Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (243)

Search Parameters:
Keywords = Histogram of Oriented Gradients

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6259 KiB  
Article
Spectrogram-Based Arrhythmia Classification Using Three-Channel Deep Learning Model with Feature Fusion
by Alaa Eleyan, Fatih Bayram and Gülden Eleyan
Appl. Sci. 2024, 14(21), 9936; https://doi.org/10.3390/app14219936 - 30 Oct 2024
Viewed by 468
Abstract
This paper introduces a novel deep learning model for ECG signal classification using feature fusion. The proposed methodology transforms the ECG time series into a spectrogram image using a short-time Fourier transform (STFT). This spectrogram is further processed to generate a histogram of [...] Read more.
This paper introduces a novel deep learning model for ECG signal classification using feature fusion. The proposed methodology transforms the ECG time series into a spectrogram image using a short-time Fourier transform (STFT). This spectrogram is further processed to generate a histogram of oriented gradients (HOG) and local binary pattern (LBP) features. Three separate 2D convolutional neural networks (CNNs) then analyze these three image representations in parallel. To enhance performance, the extracted features are concatenated before feeding them into a gated recurrent unit (GRU) model. The proposed approach is extensively evaluated on two ECG datasets (MIT-BIH + BIDMC and MIT-BIH) with three and five classes, respectively. The experimental results demonstrate that the proposed approach achieves superior classification accuracy compared to existing algorithms in the literature. This suggests that the model has the potential to be a valuable tool for accurate ECG signal classification, aiding in the diagnosis and treatment of various cardiovascular disorders. Full article
(This article belongs to the Topic Applications in Image Analysis and Pattern Recognition)
Show Figures

Figure 1

21 pages, 12827 KiB  
Article
Research on the Registration of Aerial Images of Cyclobalanopsis Natural Forest Based on Optimized Fast Sample Consensus Point Matching with SIFT Features
by Peng Wu, Hailong Liu, Xiaomei Yi, Lufeng Mo, Guoying Wang and Shuai Ma
Forests 2024, 15(11), 1908; https://doi.org/10.3390/f15111908 - 29 Oct 2024
Viewed by 549
Abstract
The effective management and conservation of forest resources hinge on accurate monitoring. Nonetheless, individual remote-sensing images captured by low-altitude unmanned aerial vehicles (UAVs) fail to encapsulate the entirety of a forest’s characteristics. The application of image-stitching technology to high-resolution drone imagery facilitates a [...] Read more.
The effective management and conservation of forest resources hinge on accurate monitoring. Nonetheless, individual remote-sensing images captured by low-altitude unmanned aerial vehicles (UAVs) fail to encapsulate the entirety of a forest’s characteristics. The application of image-stitching technology to high-resolution drone imagery facilitates a prompt evaluation of forest resources, encompassing quantity, quality, and spatial distribution. This study introduces an improved SIFT algorithm designed to tackle the challenges of low matching rates and prolonged registration times encountered with forest images characterized by dense textures. By implementing the SIFT-OCT (SIFT omitting the initial scale space) approach, the algorithm bypasses the initial scale space, thereby reducing the number of ineffective feature points and augmenting processing efficiency. To bolster the SIFT algorithm’s resilience against rotation and illumination variations, and to furnish supplementary information for registration even when fewer valid feature points are available, a gradient location and orientation histogram (GLOH) descriptor is integrated. For feature matching, the more computationally efficient Manhattan distance is utilized to filter feature points, which further optimizes efficiency. The fast sample consensus (FSC) algorithm is then applied to remove mismatched point pairs, thus refining registration accuracy. This research also investigates the influence of vegetation coverage and image overlap rates on the algorithm’s efficacy, using five sets of Cyclobalanopsis natural forest images. Experimental outcomes reveal that the proposed method significantly reduces registration time by an average of 3.66 times compared to that of SIFT, 1.71 times compared to that of SIFT-OCT, 5.67 times compared to that of PSO-SIFT, and 3.42 times compared to that of KAZE, demonstrating its superior performance. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

28 pages, 7535 KiB  
Article
A New Computer-Aided Diagnosis System for Breast Cancer Detection from Thermograms Using Metaheuristic Algorithms and Explainable AI
by Hanane Dihmani, Abdelmajid Bousselham and Omar Bouattane
Algorithms 2024, 17(10), 462; https://doi.org/10.3390/a17100462 - 18 Oct 2024
Viewed by 780
Abstract
Advances in the early detection of breast cancer and treatment improvements have significantly increased survival rates. Traditional screening methods, including mammography, MRI, ultrasound, and biopsies, while effective, often come with high costs and risks. Recently, thermal imaging has gained attention due to its [...] Read more.
Advances in the early detection of breast cancer and treatment improvements have significantly increased survival rates. Traditional screening methods, including mammography, MRI, ultrasound, and biopsies, while effective, often come with high costs and risks. Recently, thermal imaging has gained attention due to its minimal risks compared to mammography, although it is not widely adopted as a primary detection tool since it depends on identifying skin temperature changes and lesions. The advent of machine learning (ML) and deep learning (DL) has enhanced the effectiveness of breast cancer detection and diagnosis using this technology. In this study, a novel interpretable computer aided diagnosis (CAD) system for breast cancer detection is proposed, leveraging Explainable Artificial Intelligence (XAI) throughout its various phases. To achieve these goals, we proposed a new multi-objective optimization approach named the Hybrid Particle Swarm Optimization algorithm (HPSO) and Hybrid Spider Monkey Optimization algorithm (HSMO). These algorithms simultaneously combined the continuous and binary representations of PSO and SMO to effectively manage trade-offs between accuracy, feature selection, and hyperparameter tuning. We evaluated several CAD models and investigated the impact of handcrafted methods such as Local Binary Patterns (LBP), Histogram of Oriented Gradients (HOG), Gabor Filters, and Edge Detection. We further shed light on the effect of feature selection and optimization on feature attribution and model decision-making processes using the SHapley Additive exPlanations (SHAP) framework, with a particular emphasis on cancer classification using the DMR-IR dataset. The results of our experiments demonstrate in all trials that the performance of the model is improved. With HSMO, our models achieved an accuracy of 98.27% and F1-score of 98.15% while selecting only 25.78% of the HOG features. This approach not only boosts the performance of CAD models but also ensures comprehensive interpretability. This method emerges as a promising and transparent tool for early breast cancer diagnosis. Full article
Show Figures

Figure 1

22 pages, 3158 KiB  
Article
Sensitivity Analysis of Traffic Sign Recognition to Image Alteration and Training Data Size
by Arthur Rubio, Guillaume Demoor, Simon Chalmé, Nicolas Sutton-Charani and Baptiste Magnier
Information 2024, 15(10), 621; https://doi.org/10.3390/info15100621 - 10 Oct 2024
Viewed by 718
Abstract
Accurately classifying road signs is crucial for autonomous driving due to the high stakes involved in ensuring safety and compliance. As Convolutional Neural Networks (CNNs) have largely replaced traditional Machine Learning models in this domain, the demand for substantial training data has increased. [...] Read more.
Accurately classifying road signs is crucial for autonomous driving due to the high stakes involved in ensuring safety and compliance. As Convolutional Neural Networks (CNNs) have largely replaced traditional Machine Learning models in this domain, the demand for substantial training data has increased. This study aims to compare the performance of classical Machine Learning (ML) models and Deep Learning (DL) models under varying amounts of training data, particularly focusing on altered signs to mimic real-world conditions. We evaluated three classical models: Support Vector Machine (SVM), Random Forest, and Linear Discriminant Analysis (LDA), and one Deep Learning model: Convolutional Neural Network (CNN). Using the German Traffic Sign Recognition Benchmark (GTSRB) dataset, which includes approximately 40,000 German traffic signs, we introduced digital alterations to simulate conditions such as environmental wear or vandalism. Additionally, the Histogram of Oriented Gradients (HOG) descriptor was used to assist classical models. Bayesian optimization and k-fold cross-validation were employed for model fine-tuning and performance assessment. Our findings reveal a threshold in training data beyond which accuracy plateaus. Classical models showed a linear performance decrease under increasing alteration, while CNNs, despite being more robust to alterations, did not significantly outperform classical models in overall accuracy. Ultimately, classical Machine Learning models demonstrated performance comparable to CNNs under certain conditions, suggesting that effective road sign classification can be achieved with less computationally intensive approaches. Full article
(This article belongs to the Special Issue Machine Learning and Artificial Intelligence with Applications)
Show Figures

Graphical abstract

19 pages, 25232 KiB  
Article
OS-PSO: A Modified Ratio of Exponentially Weighted Averages-Based Optical and SAR Image Registration
by Hui Zhang, Yu Song, Jingfang Hu, Yansheng Li, Yang Li and Guowei Gao
Sensors 2024, 24(18), 5959; https://doi.org/10.3390/s24185959 - 13 Sep 2024
Viewed by 571
Abstract
Optical and synthetic aperture radar (SAR) images exhibit non-negligible intensity differences due to their unique imaging mechanisms, which makes it difficult for classical SIFT-based algorithms to obtain sufficiently correct correspondences when processing the registration of these two types of images. To tackle this [...] Read more.
Optical and synthetic aperture radar (SAR) images exhibit non-negligible intensity differences due to their unique imaging mechanisms, which makes it difficult for classical SIFT-based algorithms to obtain sufficiently correct correspondences when processing the registration of these two types of images. To tackle this problem, an accurate optical and SAR image registration algorithm based on the SIFT algorithm (OS-PSO) is proposed. First, a modified ratio of exponentially weighted averages (MROEWA) operator is introduced to resolve the sudden dark patches in SAR images, thus generating more consistent gradients between optical and SAR images. Next, we innovatively construct the Harris scale space to replace the traditional difference in the Gaussian (DoG) scale space, identify repeatable key-points by searching for local maxima, and perform localization refinement on the identified key-points to improve their accuracy. Immediately after that, the gradient location orientation histogram (GLOH) method is adopted to construct the feature descriptors. Finally, we propose an enhanced matching method. The transformed relation is obtained in the initial matching stage using the nearest neighbor distance ratio (NNDR) and fast sample consensus (FSC) methods. And the re-matching takes into account the location, scale, and main direction of key-points to increase the number of correctly corresponding points. The proposed OS-PSO algorithm has been implemented on the Gaofen and Sentinel series with excellent results. The superior performance of the designed registration system can also be applied in complex scenarios, including urban, suburban, river, farmland, and lake areas, with more efficiency and accuracy than the state-of-the-art methods based on the WHU-OPT-SAR dataset and the BISTU-OPT-SAR dataset. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

35 pages, 6064 KiB  
Article
Multi-Index Driver Drowsiness Detection Method Based on Driver’s Facial Recognition Using Haar Features and Histograms of Oriented Gradients
by Eduardo Quiles-Cucarella, Julio Cano-Bernet, Lucas Santos-Fernández, Carlos Roldán-Blay and Carlos Roldán-Porta
Sensors 2024, 24(17), 5683; https://doi.org/10.3390/s24175683 - 31 Aug 2024
Viewed by 895
Abstract
It is estimated that 10% to 20% of road accidents are related to fatigue, with accidents caused by drowsiness up to twice as deadly as those caused by other factors. In order to reduce these numbers, strategies such as advertising campaigns, the implementation [...] Read more.
It is estimated that 10% to 20% of road accidents are related to fatigue, with accidents caused by drowsiness up to twice as deadly as those caused by other factors. In order to reduce these numbers, strategies such as advertising campaigns, the implementation of driving recorders in vehicles used for road transport of goods and passengers, or the use of drowsiness detection systems in cars have been implemented. Within the scope of the latter area, the technologies used are diverse. They can be based on the measurement of signals such as steering wheel movement, vehicle position on the road, or driver monitoring. Driver monitoring is a technology that has been exploited little so far and can be implemented in many different approaches. This work addresses the evaluation of a multidimensional drowsiness index based on the recording of facial expressions, gaze direction, and head position and studies the feasibility of its implementation in a low-cost electronic package. Specifically, the aim is to determine the driver’s state by monitoring their facial expressions, such as the frequency of blinking, yawning, eye-opening, gaze direction, and head position. For this purpose, an algorithm capable of detecting drowsiness has been developed. Two approaches are compared: Facial recognition based on Haar features and facial recognition based on Histograms of Oriented Gradients (HOG). The implementation has been carried out on a Raspberry Pi, a low-cost device that allows the creation of a prototype that can detect drowsiness and interact with peripherals such as cameras or speakers. The results show that the proposed multi-index methodology performs better in detecting drowsiness than algorithms based on one-index detection. Full article
(This article belongs to the Special Issue Sensors and Systems for Automotive and Road Safety (Volume 2))
Show Figures

Figure 1

16 pages, 4067 KiB  
Article
TriCAFFNet: A Tri-Cross-Attention Transformer with a Multi-Feature Fusion Network for Facial Expression Recognition
by Yuan Tian, Zhao Wang, Di Chen and Huang Yao
Sensors 2024, 24(16), 5391; https://doi.org/10.3390/s24165391 - 21 Aug 2024
Viewed by 781
Abstract
In recent years, significant progress has been made in facial expression recognition methods. However, tasks related to facial expression recognition in real environments still require further research. This paper proposes a tri-cross-attention transformer with a multi-feature fusion network (TriCAFFNet) to improve facial expression [...] Read more.
In recent years, significant progress has been made in facial expression recognition methods. However, tasks related to facial expression recognition in real environments still require further research. This paper proposes a tri-cross-attention transformer with a multi-feature fusion network (TriCAFFNet) to improve facial expression recognition performance under challenging conditions. By combining LBP (Local Binary Pattern) features, HOG (Histogram of Oriented Gradients) features, landmark features, and CNN (convolutional neural network) features from facial images, the model is provided with a rich input to improve its ability to discern subtle differences between images. Additionally, tri-cross-attention blocks are designed to facilitate information exchange between different features, enabling mutual guidance among different features to capture salient attention. Extensive experiments on several widely used datasets show that our TriCAFFNet achieves the SOTA performance on RAF-DB with 92.17%, AffectNet (7 cls) with 67.40%, and AffectNet (8 cls) with 63.49%, respectively. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

16 pages, 19129 KiB  
Article
Ship Detection in SAR Images Based on Steady CFAR Detector and Knowledge-Oriented GBDT Classifier
by Shuqi Sun and Junfeng Wang
Electronics 2024, 13(14), 2692; https://doi.org/10.3390/electronics13142692 - 10 Jul 2024
Viewed by 850
Abstract
Ship detection is a significant issue in remote sensing based on Synthetic Aperture Radar (SAR). This paper combines the advantages of a steady constant false alarm rate (CFAR) detector and a knowledge-oriented Gradient Boosting Decision Tree (GBDT) classifier to achieve the location and [...] Read more.
Ship detection is a significant issue in remote sensing based on Synthetic Aperture Radar (SAR). This paper combines the advantages of a steady constant false alarm rate (CFAR) detector and a knowledge-oriented Gradient Boosting Decision Tree (GBDT) classifier to achieve the location and the classification of ship candidates. The steady CFAR detector smooths the image by a moving-average filter and models the probability distribution of the smoothed clutter as a Gaussian distribution. The mean and the standard deviation of the Gaussian distribution are estimated according to the left half of the histogram to remove the effect of land, ships, and other targets. From the Gaussian distribution and a preset constant false alarm rate, a threshold is obtained to segment land, ships, and other targets from the clutter. Then, a series of morphological operations are introduced to eliminate land and extract ships and other targets, and an active contour algorithm is utilized to refine ships and other targets. Finally, ships are recognized from other targets by a knowledge-oriented GBDT classifier. Based on the brain-like ship-recognition process, we change the way of the decision-tree generation and achieve a higher classification performance than the original GBDT. The results on the AIRSARShip-1.0 dataset demonstrate that this scheme has a competitive performance against deep learning, especially in the detection of offshore ships. Full article
(This article belongs to the Special Issue Radar Signal Processing Technology)
Show Figures

Figure 1

21 pages, 6401 KiB  
Article
mmWave-RM: A Respiration Monitoring and Pattern Classification System Based on mmWave Radar
by Zhanjun Hao, Yue Wang, Fenfang Li, Guozhen Ding and Yifei Gao
Sensors 2024, 24(13), 4315; https://doi.org/10.3390/s24134315 - 2 Jul 2024
Viewed by 1465
Abstract
Breathing is one of the body’s most basic functions and abnormal breathing can indicate underlying cardiopulmonary problems. Monitoring respiratory abnormalities can help with early detection and reduce the risk of cardiopulmonary diseases. In this study, a 77 GHz frequency-modulated continuous wave (FMCW) millimetre-wave [...] Read more.
Breathing is one of the body’s most basic functions and abnormal breathing can indicate underlying cardiopulmonary problems. Monitoring respiratory abnormalities can help with early detection and reduce the risk of cardiopulmonary diseases. In this study, a 77 GHz frequency-modulated continuous wave (FMCW) millimetre-wave (mmWave) radar was used to detect different types of respiratory signals from the human body in a non-contact manner for respiratory monitoring (RM). To solve the problem of noise interference in the daily environment on the recognition of different breathing patterns, the system utilised breathing signals captured by the millimetre-wave radar. Firstly, we filtered out most of the static noise using a signal superposition method and designed an elliptical filter to obtain a more accurate image of the breathing waveforms between 0.1 Hz and 0.5 Hz. Secondly, combined with the histogram of oriented gradient (HOG) feature extraction algorithm, K-nearest neighbours (KNN), convolutional neural network (CNN), and HOG support vector machine (G-SVM) were used to classify four breathing modes, namely, normal breathing, slow and deep breathing, quick breathing, and meningitic breathing. The overall accuracy reached up to 94.75%. Therefore, this study effectively supports daily medical monitoring. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

20 pages, 3739 KiB  
Article
Automatic Switching of Electric Locomotive Power in Railway Neutral Sections Using Image Processing
by Christopher Thembinkosi Mcineka, Nelendran Pillay, Kevin Moorgas and Shaveen Maharaj
J. Imaging 2024, 10(6), 142; https://doi.org/10.3390/jimaging10060142 - 11 Jun 2024
Viewed by 1191
Abstract
This article presents a computer vision-based approach to switching electric locomotive power supplies as the vehicle approaches a railway neutral section. Neutral sections are defined as a phase break in which the objective is to separate two single-phase traction supplies on an overhead [...] Read more.
This article presents a computer vision-based approach to switching electric locomotive power supplies as the vehicle approaches a railway neutral section. Neutral sections are defined as a phase break in which the objective is to separate two single-phase traction supplies on an overhead railway supply line. This separation prevents flashovers due to high voltages caused by the locomotives shorting both electrical phases. The typical system of switching traction supplies automatically employs the use of electro-mechanical relays and induction magnets. In this paper, an image classification approach is proposed to replace the conventional electro-mechanical system with two unique visual markers that represent the ‘Open’ and ‘Close’ signals to initiate the transition. When the computer vision model detects either marker, the vacuum circuit breakers inside the electrical locomotive will be triggered to their respective positions depending on the identified image. A Histogram of Oriented Gradient technique was implemented for feature extraction during the training phase and a Linear Support Vector Machine algorithm was trained for the target image classification. For the task of image segmentation, the Circular Hough Transform shape detection algorithm was employed to locate the markers in the captured images and provided cartesian plane coordinates for segmenting the Object of Interest. A signal marker classification accuracy of 94% with 75 objects per second was achieved using a Linear Support Vector Machine during the experimental testing phase. Full article
Show Figures

Figure 1

15 pages, 1699 KiB  
Article
Enhancing Medical Image Classification with an Advanced Feature Selection Algorithm: A Novel Approach to Improving the Cuckoo Search Algorithm by Incorporating Caputo Fractional Order
by Abduljlil Abduljlil Ali Abduljlil Habeb, Mundher Mohammed Taresh, Jintang Li, Zhan Gao and Ningbo Zhu
Diagnostics 2024, 14(11), 1191; https://doi.org/10.3390/diagnostics14111191 - 5 Jun 2024
Viewed by 885
Abstract
Glaucoma is a chronic eye condition that seriously impairs vision and requires early diagnosis and treatment. Automated detection techniques are essential for obtaining a timely diagnosis. In this paper, we propose a novel method for feature selection that integrates the cuckoo search algorithm [...] Read more.
Glaucoma is a chronic eye condition that seriously impairs vision and requires early diagnosis and treatment. Automated detection techniques are essential for obtaining a timely diagnosis. In this paper, we propose a novel method for feature selection that integrates the cuckoo search algorithm with Caputo fractional order (CFO-CS) to enhance the performance of glaucoma classification. However, when using the infinite series, the Caputo definition has memory length truncation issues. Therefore, we suggest a fixed memory step and an adjustable term count for optimization. We conducted experiments integrating various feature extraction techniques, including histograms of oriented gradients (HOGs), local binary patterns (LBPs), and deep features from MobileNet and VGG19, to create a unified vector. We evaluate the informative features selected from the proposed method using the k-nearest neighbor. Furthermore, we use data augmentation to enhance the diversity and quantity of the training set. The proposed method enhances convergence speed and the attainment of optimal solutions during training. The results demonstrate superior performance on the test set, achieving 92.62% accuracy, 94.70% precision, 93.52% F1-Score, 92.98% specificity, 92.36% sensitivity, and 85.00% Matthew’s correlation coefficient. The results confirm the efficiency of the proposed method, rendering it a generalizable and applicable technique in ophthalmology. Full article
(This article belongs to the Special Issue Classification of Diseases Using Machine Learning Algorithms)
Show Figures

Figure 1

24 pages, 2249 KiB  
Article
Deep Learning-Enhanced Small-Sample Bearing Fault Analysis Using Q-Transform and HOG Image Features in a GRU-XAI Framework
by Vipul Dave, Himanshu Borade, Hitesh Agrawal, Anshuman Purohit, Nandan Padia and Vinay Vakharia
Machines 2024, 12(6), 373; https://doi.org/10.3390/machines12060373 - 27 May 2024
Viewed by 829
Abstract
Timely prediction of bearing faults is essential for minimizing unexpected machine downtime and improving industrial equipment’s operational dependability. The Q transform was utilized for preprocessing the sixty-four vibration signals that correspond to the four bearing conditions. Additionally, statistical features, also known as attributes, [...] Read more.
Timely prediction of bearing faults is essential for minimizing unexpected machine downtime and improving industrial equipment’s operational dependability. The Q transform was utilized for preprocessing the sixty-four vibration signals that correspond to the four bearing conditions. Additionally, statistical features, also known as attributes, are extracted from the Histogram of Oriented Gradients (HOG). To assess these features, the Explainable AI (XAI) technique employed the SHAP (Shapely Additive Explanations) method. The effectiveness of the GRU, LSTM, and SVM models in the first stage was evaluated using training and tenfold cross-validation. The SSA optimization algorithm (SSA) was employed in a subsequent phase to optimize the hyperparameters of the algorithms. The findings of the research are rigorously analyzed and assessed in four specific areas: the default configuration of the model, the inclusion of selected features using XAI, the optimization of hyperparameters, and a hybrid technique that combines SSA and XAI-based feature selection. The GRU model has superior performance compared to the other models, achieving an impressive accuracy of 98.2%. This is particularly evident when using SSA and XAI-informed features. The subsequent model is the LSTM, which has an impressive accuracy rate of 96.4%. During tenfold cross-validation, the Support Vector Machine (SVM) achieves a noticeably reduced maximum accuracy of 84.82%, even though the hybrid optimization technique shows improvement. The results of this study usually show that the most effective model for fault prediction is the GRU model, configured with the attributes chosen by XAI, followed by LSTM and SVM. Full article
(This article belongs to the Special Issue Machinery Condition Monitoring and Intelligent Fault Diagnosis)
Show Figures

Figure 1

25 pages, 5122 KiB  
Article
Human Emotion Recognition Based on Spatio-Temporal Facial Features Using HOG-HOF and VGG-LSTM
by Hajar Chouhayebi, Mohamed Adnane Mahraz, Jamal Riffi, Hamid Tairi and Nawal Alioua
Computers 2024, 13(4), 101; https://doi.org/10.3390/computers13040101 - 16 Apr 2024
Viewed by 1881
Abstract
Human emotion recognition is crucial in various technological domains, reflecting our growing reliance on technology. Facial expressions play a vital role in conveying and preserving human emotions. While deep learning has been successful in recognizing emotions in video sequences, it struggles to effectively [...] Read more.
Human emotion recognition is crucial in various technological domains, reflecting our growing reliance on technology. Facial expressions play a vital role in conveying and preserving human emotions. While deep learning has been successful in recognizing emotions in video sequences, it struggles to effectively model spatio-temporal interactions and identify salient features, limiting its accuracy. This research paper proposed an innovative algorithm for facial expression recognition which combined a deep learning algorithm and dynamic texture methods. In the initial phase of this study, facial features were extracted using the Visual-Geometry-Group (VGG19) model and input into Long-Short-Term-Memory (LSTM) cells to capture spatio-temporal information. Additionally, the HOG-HOF descriptor was utilized to extract dynamic features from video sequences, capturing changes in facial appearance over time. Combining these models using the Multimodal-Compact-Bilinear (MCB) model resulted in an effective descriptor vector. This vector was then classified using a Support Vector Machine (SVM) classifier, chosen for its simpler interpretability compared to deep learning models. This choice facilitates better understanding of the decision-making process behind emotion classification. In the experimental phase, the fusion method outperformed existing state-of-the-art methods on the eNTERFACE05 database, with an improvement margin of approximately 1%. In summary, the proposed approach exhibited superior accuracy and robust detection capabilities. Full article
Show Figures

Figure 1

15 pages, 3562 KiB  
Article
A Comparative Study of Machine Learning Classifiers for Enhancing Knee Osteoarthritis Diagnosis
by Aquib Raza, Thien-Luan Phan, Hung-Chung Li, Nguyen Van Hieu, Tran Trung Nghia and Congo Tak Shing Ching
Information 2024, 15(4), 183; https://doi.org/10.3390/info15040183 - 28 Mar 2024
Cited by 6 | Viewed by 2418
Abstract
Knee osteoarthritis (KOA) is a leading cause of disability, particularly affecting older adults due to the deterioration of articular cartilage within the knee joint. This condition is characterized by pain, stiffness, and impaired movement, posing a significant challenge in medical diagnostics and treatment [...] Read more.
Knee osteoarthritis (KOA) is a leading cause of disability, particularly affecting older adults due to the deterioration of articular cartilage within the knee joint. This condition is characterized by pain, stiffness, and impaired movement, posing a significant challenge in medical diagnostics and treatment planning, especially due to the current inability for early and accurate detection or monitoring of disease progression. This research introduces a multifaceted approach employing feature extraction and machine learning (ML) to improve the accuracy of diagnosing and classifying KOA stages from radiographic images. Utilizing a dataset of 3154 knee X-ray images, this study implemented feature extraction methods such as Histogram of Oriented Gradients (HOG) with Linear Discriminant Analysis (LDA) and Min–Max scaling to prepare the data for classification. The study evaluates six ML classifiers—K Nearest Neighbors classifier, Support Vector Machine (SVM), Gaussian Naive Bayes, Decision Tree, Random Forest, and XGBoost—optimized via GridSearchCV for hyperparameter tuning within a 10-fold Stratified K-Fold cross-validation framework. An ensemble model has also been made for the already high-accuracy models to explore the possibility of enhancing the accuracy and reducing the risk of overfitting. The XGBoost classifier and the ensemble model emerged as the most efficient for multiclass classification, with an accuracy of 98.90%, distinguishing between healthy and unhealthy knees. These results underscore the potential of integrating advanced ML methodologies for the nuanced and accurate diagnosis and classification of KOA, offering new avenues for clinical application and future research in medical imaging diagnostics. Full article
(This article belongs to the Section Information Applications)
Show Figures

Figure 1

32 pages, 15331 KiB  
Review
Detecting Wear and Tear in Pedestrian Crossings Using Computer Vision Techniques: Approaches, Challenges, and Opportunities
by Gonçalo J. M. Rosa, João M. S. Afonso, Pedro D. Gaspar, Vasco N. G. J. Soares and João M. L. P. Caldeira
Information 2024, 15(3), 169; https://doi.org/10.3390/info15030169 - 20 Mar 2024
Cited by 1 | Viewed by 2074
Abstract
Pedestrian crossings are an essential part of the urban landscape, providing safe passage for pedestrians to cross busy streets. While some are regulated by timed signals and are marked with signs and lights, others are simply marked on the road and do not [...] Read more.
Pedestrian crossings are an essential part of the urban landscape, providing safe passage for pedestrians to cross busy streets. While some are regulated by timed signals and are marked with signs and lights, others are simply marked on the road and do not have additional infrastructure. Nevertheless, the markings undergo wear and tear due to traffic, weather, and road maintenance activities. If pedestrian crossing markings are excessively worn, drivers may not be able to see them, which creates road safety issues. This paper presents a study of computer vision techniques that can be used to identify and classify pedestrian crossings. It first introduces the related concepts. Then, it surveys related work and categorizes existing solutions, highlighting their key features, strengths, and limitations. The most promising techniques are identified and described: Convolutional Neural Networks, Histogram of Oriented Gradients, Maximally Stable Extremal Regions, Canny Edge, and thresholding methods. Their performance is evaluated and compared on a custom dataset developed for this work. Insights on open issues and research opportunities in the field are also provided. It is shown that managers responsible for road safety, in the context of a smart city, can benefit from computer vision approaches to automate the process of determining the wear and tear of pedestrian crossings. Full article
(This article belongs to the Section Wireless Technologies)
Show Figures

Figure 1

Back to TopTop