Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = HC-MMK approach

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12022 KiB  
Technical Note
Land Cover Mapping in Southwestern China Using the HC-MMK Approach
by Guangbin Lei, Ainong Li, Jinhu Bian, Zhengjian Zhang, Huaan Jin, Xi Nan, Wei Zhao, Jiyan Wang, Xiaomin Cao, Jianbo Tan, Qiannan Liu, Huan Yu, Guangbin Yang and Wenlan Feng
Remote Sens. 2016, 8(4), 305; https://doi.org/10.3390/rs8040305 - 7 Apr 2016
Cited by 33 | Viewed by 8128
Abstract
Land cover mapping in mountainous areas is a notoriously challenging task due to the rugged terrain and high spatial heterogeneity of land surfaces as well as the frequent cloud contamination of satellite imagery. Taking Southwestern China (a typical mountainous region) as an example, [...] Read more.
Land cover mapping in mountainous areas is a notoriously challenging task due to the rugged terrain and high spatial heterogeneity of land surfaces as well as the frequent cloud contamination of satellite imagery. Taking Southwestern China (a typical mountainous region) as an example, this paper established a new HC-MMK approach (Hierarchical Classification based on Multi-source and Multi-temporal data and geo-Knowledge), which was especially designed for land cover mapping in mountainous areas. This approach was taken in order to generate a 30 m-resolution land cover product in Southwestern China in 2010 (hereinafter referred to as CLC-SW2010). The multi-temporal native HJ (HuanJing, small satellite constellation for disaster and environmental monitoring) CCD (Charge-Coupled Device) images, Landsat TM (Thematic Mapper) images and topographical data (including elevation, aspect, slope, etc.) were taken as the main input data sources. Hierarchical classification tree construction and a five-step knowledge-based interactive quality control were the major components of this proposed approach. The CLC-SW2010 product contained six primary categories and 38 secondary categories, which covered about 2.33 million km2 (accounting for about a quarter of the land area of China). The accuracies of primary and secondary categories for CLC-SW2010 reached 95.09% and 87.14%, respectively, which were assessed independently by a third-party group. This product has so far been used to estimate the terrestrial carbon stocks and assess the quality of the ecological environments. The proposed HC-MMK approach could be used not only in mountainous areas, but also for plains, hills and other regions. Meanwhile, this study could also be used as a reference for other land cover mapping projects over large areas or even the entire globe. Full article
Show Figures

Graphical abstract

Back to TopTop