Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (360)

Search Parameters:
Keywords = HMI

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8780 KiB  
Article
Fostering User Acceptance in Shared Autonomous Vehicles: A Framework for HMI Design
by Ming Yan, Lucia Rampino and Giandomenico Caruso
Multimodal Technol. Interact. 2024, 8(11), 94; https://doi.org/10.3390/mti8110094 - 24 Oct 2024
Abstract
The integration of automated vehicle (AV) technology in public transportation systems offers promising opportunities to improve the flexibility and safety of the traffic environment. However, user acceptance remains a critical challenge in the field of human-machine interaction for the effective deployment of shared [...] Read more.
The integration of automated vehicle (AV) technology in public transportation systems offers promising opportunities to improve the flexibility and safety of the traffic environment. However, user acceptance remains a critical challenge in the field of human-machine interaction for the effective deployment of shared autonomous vehicles (SAVs). This study presents a design framework aimed at enhancing user acceptance through human-machine interface (HMI) design tailored to SAVs. The framework is developed in adherence to relevant interaction design principles, following a systematic approach encompassing three key steps: analysis, synthesis, and evaluation. It integrates user acceptance factors into the design process, providing a structured method for designers. The framework was iteratively refined through interviews with three international domain experts; a focus group discussion with 10 researchers and professionals specializing in automotive interaction designers; and a workshop with 30 students and designers. The results demonstrate the framework’s ability to guide the development of user-acceptable HMI solutions. The paper concludes by emphasizing the need for further exploration into how user acceptance factors evolve over time and how real-world testing can validate the framework’s effectiveness in promoting user acceptance and satisfaction. Full article
Show Figures

Figure 1

15 pages, 5038 KiB  
Article
Investigation of the Automatic Monitoring System of a Solar Power Plant with Flexible PV Modules
by Žydrūnas Kavaliauskas, Igor Šajev, Giedrius Blažiūnas and Giedrius Gecevičius
Appl. Sci. 2024, 14(20), 9500; https://doi.org/10.3390/app14209500 - 17 Oct 2024
Viewed by 391
Abstract
During this research, an automatic monitoring system was developed to monitor the working parameters in a solar power plant consisting of two flexible silicon modules. The first stage of the monitoring system relies on a microcontroller, which collects data from wattmeter modules made [...] Read more.
During this research, an automatic monitoring system was developed to monitor the working parameters in a solar power plant consisting of two flexible silicon modules. The first stage of the monitoring system relies on a microcontroller, which collects data from wattmeter modules made using a microcontroller. This tier also includes DC/DC converter and RS232-TCP converter modules for data transfer. The second stage, the industrial PLC, receives data from the first stage and transmits them to the PC, where the information is stored and the processes are visualized on the HMI screen. During this study, the charging process was analyzed using PWM- and MPPT-type charging controllers, as well as the power supply of Fito LED strips for lighting plants. Using the created monitoring system, the parameters of the solar power plant with flexible PV modules were monitored. This study compared PWM and MPPT battery charging methods, finding that MPPT is more efficient, especially under unstable solar conditions. MPPT technology optimizes energy usage more efficiently, resulting in faster battery charging compared to PWM technology. Full article
(This article belongs to the Special Issue Applied Electronics and Functional Materials)
Show Figures

Figure 1

32 pages, 7362 KiB  
Article
Evaluating and Prioritizing Circular Supply Chain Alternatives in the Energy Context with a Holistic Multi-Indicator Decision Support System
by Thanh Quang Nguyen, Sonia Longo, Maurizio Cellura, Le Quyen Luu, Alessandra Bertoli and Letizia Bua
Energies 2024, 17(20), 5179; https://doi.org/10.3390/en17205179 - 17 Oct 2024
Viewed by 354
Abstract
Transitioning to a circular economy is crucial for sustainable energy development; yet, current energy supply chains lack comprehensive assessment tools. This study introduces the Holistic Multi-Indicator Decision Support System (HMI_DSS), an innovative tool grounded in life cycle thinking and advanced multi-criteria decision-making methodologies, [...] Read more.
Transitioning to a circular economy is crucial for sustainable energy development; yet, current energy supply chains lack comprehensive assessment tools. This study introduces the Holistic Multi-Indicator Decision Support System (HMI_DSS), an innovative tool grounded in life cycle thinking and advanced multi-criteria decision-making methodologies, including Entropy and PROMETHEE II. The HMI_DSS quantifies and assesses sustainability and circularity in energy systems by employing 49 indicators, with a focus on energy efficiency and greenhouse gas emissions. A case study on the rice straw energy supply chain for biogas production illustrates the tool’s effectiveness, comparing a baseline scenario to an alternative. The results show that the global warming potential (GWP) of the baseline is 122 gCO2eq/kWh, while the alternative is 116 gCO2eq/kWh. However, the baseline scenario has lower energy consumption (1.72 × 107 MJ annually) than the alternative (1.98 × 107 MJ). Overall, the alternative outperforms the baseline in terms of sustainability and circularity. The HMI_DSS offers a flexible and robust framework for evaluating trade-offs in energy systems, providing valuable insights for energy companies and researchers in adopting circular economy principles to achieve sustainable development. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Graphical abstract

16 pages, 5805 KiB  
Article
Numerical and Experimental Study of a Wearable Exo-Glove for Telerehabilitation Application Using Shape Memory Alloy Actuators
by Mohammad Sadeghi, Alireza Abbasimoshaei, Jose Pedro Kitajima Borges and Thorsten Alexander Kern
Actuators 2024, 13(10), 409; https://doi.org/10.3390/act13100409 - 11 Oct 2024
Viewed by 428
Abstract
Hand paralysis, caused by conditions such as spinal cord injuries, strokes, and arthritis, significantly hinders daily activities. Wearable exo-gloves and telerehabilitation offer effective hand training solutions to aid the recovery process. This study presents the development of lightweight wearable exo-gloves designed for finger [...] Read more.
Hand paralysis, caused by conditions such as spinal cord injuries, strokes, and arthritis, significantly hinders daily activities. Wearable exo-gloves and telerehabilitation offer effective hand training solutions to aid the recovery process. This study presents the development of lightweight wearable exo-gloves designed for finger telerehabilitation. The prototype uses NiTi shape memory alloy (SMA) actuators to control five fingers. Specialized end effectors target the metacarpophalangeal (MCP), proximal interphalangeal (PIP), and distal interphalangeal (DIP) joints, mimicking human finger tendon actions. A variable structure controller, managed through a web-based Human–Machine Interface (HMI), allows remote adjustments. Thermal behavior, dynamics, and overall performance were modeled in MATLAB Simulink, with experimental validation confirming the model’s efficacy. The phase transformation characteristics of NiTi shape memory wire were studied using the Souza–Auricchio model within COMSOL Multiphysics 6.2 software. Comparing the simulation to trial data showed an average error of 2.76°. The range of motion for the MCP, PIP, and DIP joints was 21°, 65°, and 60.3°, respectively. Additionally, a minimum torque of 0.2 Nm at each finger joint was observed, which is sufficient to overcome resistance and meet the torque requirements. Results demonstrate that integrating SMA actuators with telerehabilitation addresses the need for compact and efficient wearable devices, potentially improving patient outcomes through remote therapy. Full article
(This article belongs to the Special Issue Shape Memory Alloy (SMA) Actuators and Their Applications)
Show Figures

Figure 1

12 pages, 6563 KiB  
Article
A Numerical Study of the Vibration Characteristics of a Haptic Actuator for a Dial Gear Shifter
by Joonsik Won, Kinyeong Ko, Heesoo Eom, Chulsook Kim, Jihyun Cho and Howuk Kim
Appl. Sci. 2024, 14(20), 9242; https://doi.org/10.3390/app14209242 - 11 Oct 2024
Viewed by 406
Abstract
Human–machine interaction (HMI) is becoming increasingly important, especially in the automotive industry, where advancements in automated driving and driver assistance systems are key to enhancing driver safety and convenience. Among the many HMI interfaces, tactile sensing has been widely used in automotive applications [...] Read more.
Human–machine interaction (HMI) is becoming increasingly important, especially in the automotive industry, where advancements in automated driving and driver assistance systems are key to enhancing driver safety and convenience. Among the many HMI interfaces, tactile sensing has been widely used in automotive applications as it enables instant and direct interactions with drivers. An area that remains underexplored among the tactile HMI interfaces is the application of haptic feedback to gear shifter modules. Therefore, this study investigates the design optimization of a dial gear shifter by analyzing the vibrations transmitted to the knob surface from an integrated haptic actuator. Specifically, we first tuned the mechanical properties of the haptic actuator (in terms of the resonance frequency and vibration level) in a simulation model by referring to experimental results. Next, a numerical model of a dial gear shifter was constructed, integrated with a haptic actuator, and tuned with the experimental results. The model was further optimized based on the design of the experiment and sensitivity analyses. The optimized design yielded a 24.5% improvement in the vibration level compared with the reference design, exceeding the minimum threshold (>~2.5 m/s2 at 200 Hz) required for tactile sensing. The vibration enhancement (>22.x%) was also confirmed under the simulated hand-grabbing condition. This study is technically significant as it demonstrates that the haptic vibration in a dial gear shifter can be efficiently optimized through numerical analyses. This research will be used for the actual prototyping of a dial gear shifter to provide a safe driving experience for drivers. Full article
Show Figures

Figure 1

22 pages, 4273 KiB  
Article
Design and Evaluation of a Precision Irrigation Tool’s Human–Machine Interaction to Bring Water- and Energy-Efficient Irrigation to Resource-Constrained Farmers
by Georgia D. Van de Zande, Fiona Grant, Carolyn Sheline, Susan Amrose, Jeffery Costello, Aditya Ghodgaonkar and Amos G. Winter V
Sustainability 2024, 16(19), 8402; https://doi.org/10.3390/su16198402 - 27 Sep 2024
Viewed by 706
Abstract
As freshwater supplies decrease, adopting sustainable practices like water- and energy-efficient irrigation is crucial, particularly in resource-constrained regions. Here, farmers often cannot purchase precision irrigation equipment, which achieves high water and energy efficiencies via full automation. Currently, no irrigation methods exist that combine [...] Read more.
As freshwater supplies decrease, adopting sustainable practices like water- and energy-efficient irrigation is crucial, particularly in resource-constrained regions. Here, farmers often cannot purchase precision irrigation equipment, which achieves high water and energy efficiencies via full automation. Currently, no irrigation methods exist that combine automatic scheduling of events with manual operation of valves, familiar hardware on low-income farms. This work synthesizes functional requirements for a tool that could address efficiency needs while integrating into current manual practices. Then, a design concept for an automatic scheduling and manual operation (AS-MO) human–machine interaction (HMI) that meets these requirements is proposed. Two design stages of the AS-MO HMI were evaluated by farmers and market stakeholders in three countries. Results show that farmers in Kenya and Jordan valued the proposed AS-MO HMI because they could increase efficiency on their farms without the cost or complexity of automatic valves. In Morocco, a possible market was found, but a majority of participants preferred full automation. Interviewees provided feedback on how to improve the tool’s design in future iterations. If adopted at scale, the proposed AS-MO tool could increase efficiency on farms that otherwise cannot afford current precision irrigation technology, improving sustainable agriculture worldwide. Full article
(This article belongs to the Special Issue Sustainable Precision Agriculture: Latest Advances and Prospects)
Show Figures

Figure 1

16 pages, 6849 KiB  
Article
Spatio-Temporal Heterogeneity of the Urban Heat Effect and Its Socio-Ecological Drivers in Yangzhou City, China
by Tao Wu, Zhaoyi Wang and Qiang Xu
Land 2024, 13(9), 1470; https://doi.org/10.3390/land13091470 - 10 Sep 2024
Viewed by 461
Abstract
Rapid urbanization and land-use changes may affect the intensity of urban heat islands (UHIs). However, research on the eastern Chinese city of Yangzhou is lacking. Using land cover data and the InVest Urban Cooling model, this study evaluated the spatiotemporal heterogeneity of the [...] Read more.
Rapid urbanization and land-use changes may affect the intensity of urban heat islands (UHIs). However, research on the eastern Chinese city of Yangzhou is lacking. Using land cover data and the InVest Urban Cooling model, this study evaluated the spatiotemporal heterogeneity of the UHI effect from 1990 to 2020 and its socioecological drivers in Yangzhou City. Landscape pattern indices such as patch area (CA), percentage of landscape (PLAND), number of patches, patch density, and aggregation index were created using Fragstats 4.2 software. Several social indicators, such as gross domestic product (GDP), night-light index, and population density, were considered to explore their correlation with UHI indicators. During the past three decades, rapid urbanization in Yangzhou has intensified the UHI effect, with the cooling capacity (cc park) and heat mitigation index (HMI) decreasing by ~9.6%; however, the mixed air temperature (T air) has increased by 0.14 °C. The main heat island areas are concentrated in southern Yangzhou, including the Hanjiang and Guangling districts, and have expanded over time. T air was positively correlated with GDP, night-light index, and population density. Moreover, for the impervious land use type, cc park and HMI were negatively correlated with CA and PLAND (p < 0.01). This study contributes to a deeper understanding of the dynamics of UHIs and provides valuable insights for policymakers, urban planners, and researchers striving to create sustainable and climate-resilient cities in Yangzhou. Full article
Show Figures

Figure 1

8 pages, 1176 KiB  
Proceeding Paper
Development of a Training Station for the Orientation of Dice Parts with Machine Vision
by Penko Mitev
Eng. Proc. 2024, 70(1), 57; https://doi.org/10.3390/engproc2024070057 - 6 Sep 2024
Viewed by 158
Abstract
This paper reviews the process of research, development and production of a training station for the optical recognition of dice parts with machine vision. This approach is chosen due to the lack of mechanical features to allow for classical orientation approaches. The embossed [...] Read more.
This paper reviews the process of research, development and production of a training station for the optical recognition of dice parts with machine vision. This approach is chosen due to the lack of mechanical features to allow for classical orientation approaches. The embossed dots are about 0.1–0.2 mm deep so it is impossible to design classical traps. The orientation occurs purely by visual comparison to a reference image, part of the current camera job. The sequence of parts is controlled by the programmable logic controller(PLC)program, which manages the camera job-changing process via I/O signals, thus ensuring the right face of the die is captured by the camera and achieving the right predefined order of the sequence. When the preset number of dice in the sequence is reached, they are released back to the vibratory bowl feeder by a pneumatic separator. This way, all dice parts circulate until they are recognized by the camera. There are jobs for each possible orientation of the dice and also a small HMI where the dice sequences could be adjusted by the operator(generally students). The main benefit for the students is the opportunity to program the PLC and to adjust the camera jobs for the detection of each possible orientation. This relies upon the fact that during the fall from the return conveyor to the bowl feeder, the parts flip and, thus, change their previous orientation to another side. Experiments are conducted regarding the probability of obtaining orientation “5” and all the other possible states in order to statistically express the probability. Full article
Show Figures

Figure 1

24 pages, 4205 KiB  
Article
Using Mixed Reality for Control and Monitoring of Robot Model Based on Robot Operating System 2
by Dominik Janecký, Erik Kučera, Oto Haffner, Erika Výchlopeňová and Danica Rosinová
Electronics 2024, 13(17), 3554; https://doi.org/10.3390/electronics13173554 - 6 Sep 2024
Viewed by 450
Abstract
This article presents the design and implementation of an innovative human–machine interface (HMI) in mixed reality for a robot model operating within Robot Operating System 2 (ROS 2). The interface is specifically developed for compatibility with Microsoft HoloLens 2 hardware and leverages the [...] Read more.
This article presents the design and implementation of an innovative human–machine interface (HMI) in mixed reality for a robot model operating within Robot Operating System 2 (ROS 2). The interface is specifically developed for compatibility with Microsoft HoloLens 2 hardware and leverages the Unity game engine alongside the Mixed Reality Toolkit (MRTK) to create an immersive mixed reality application. The project uses the Turtlebot 3 Burger model robot, simulated within the Gazebo virtual environment, as a representative mechatronic system for demonstration purposes. Communication between the mixed reality application and ROS 2 is facilitated through a publish–subscribe mechanism, utilizing ROS TCP Connector for message serialization between nodes. This interface not only enhances the user experience by allowing for the real-time monitoring and control of the robotic system but also aligns with the principles of Industry 5.0, emphasizing human-centric and inclusive technological advancements. The practical outcomes of this research include a fully functional mixed reality application that integrates seamlessly with ROS 2, showcasing the potential of mixed reality technologies in advancing the field of industrial automation and human–machine interaction. Full article
(This article belongs to the Special Issue Advanced Industry 4.0/5.0: Intelligence and Automation)
Show Figures

Figure 1

13 pages, 4393 KiB  
Article
A Cost-Effective and Easy-to-Fabricate Conductive Velcro Dry Electrode for Durable and High-Performance Biopotential Acquisition
by Jun Guo, Xuanqi Wang, Ruiyu Bai, Zimo Zhang, Huazhen Chen, Kai Xue, Chuang Ma, Dawei Zang, Erwei Yin, Kunpeng Gao and Bowen Ji
Biosensors 2024, 14(9), 432; https://doi.org/10.3390/bios14090432 - 6 Sep 2024
Viewed by 806
Abstract
Compared with the traditional gel electrode, the dry electrode is being taken more seriously in bioelectrical recording because of its easy preparation, long-lasting ability, and reusability. However, the commonly used dry AgCl electrodes and silver cloth electrodes are generally hard to record through [...] Read more.
Compared with the traditional gel electrode, the dry electrode is being taken more seriously in bioelectrical recording because of its easy preparation, long-lasting ability, and reusability. However, the commonly used dry AgCl electrodes and silver cloth electrodes are generally hard to record through hair due to their flat contact surface. Claw electrodes can contact skin through hair on the head and body, but the internal claw structure is relatively hard and causes discomfort after being worn for a few hours. Here, we report a conductive Velcro electrode (CVE) with an elastic hook hair structure, which can collect biopotential through body hair. The elastic hooks greatly reduce discomfort after long-time wearing and can even be worn all day. The CVE electrode is fabricated by one-step immersion in conductive silver paste based on the cost-effective commercial Velcro, forming a uniform and durable conductive coating on a cluster of hook microstructures. The electrode shows excellent properties, including low impedance (15.88 kΩ @ 10 Hz), high signal-to-noise ratio (16.0 dB), strong water resistance, and mechanical resistance. After washing in laundry detergent, the impedance of CVE is still 16% lower than the commercial AgCl electrodes. To verify the mechanical strength and recovery capability, we conducted cyclic compression experiments. The results show that the displacement change of the electrode hook hair after 50 compression cycles was still less than 1%. This electrode provides a universal acquisition scheme, including effective acquisition of different parts of the body with or without hair. Finally, the gesture recognition from electromyography (EMG) by the CVE electrode was applied with accuracy above 90%. The CVE proposed in this study has great potential and promise in various human–machine interface (HMI) applications that employ surface biopotential signals on the body or head with hair. Full article
Show Figures

Figure 1

17 pages, 5998 KiB  
Article
A Novel TCN-LSTM Hybrid Model for sEMG-Based Continuous Estimation of Wrist Joint Angles
by Jiale Du, Zunyi Liu, Wenyuan Dong, Weifeng Zhang and Zhonghua Miao
Sensors 2024, 24(17), 5631; https://doi.org/10.3390/s24175631 - 30 Aug 2024
Viewed by 645
Abstract
Surface electromyography (sEMG) offers a novel method in human–machine interactions (HMIs) since it is a distinct physiological electrical signal that conceals human movement intention and muscle information. Unfortunately, the nonlinear and non-smooth features of sEMG signals often make joint angle estimation difficult. This [...] Read more.
Surface electromyography (sEMG) offers a novel method in human–machine interactions (HMIs) since it is a distinct physiological electrical signal that conceals human movement intention and muscle information. Unfortunately, the nonlinear and non-smooth features of sEMG signals often make joint angle estimation difficult. This paper proposes a joint angle prediction model for the continuous estimation of wrist motion angle changes based on sEMG signals. The proposed model combines a temporal convolutional network (TCN) with a long short-term memory (LSTM) network, where the TCN can sense local information and mine the deeper information of the sEMG signals, while LSTM, with its excellent temporal memory capability, can make up for the lack of the ability of the TCN to capture the long-term dependence of the sEMG signals, resulting in a better prediction. We validated the proposed method in the publicly available Ninapro DB1 dataset by selecting the first eight subjects and picking three types of wrist-dependent movements: wrist flexion (WF), wrist ulnar deviation (WUD), and wrist extension and closed hand (WECH). Finally, the proposed TCN-LSTM model was compared with the TCN and LSTM models. The proposed TCN-LSTM outperformed the TCN and LSTM models in terms of the root mean square error (RMSE) and average coefficient of determination (R2). The TCN-LSTM model achieved an average RMSE of 0.064, representing a 41% reduction compared to the TCN model and a 52% reduction compared to the LSTM model. The TCN-LSTM also achieved an average R2 of 0.93, indicating an 11% improvement over the TCN model and an 18% improvement over the LSTM model. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

25 pages, 11489 KiB  
Article
Investigating Blind Spot Design Effects on Drivers’ Cognitive Load with Lane Changing: A Comparative Experiment with Multiple Types of Intelligent Vehicles
by Xiaoye Cui, Yijie Li, Lishengsa Yue, Haoyu Chen and Ziyou Zhou
Appl. Sci. 2024, 14(17), 7570; https://doi.org/10.3390/app14177570 - 27 Aug 2024
Viewed by 889
Abstract
Lane changing is a frequent traffic accident scenario. To improve the driving safety in lane changing scenarios, the blind spot display of lane changing is increased through human–machine interaction (HMI) interfaces in intelligent vehicles to improve the driver’s rate of risk perception with [...] Read more.
Lane changing is a frequent traffic accident scenario. To improve the driving safety in lane changing scenarios, the blind spot display of lane changing is increased through human–machine interaction (HMI) interfaces in intelligent vehicles to improve the driver’s rate of risk perception with regard to the driving environment. However, blind spot information will increase the cognitive load of drivers and lead to driving distraction. To quantify the coupling relationship between blind spot display and drivers’ cognitive load, we proposed a method to quantify the cognitive load of the driver’s interaction by improving the AttenD algorithm, collecting feature data by carrying out a variety of real-vehicle road-testing experiments on three kinds of intelligent vehicles, and then establishing a model blind spot design and driver cognitive load correlation model using Bayesian Logistic Ordinal Regression (BLOR) and Categorical Boosting (CatBoost). The results show that the blind spot image display can reduce the driver’s cognitive load more effectively as it is closer to the driver, has a larger area, and occupies a higher proportion of the center control screen, especially when it is located in the middle and upper regions of the center control screen. The improved AttenD algorithm is able to quantify the cognitive load of the driver, which can be widely used in vehicle testing, HMI interface development and evaluation. In addition, the analytical framework constructed in this paper can help us to understand the complex impact of HMI in intelligent vehicles and provide optimization criteria for lane change blind spot design. Full article
Show Figures

Figure 1

22 pages, 36205 KiB  
Article
A Multi-Scenario Analysis of Urban Vitality Driven by Socio-Ecological Land Functions in Luohe, China
by Xinyu Wang, Tian Bai, Yang Yang, Guifang Wang, Guohang Tian and László Kollányi
Land 2024, 13(8), 1330; https://doi.org/10.3390/land13081330 - 22 Aug 2024
Viewed by 524
Abstract
Urban Vitality (UV) is a critical indicator for measuring sustainable urban development and quality. It reflects the dynamic interactions and supply–demand coordination within urban systems, especially concerning the human–land relationship. This study aims to quantify the UV of Luohe City, China, for the [...] Read more.
Urban Vitality (UV) is a critical indicator for measuring sustainable urban development and quality. It reflects the dynamic interactions and supply–demand coordination within urban systems, especially concerning the human–land relationship. This study aims to quantify the UV of Luohe City, China, for the year 2023, analyze its spatial characteristics, and investigate the driving patterns of socio-ecological land functions on UV intensity and heterogeneity under different scenarios. Utilizing multi-source data, including human mobility data from Baidu Location-Based Services (LBSs), Landsat-9, MODIS, and diverse geo-information datasets, we conducted factor screening and comprehensive assessments. Firstly, Self-Organizing Maps (SOMs) were employed to identify typical activity patterns, and the Urban Vitality Index (UVI) was calculated based on Human Mobility Intensity (HMI) data. Subsequently, a framework for quantity–quality–structure assessments weighted and aggregated sub-indicators to evaluate the Land Social Function (LSF) and Land Ecological Function (LEF). Following the screening process, a Multi-scale Geographically Weighted Regression (MGWR) was applied to analyze the scale and driving relationships between UVI and the land assessment sub-indicators. The results were as follows: (1) The UV distribution in Luohe City was highly uneven, with high vitality areas concentrated within the built-up regions. (2) UV showed significant correlations with both LSF and LEF. The influence of LSF on UV was stronger than that of LEF, with the effectiveness of LEF relying on the well-established provisioning of LSF. (3) Artificial Surface Ratio (ASR) and Corrected Night Lights (LERNCI) were identified as key drivers of UV across multiple scenarios. Under the weekend scenario, the Green Space Ratio (GSR) and the Vegetation Quality (VQ) notably enhanced the attractiveness of human activities. (4) The impacts of drivers varied at the urban, township, and street scales. The analysis focuses on factors with significant bandwidth changes across multiple scenarios: VQ, Remote-Sensing-based Ecological Index (RSEI), GSR, ASR, and ALSI. This study underscores the importance of socio-ecological land functions in enhancing urban vitality, offering valuable insights and data support for urban planning. Full article
Show Figures

Figure 1

14 pages, 5143 KiB  
Article
A Self-Powered, Skin Adhesive, and Flexible Human–Machine Interface Based on Triboelectric Nanogenerator
by Xujie Wu, Ziyi Yang, Yu Dong, Lijing Teng, Dan Li, Hang Han, Simian Zhu, Xiaomin Sun, Zhu Zeng, Xiangyu Zeng and Qiang Zheng
Nanomaterials 2024, 14(16), 1365; https://doi.org/10.3390/nano14161365 - 20 Aug 2024
Viewed by 1032
Abstract
Human–machine interactions (HMIs) have penetrated into various academic and industrial fields, such as robotics, virtual reality, and wearable electronics. However, the practical application of most human–machine interfaces faces notable obstacles due to their complex structure and materials, high power consumption, limited effective skin [...] Read more.
Human–machine interactions (HMIs) have penetrated into various academic and industrial fields, such as robotics, virtual reality, and wearable electronics. However, the practical application of most human–machine interfaces faces notable obstacles due to their complex structure and materials, high power consumption, limited effective skin adhesion, and high cost. Herein, we report a self-powered, skin adhesive, and flexible human–machine interface based on a triboelectric nanogenerator (SSFHMI). Characterized by its simple structure and low cost, the SSFHMI can easily convert touch stimuli into a stable electrical signal at the trigger pressure from a finger touch, without requiring an external power supply. A skeleton spacer has been specially designed in order to increase the stability and homogeneity of the output signals of each TENG unit and prevent crosstalk between them. Moreover, we constructed a hydrogel adhesive interface with skin-adhesive properties to adapt to easy wear on complex human body surfaces. By integrating the SSFHMI with a microcontroller, a programmable touch operation platform has been constructed that is capable of multiple interactions. These include medical calling, music media playback, security unlocking, and electronic piano playing. This self-powered, cost-effective SSFHMI holds potential relevance for the next generation of highly integrated and sustainable portable smart electronic products and applications. Full article
(This article belongs to the Special Issue Self-Powered Flexible Sensors Based on Triboelectric Nanogenerators)
Show Figures

Figure 1

25 pages, 2984 KiB  
Review
The Sense of Agency in Human–Machine Interaction Systems
by Hui Yu, Shengzhi Du, Anish Kurien, Barend Jacobus van Wyk and Qingxue Liu
Appl. Sci. 2024, 14(16), 7327; https://doi.org/10.3390/app14167327 - 20 Aug 2024
Viewed by 788
Abstract
Human–Machine Interaction (HMI) systems are integral to various domains and rely on human operators for effective performance. The sense of agency (SoA) is crucial in these systems, as it influences the operator’s concentration and overall efficiency. This review explores the SoA in HMI [...] Read more.
Human–Machine Interaction (HMI) systems are integral to various domains and rely on human operators for effective performance. The sense of agency (SoA) is crucial in these systems, as it influences the operator’s concentration and overall efficiency. This review explores the SoA in HMI systems, analyzing its definition, key influencing factors, and methods for enhancement. We provide a comprehensive examination of SoA-related research and suggest strategies for measuring and improving the SoA. Two key research directions are highlighted: the impact of user experience on the SoA, and the role of the SoA in enabling unconscious communication between humans and machines. We propose a development route for HMI systems, outlining a progressive structure across three stages: machine-centric, human-centric, and human–machine integration. Finally, we discuss the potential of gaming platforms as tools for advancing SoA research in HMI systems. Our findings aim to enhance the design and functionality of HMI systems, ensuring improved operator engagement and system performance. Full article
Show Figures

Figure 1

Back to TopTop