended to saturate at values greater than 1 with increasing embedding dimensions, thereby proving that the atmospheric system exhibits chaotic properties on both short and long temporal scales, with extreme sensitivity to initial conditions. This conclusion provided a theoretical foundation for the short-term prediction of atmospheric infrared radiation field variables and the detection of weak, time-sensitive signals in complex atmospheric environments. Full article
(This article belongs to the Topic Atmospheric Chemistry, Aging, and Dynamics)
Show Figures

Graphical abstract

19 pages, 12898 KiB  
Article
The Reconstruction of FY-4A and FY-4B Cloudless Top-of-Atmosphere Radiation and Full-Coverage Particulate Matter Products Reveals the Influence of Meteorological Factors in Pollution Events
by Zhihao Song, Lin Zhao, Qia Ye, Yuxiang Ren, Ruming Chen and Bin Chen
Remote Sens. 2024, 16(18), 3363; https://doi.org/10.3390/rs16183363 - 10 Sep 2024
Viewed by 438
Abstract
By utilizing top-of-atmosphere radiation (TOAR) data from China’s new generation of geostationary satellites (FY-4A and FY-4B) along with interpretable machine learning models, near-surface particulate matter concentrations in China were estimated, achieving hourly temporal resolution, 4 km spatial resolution, and 100% spatial coverage. First, [...] Read more.
By utilizing top-of-atmosphere radiation (TOAR) data from China’s new generation of geostationary satellites (FY-4A and FY-4B) along with interpretable machine learning models, near-surface particulate matter concentrations in China were estimated, achieving hourly temporal resolution, 4 km spatial resolution, and 100% spatial coverage. First, the cloudless TOAR data were matched and modeled with the solar radiation products from the ERA5 dataset to construct and estimate a fully covered TOAR dataset under assumed clear-sky conditions, which increased coverage from 20–30% to 100%. Subsequently, this dataset was applied to estimate particulate matter. The analysis demonstrated that the fully covered TOAR dataset (R2 = 0.83) performed better than the original cloudless dataset (R2 = 0.76). Additionally, using feature importance scores and SHAP values, the impact of meteorological factors and air mass trajectories on the increase in PM10 and PM2.5 during dust events were investigated. The analysis of haze events indicated that the main meteorological factors driving changes in particulate matter included air pressure, temperature, and boundary layer height. The particulate matter concentration products obtained using fully covered TOAR data exhibit high coverage and high spatiotemporal resolution. Combined with data-driven interpretable machine learning, they can effectively reveal the influencing factors of particulate matter in China. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

Back to TopTop