Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = J48 decision tree

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1047 KiB  
Proceeding Paper
Tree-Based Machine Learning Approach for Predicting the Impact Behavior of Carbon/Flax Bio-Hybrid Fiber-Reinforced Polymer Composite Laminates
by Manzar Masud, Aamir Mubashar, Shahid Iqbal, Hassan Ejaz and Saad Abdul Raheem
Eng. Proc. 2024, 75(1), 23; https://doi.org/10.3390/engproc2024075023 - 24 Sep 2024
Abstract
In this research, the effect of change in stacking sequences on the impact performance of bio-hybrid fiber-reinforced polymer (bio-HFRP) composite materials was analyzed and evaluated. The methodology was developed, based on the mechanical testing and utilization of tree-based machine learning regression models. Low-velocity [...] Read more.
In this research, the effect of change in stacking sequences on the impact performance of bio-hybrid fiber-reinforced polymer (bio-HFRP) composite materials was analyzed and evaluated. The methodology was developed, based on the mechanical testing and utilization of tree-based machine learning regression models. Low-velocity impact (LVI) testing was performed on five distinct stacking sequences of carbon/flax bio-HFRP at energies ranging from 15 J to 90 J. For all tests, peak impact force was recorded and compared. Symmetric configurations with a uniform distribution of flax layers across the composite laminate exhibited better impact performance. Additionally, two tree-based machine learning (ML) algorithms were used: random forest (RF) and decision tree (DT). The performance metrics used to assess and compare the efficiency were the coefficient of determination (R2), mean square error (MSE), and mean absolute error (MAE). The most accurate model for the prediction of peak impact force was DT with the R2 training and test dataset values of 0.9920 and 0.9045, respectively. Furthermore, lower MSE and MAE values were attained using the DT model as compared to the RF model. The developed methodology and the model serve as powerful tools to predict the damage-induced properties of bio-HFRP composite laminates utilizing minimal resources and saving time as well. Full article
Show Figures

Figure 1

12 pages, 220 KiB  
Article
Neither Cursed nor Punished: Natural Law in Genesis 2–3 and J
by Joseph Ryan Kelly
Religions 2024, 15(9), 1062; https://doi.org/10.3390/rel15091062 - 1 Sep 2024
Viewed by 229
Abstract
Gendered criticism of Eve and general criticism of Eve and Adam are rooted in the idea of their moral failing when they disobey Yahweh. Two lenses bring a more ancient understanding of the text into focus. The first lens is reading the story [...] Read more.
Gendered criticism of Eve and general criticism of Eve and Adam are rooted in the idea of their moral failing when they disobey Yahweh. Two lenses bring a more ancient understanding of the text into focus. The first lens is reading the story in the context of the J source of the Pentateuch. The second lens is that of natural law as understood by Greco-Roman philosophers. These lenses provide new clarity, showing how Eve and Adam’s decision to eat from the tree of knowledge violates a non-moral norm: they transgress the boundary between humanity and divinity. It is this ontological transgression to which Yahweh responds. Mortality, many labors, and many pregnancies reflect the natural consequences of this ontological violation, not an arbitrary punishment for a moral failing. This alternative understanding of Genesis 2–3 allows us to understand that Eve and Adam are neither cursed nor punished. Full article
18 pages, 1100 KiB  
Article
AI-Based Approach to Firewall Rule Refinement on High-Performance Computing Service Network
by Jae-Kook Lee, Taeyoung Hong and Gukhua Lee
Appl. Sci. 2024, 14(11), 4373; https://doi.org/10.3390/app14114373 - 22 May 2024
Viewed by 785
Abstract
High-performance computing (HPC) relies heavily on network security, particularly when supercomputing services are provided via public networks. As supercomputer operators, we introduced several security devices, such as anti-DDoS, intrusion prevention systems (IPSs), firewalls, and web application firewalls, to ensure the secure use of [...] Read more.
High-performance computing (HPC) relies heavily on network security, particularly when supercomputing services are provided via public networks. As supercomputer operators, we introduced several security devices, such as anti-DDoS, intrusion prevention systems (IPSs), firewalls, and web application firewalls, to ensure the secure use of supercomputing resources. Potential threats are identified based on predefined security policies and added to the firewall rules for access control after detecting abnormal behavior through anti-DDoS, IPS, and system access logs. After analyzing the status change patterns for rule policies added owing to human errors among these added firewall log events, 289,320 data points were extracted over a period of four years. Security experts and operators must go through a strict verification process to rectify policies that were added incorrectly owing to human error, which adds to their workload. To address this challenge, our research applies various machine- and deep-learning algorithms to autonomously determine the normalcy of detection without requiring administrative intervention. Machine-learning algorithms, including naïve Bayes, K-nearest neighbor (KNN), OneR, a decision tree called J48, support vector machine (SVM), logistic regression, and the implemented neural network (NN) model with the cross-entropy loss function, were tested. The results indicate that the KNN and NN models exhibited an accuracy of 97%. Additional training and feature refinement led to even better improvements, increasing the accuracy to 98%, a 1% increase. By leveraging the capabilities of machine-learning and deep-learning technologies, we have provided the basis for a more robust, efficient, and autonomous network security infrastructure for supercomputing services. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

18 pages, 470 KiB  
Article
Comparing Hierarchical Approaches to Enhance Supervised Emotive Text Classification
by Lowri Williams, Eirini Anthi and Pete Burnap
Big Data Cogn. Comput. 2024, 8(4), 38; https://doi.org/10.3390/bdcc8040038 - 29 Mar 2024
Viewed by 1511
Abstract
The performance of emotive text classification using affective hierarchical schemes (e.g., WordNet-Affect) is often evaluated using the same traditional measures used to evaluate the performance of when a finite set of isolated classes are used. However, applying such measures means the full characteristics [...] Read more.
The performance of emotive text classification using affective hierarchical schemes (e.g., WordNet-Affect) is often evaluated using the same traditional measures used to evaluate the performance of when a finite set of isolated classes are used. However, applying such measures means the full characteristics and structure of the emotive hierarchical scheme are not considered. Thus, the overall performance of emotive text classification using emotion hierarchical schemes is often inaccurately reported and may lead to ineffective information retrieval and decision making. This paper provides a comparative investigation into how methods used in hierarchical classification problems in other domains, which extend traditional evaluation metrics to consider the characteristics of the hierarchical classification scheme, can be applied and subsequently improve the classification of emotive texts. This study investigates the classification performance of three widely used classifiers, Naive Bayes, J48 Decision Tree, and SVM, following the application of the aforementioned methods. The results demonstrated that all the methods improved the emotion classification. However, the most notable improvement was recorded when a depth-based method was applied to both the testing and validation data, where the precision, recall, and F1-score were significantly improved by around 70 percentage points for each classifier. Full article
(This article belongs to the Special Issue Advances in Natural Language Processing and Text Mining)
Show Figures

Figure 1

21 pages, 1030 KiB  
Article
Why Do Tree Ensemble Approximators Not Outperform the Recursive-Rule eXtraction Algorithm?
by Soma Onishi, Masahiro Nishimura, Ryota Fujimura and Yoichi Hayashi
Mach. Learn. Knowl. Extr. 2024, 6(1), 658-678; https://doi.org/10.3390/make6010031 - 16 Mar 2024
Cited by 1 | Viewed by 1636
Abstract
Although machine learning models are widely used in critical domains, their complexity and poor interpretability remain problematic. Decision trees (DTs) and rule-based models are known for their interpretability, and numerous studies have investigated techniques for approximating tree ensembles using DTs or rule sets, [...] Read more.
Although machine learning models are widely used in critical domains, their complexity and poor interpretability remain problematic. Decision trees (DTs) and rule-based models are known for their interpretability, and numerous studies have investigated techniques for approximating tree ensembles using DTs or rule sets, even though these approximators often overlook interpretability. These methods generate three types of rule sets: DT based, unordered, and decision list based. However, very few metrics exist that can distinguish and compare these rule sets. Therefore, the present study proposes an interpretability metric to allow for comparisons of interpretability between different rule sets and investigates the interpretability of the rules generated by the tree ensemble approximators. We compare these rule sets with the Recursive-Rule eXtraction algorithm (Re-RX) with J48graft to offer insights into the interpretability gap. The results indicate that Re-RX with J48graft can handle categorical and numerical attributes separately, has simple rules, and achieves a high interpretability, even when the number of rules is large. RuleCOSI+, a state-of-the-art method, showed significantly lower results regarding interpretability, but had the smallest number of rules. Full article
(This article belongs to the Section Learning)
Show Figures

Figure 1

25 pages, 872 KiB  
Review
Detection of DoS Attacks for IoT in Information-Centric Networks Using Machine Learning: Opportunities, Challenges, and Future Research Directions
by Rawan Bukhowah, Ahmed Aljughaiman and M. M. Hafizur Rahman
Electronics 2024, 13(6), 1031; https://doi.org/10.3390/electronics13061031 - 9 Mar 2024
Cited by 2 | Viewed by 1524
Abstract
The Internet of Things (IoT) is a rapidly growing network that shares information over the Internet via interconnected devices. In addition, this network has led to new security challenges in recent years. One of the biggest challenges is the impact of denial-of-service (DoS) [...] Read more.
The Internet of Things (IoT) is a rapidly growing network that shares information over the Internet via interconnected devices. In addition, this network has led to new security challenges in recent years. One of the biggest challenges is the impact of denial-of-service (DoS) attacks on the IoT. The Information-Centric Network (ICN) infrastructure is a critical component of the IoT. The ICN has gained recognition as a promising networking solution for the IoT by supporting IoT devices to be able to communicate and exchange data with each other over the Internet. Moreover, the ICN provides easy access and straightforward security to IoT content. However, the integration of IoT devices into the ICN introduces new security challenges, particularly in the form of DoS attacks. These attacks aim to disrupt or disable the normal operation of the ICN, potentially leading to severe consequences for IoT applications. Machine learning (ML) is a powerful technology. This paper proposes a new approach for developing a robust and efficient solution for detecting DoS attacks in ICN-IoT networks using ML technology. ML is a subset of artificial intelligence (AI) that focuses on the development of algorithms. While several ML algorithms have been explored in the literature, including neural networks, decision trees (DTs), clustering algorithms, XGBoost, J48, multilayer perceptron (MLP) with backpropagation (BP), deep neural networks (DNNs), MLP-BP, RBF-PSO, RBF-JAYA, and RBF-TLBO, researchers compare these detection approaches using classification metrics such as accuracy. This classification metric indicates that SVM, RF, and KNN demonstrate superior performance compared to other alternatives. The proposed approach was carried out on the NDN architecture because, based on our findings, it is the most used one and has a high percentage of various types of cyberattacks. The proposed approach can be evaluated using an ndnSIM simulation and a synthetic dataset for detecting DoS attacks in ICN-IoT networks using ML algorithms. Full article
(This article belongs to the Special Issue Machine Learning for Cybersecurity: Threat Detection and Mitigation)
Show Figures

Figure 1

16 pages, 2113 KiB  
Article
Assessing Forest Species Diversity in Ghana’s Tropical Forest Using PlanetScope Data
by Elisha Njomaba, James Nana Ofori, Reginald Tang Guuroh, Ben Emunah Aikins, Raymond Kwame Nagbija and Peter Surový
Remote Sens. 2024, 16(3), 463; https://doi.org/10.3390/rs16030463 - 25 Jan 2024
Cited by 1 | Viewed by 1665
Abstract
This study utilized a remotely sensed dataset with a high spatial resolution of 3 m to predict species diversity in the Bobiri Forest Reserve (BFR), a moist semi-deciduous tropical forest in Ghana. We conducted a field campaign of tree species measurements to achieve [...] Read more.
This study utilized a remotely sensed dataset with a high spatial resolution of 3 m to predict species diversity in the Bobiri Forest Reserve (BFR), a moist semi-deciduous tropical forest in Ghana. We conducted a field campaign of tree species measurements to achieve this objective for species diversity estimation. Thirty-five field plots of 50 m × 20 m were established, and the most dominant tree species within the forest were identified. Other measurements, such as diameter at breast height (DBH ≥ 5 cm), tree height, and each plot’s GPS coordinates, were recorded. The following species diversity indices were estimated from the field measurements: Shannon–Wiener (H′), Simpson diversity index (D2), species richness (S), and species evenness (J′). The PlanetScope surface reflectance data at 3 m spatial resolution was acquired and preprocessed for species diversity prediction. The spectral/pixel information of all bands, except the coastal band, was extracted for further processing. Vegetation indices (VIs) (NDVI—normalized difference vegetation index, EVI—enhanced vegetation index, SRI—simple ratio index, SAVI—soil adjusted vegetation index, and NDRE—normalized difference red edge index) were also calculated from the spectral bands and their pixel value extracted. A correlation analysis was then performed between the spectral bands and VIs with the species diversity index. The results showed that spectral bands 6 (red) and 2 (blue) significantly correlated with the two main species diversity indices (S and H′) due to their influence on vegetation properties, such as canopy biomass and leaf chlorophyll content. Furthermore, we conducted a stepwise regression analysis to investigate the most important spectral bands to consider when estimating species diversity from the PlanetScope satellite data. Like the correlation results, bands 6 (red) and 2 (blue) were the most important bands to be considered for predicting species diversity. The model equations from the stepwise regression were used to predict tree species diversity. Overall, the study’s findings emphasize the relevance of remotely sensed data in assessing the ecological condition of protected areas, a tool for decision-making in biodiversity conservation. Full article
Show Figures

Figure 1

15 pages, 3185 KiB  
Article
A New Approach to Identifying Sorghum Hybrids Using UAV Imagery Using Multispectral Signature and Machine Learning
by Dthenifer Cordeiro Santana, Gustavo de Faria Theodoro, Ricardo Gava, João Lucas Gouveia de Oliveira, Larissa Pereira Ribeiro Teodoro, Izabela Cristina de Oliveira, Fábio Henrique Rojo Baio, Carlos Antonio da Silva Junior, Job Teixeira de Oliveira and Paulo Eduardo Teodoro
Algorithms 2024, 17(1), 23; https://doi.org/10.3390/a17010023 - 5 Jan 2024
Cited by 2 | Viewed by 1667
Abstract
Using multispectral sensors attached to unmanned aerial vehicles (UAVs) can assist in the collection of morphological and physiological information from several crops. This approach, also known as high-throughput phenotyping, combined with data processing by machine learning (ML) algorithms, can provide fast, accurate, and [...] Read more.
Using multispectral sensors attached to unmanned aerial vehicles (UAVs) can assist in the collection of morphological and physiological information from several crops. This approach, also known as high-throughput phenotyping, combined with data processing by machine learning (ML) algorithms, can provide fast, accurate, and large-scale discrimination of genotypes in the field, which is crucial for improving the efficiency of breeding programs. Despite their importance, studies aimed at accurately classifying sorghum hybrids using spectral variables as input sets in ML models are still scarce in the literature. Against this backdrop, this study aimed: (I) to discriminate sorghum hybrids based on canopy reflectance in different spectral bands (SB) and vegetation indices (VIs); (II) to evaluate the performance of ML algorithms in classifying sorghum hybrids; (III) to evaluate the best dataset input for the algorithms. A field experiment was carried out in the 2022 crop season in a randomized block design with three replications and six sorghum hybrids. At 60 days after crop emergence, a flight was carried out over the experimental area using the Sensefly eBee real time kinematic. The spectral bands (SB) acquired by the sensor were: blue (475 nm, B_475), green (550 nm, G_550), red (660 nm, R_660), Rededge (735 nm, RE_735) e NIR (790 nm, NIR_790). From the SB acquired, vegetation indices (VIs) were calculated. Data were submitted to ML classification analysis, in which three input settings (using only SB, using only VIs, and using SB + VIs) and six algorithms were tested: artificial neural networks (ANN), support vector machine (SVM), J48 decision trees (J48), random forest (RF), REPTree (DT) and logistic regression (LR, conventional technique used as a control). There were differences in the spectral signature of each sorghum hybrid, which made it possible to differentiate them using SBs and VIs. The ANN algorithm performed best for the three accuracy metrics tested, regardless of the input used. In this case, the use of SB is feasible due to the speed and practicality of analyzing the data, as it does not require calculations to perform the VIs. RF showed better accuracy when VIs were used as an input. The use of VIs provided the best performance for all the algorithms, as did the use of SB + VIs which provided good performance for all the algorithms except RF. Using ML algorithms provides accurate identification of the hybrids, in which ANNs using only SB and RF using VIs as inputs stand out (above 55 for CC, above 0.4 for kappa and around 0.6 for F-score). There were differences in the spectral signature of each sorghum hybrid, which makes it possible to differentiate them using wavelengths and vegetation indices. Processing the multispectral data using machine learning techniques made it possible to accurately differentiate the hybrids, with emphasis on artificial neural networks using spectral bands as inputs and random forest using vegetation indices as inputs. Full article
Show Figures

Figure 1

10 pages, 2080 KiB  
Technical Note
Eucalyptus Species Discrimination Using Hyperspectral Sensor Data and Machine Learning
by Larissa Pereira Ribeiro Teodoro, Rosilene Estevão, Dthenifer Cordeiro Santana, Izabela Cristina de Oliveira, Maria Teresa Gomes Lopes, Gileno Brito de Azevedo, Fábio Henrique Rojo Baio, Carlos Antonio da Silva Junior and Paulo Eduardo Teodoro
Forests 2024, 15(1), 39; https://doi.org/10.3390/f15010039 - 23 Dec 2023
Cited by 3 | Viewed by 1127
Abstract
The identification of tree species is very useful for the management and monitoring of forest resources. When paired with machine learning (ML) algorithms, species identification based on spectral bands from a hyperspectral sensor can contribute to developing technologies that enable accurate forest inventories [...] Read more.
The identification of tree species is very useful for the management and monitoring of forest resources. When paired with machine learning (ML) algorithms, species identification based on spectral bands from a hyperspectral sensor can contribute to developing technologies that enable accurate forest inventories to be completed efficiently, reducing labor and time. This is the first study to evaluate the effectiveness of classification of five eucalyptus species (E. camaldulensis, Corymbia citriodora, E. saligna, E. grandis, and E. urophyla) using hyperspectral images and machine learning. Spectral readings were taken from 200 leaves of each species and divided into three dataset sizes: one set containing 50 samples per species, a second with 100 samples per species, and a third set with 200 samples per species. The ML algorithms tested were multilayer perceptron artificial neural network (ANN), decision trees (J48 and REPTree algorithms), and random forest (RF). As a control, a conventional approach by logistic regression (LR) was used. Eucalyptus species were classified by ML algorithms using a randomized stratified cross-validation with 10 folds. After obtaining the percentage of correct classification (CC) and F-measure accuracy metrics, the means were grouped by the Scott–Knott test at 5% probability. Our findings revealed the existence of distinct spectral curves between the species, with the differences being more marked from the 700 nm range onwards. The most accurate ML algorithm for identifying eucalyptus species was ANN. There was no statistical difference for CC between the three dataset sizes. Therefore, it was determined that 50 leaves would be sufficient to accurately differentiate the eucalyptus species evaluated. Our study represents an important scientific advance for forest inventories and breeding programs with applications in both forest plantations and native forest areas as it proposes a fast, accurate, and large-scale species-level classification approach. Full article
(This article belongs to the Special Issue New Tools for Forest Science)
Show Figures

Figure 1

22 pages, 592 KiB  
Article
Empowering Participatory Research in Urban Health: Wearable Biometric and Environmental Sensors for Activity Recognition
by Rok Novak, Johanna Amalia Robinson, Tjaša Kanduč, Dimosthenis Sarigiannis, Sašo Džeroski and David Kocman
Sensors 2023, 23(24), 9890; https://doi.org/10.3390/s23249890 - 18 Dec 2023
Cited by 1 | Viewed by 1424
Abstract
Participatory exposure research, which tracks behaviour and assesses exposure to stressors like air pollution, traditionally relies on time-activity diaries. This study introduces a novel approach, employing machine learning (ML) to empower laypersons in human activity recognition (HAR), aiming to reduce dependence on manual [...] Read more.
Participatory exposure research, which tracks behaviour and assesses exposure to stressors like air pollution, traditionally relies on time-activity diaries. This study introduces a novel approach, employing machine learning (ML) to empower laypersons in human activity recognition (HAR), aiming to reduce dependence on manual recording by leveraging data from wearable sensors. Recognising complex activities such as smoking and cooking presents unique challenges due to specific environmental conditions. In this research, we combined wearable environment/ambient and wrist-worn activity/biometric sensors for complex activity recognition in an urban stressor exposure study, measuring parameters like particulate matter concentrations, temperature, and humidity. Two groups, Group H (88 individuals) and Group M (18 individuals), wore the devices and manually logged their activities hourly and minutely, respectively. Prioritising accessibility and inclusivity, we selected three classification algorithms: k-nearest neighbours (IBk), decision trees (J48), and random forests (RF), based on: (1) proven efficacy in existing literature, (2) understandability and transparency for laypersons, (3) availability on user-friendly platforms like WEKA, and (4) efficiency on basic devices such as office laptops or smartphones. Accuracy improved with finer temporal resolution and detailed activity categories. However, when compared to other published human activity recognition research, our accuracy rates, particularly for less complex activities, were not as competitive. Misclassifications were higher for vague activities (resting, playing), while well-defined activities (smoking, cooking, running) had few errors. Including environmental sensor data increased accuracy for all activities, especially playing, smoking, and running. Future work should consider exploring other explainable algorithms available on diverse tools and platforms. Our findings underscore ML’s potential in exposure studies, emphasising its adaptability and significance for laypersons while also highlighting areas for improvement. Full article
(This article belongs to the Special Issue Sensors for Human Activity Recognition II)
Show Figures

Figure 1

11 pages, 2189 KiB  
Technical Note
Machine Learning in the Hyperspectral Classification of Glycaspis brimblecombei (Hemiptera Psyllidae) Attack Severity in Eucalyptus
by Gabriella Silva de Gregori, Elisângela de Souza Loureiro, Luis Gustavo Amorim Pessoa, Gileno Brito de Azevedo, Glauce Taís de Oliveira Sousa Azevedo, Dthenifer Cordeiro Santana, Izabela Cristina de Oliveira, João Lucas Gouveia de Oliveira, Larissa Pereira Ribeiro Teodoro, Fábio Henrique Rojo Baio, Carlos Antonio da Silva Junior, Paulo Eduardo Teodoro and Luciano Shozo Shiratsuchi
Remote Sens. 2023, 15(24), 5657; https://doi.org/10.3390/rs15245657 - 7 Dec 2023
Cited by 1 | Viewed by 1015
Abstract
Assessing different levels of red gum lerp psyllid (Glycaspis brimblecombei) can influence the hyperspectral reflectance of leaves in different ways due to changes in chlorophyll. In order to classify these levels, the use of machine learning (ML) algorithms can help process [...] Read more.
Assessing different levels of red gum lerp psyllid (Glycaspis brimblecombei) can influence the hyperspectral reflectance of leaves in different ways due to changes in chlorophyll. In order to classify these levels, the use of machine learning (ML) algorithms can help process the data faster and more accurately. The objectives were: (I) to evaluate the spectral behavior of the G. brimblecombei attack levels; (II) find the most accurate ML algorithm for classifying pest attack levels; (III) find the input configuration that improves performance of the algorithms. Data were collected from a clonal eucalyptus plantation (clone AEC 0144—Eucalyptus urophilla) aged 10.3 months old. Eighty sample evaluations were carried out considering the following severity levels: control (no shells), low infestation (N1), intermediate infestation (N2), and high infestation (N3), for which leaf spectral reflectances were obtained using a spectroradiometer. The spectral range acquired by the equipment was 350 to 2500 nm. After obtaining the wavelengths, they were grouped into representative interval means in 28 bands. Data were submitted to the following ML algorithms: artificial neural networks (ANN), REPTree (DT) and J48 decision trees, random forest (RF), support vector machine (SVM), and conventional logistic regression (LR) analysis. Two input configurations were tested: using only the wavelengths (ALL) and using the spectral bands (SB) to classify the attack levels. The output variable was the severity of G. brimblecombei attack. There were differences in the hyperspectral behavior of the leaves for the different attack levels. The highest attack level shows the greatest distinction and the highest reflectance values. LR and SVM show better accuracy in classifying the severity levels of G. brimblecombei attack. For the correct classification percentage, the RL and SVM algorithms performed better, both with accuracy above 90%. Both algorithms achieved F-score values close to 0.90 and above 0.8 for Kappa. The entire spectral range guaranteed the best accuracy for both algorithms. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

17 pages, 7699 KiB  
Article
A New Automated Classification Framework for Gear Fault Diagnosis Using Fourier–Bessel Domain-Based Empirical Wavelet Transform
by Dada Saheb Ramteke, Anand Parey and Ram Bilas Pachori
Machines 2023, 11(12), 1055; https://doi.org/10.3390/machines11121055 - 28 Nov 2023
Cited by 5 | Viewed by 1363
Abstract
Gears are the most important parts of a rotary system, and they are used for mechanical power transmission. The health monitoring of such a system is needed to observe its effective and reliable working. An approach that is based on vibration is typically [...] Read more.
Gears are the most important parts of a rotary system, and they are used for mechanical power transmission. The health monitoring of such a system is needed to observe its effective and reliable working. An approach that is based on vibration is typically utilized while carrying out fault diagnostics on a gearbox. Using the Fourier–Bessel series expansion (FBSE) as the basis for an empirical wavelet transform (EWT), a novel automated technique has been proposed in this paper, with a combination of these two approaches, i.e., FBSE-EWT. To improve the frequency resolution, the current empirical wavelet transform will be reformed utilizing the FBSE technique. The proposed novel method includes the decomposition of different levels of gear crack vibration signals into narrow-band components (NBCs) or sub-bands. The Kruskal–Wallis test is utilized to choose the features that are statistically significant in order to separate them from the sub-bands. Three classifiers are used for fault classification, i.e., random forest, J48 decision tree classifiers, and multilayer perceptron function classifier. A comparative study has been performed between the existing EWT and the proposed novel methodology. It has been observed that the FBSE-EWT with a random forest classifier shows a better gear fault detection performance compared to the existing EWT. Full article
(This article belongs to the Special Issue Advances in Fault Diagnosis and Anomaly Detection)
Show Figures

Figure 1

13 pages, 3191 KiB  
Article
Risk Prediction Model for Chronic Kidney Disease in Thailand Using Artificial Intelligence and SHAP
by Ming-Che Tsai, Bannakij Lojanapiwat, Chi-Chang Chang, Kajohnsak Noppakun, Piyapong Khumrin, Ssu-Hui Li, Chih-Ying Lee, Hsi-Chieh Lee and Krit Khwanngern
Diagnostics 2023, 13(23), 3548; https://doi.org/10.3390/diagnostics13233548 - 28 Nov 2023
Cited by 2 | Viewed by 1420
Abstract
Chronic kidney disease (CKD) is a multifactorial, complex condition that requires proper management to slow its progression. In Thailand, 11.6 million people (17.5%) have CKD, with 5.7 million (8.6%) in the advanced stages and >100,000 requiring hemodialysis (2020 report). This study aimed to [...] Read more.
Chronic kidney disease (CKD) is a multifactorial, complex condition that requires proper management to slow its progression. In Thailand, 11.6 million people (17.5%) have CKD, with 5.7 million (8.6%) in the advanced stages and >100,000 requiring hemodialysis (2020 report). This study aimed to develop a risk prediction model for CKD in Thailand. Data from 17,100 patients were collected to screen for 14 independent variables selected as risk factors, using the IBK, Random Tree, Decision Table, J48, and Random Forest models to train the predictive models. In addition, we address the unbalanced category issue using the synthetic minority oversampling technique (SMOTE). The indicators of performance include classification accuracy, sensitivity, specificity, and precision. This study achieved an accuracy rate of 92.1% with the top-performing Random Forest model. Moreover, our empirical findings substantiate previous research through highlighting the significance of serum albumin, blood urea nitrogen, age, direct bilirubin, and glucose. Furthermore, this study used the SHapley Additive exPlanations approach to analyze the attributes of the top six critical factors and then extended the comparison to include dual-attribute factors. Finally, our proposed machine learning technique can be used to evaluate the effectiveness of these risk factors and assist in the development of future personalized treatment. Full article
(This article belongs to the Special Issue Advances in the Diagnosis and Management of Kidney Diseases)
Show Figures

Figure 1

17 pages, 4164 KiB  
Article
Weightless Neural Network-Based Detection and Diagnosis of Visual Faults in Photovoltaic Modules
by Naveen Venkatesh Sridharan, Jerome Vasanth Joseph, Sugumaran Vaithiyanathan and Mohammadreza Aghaei
Energies 2023, 16(15), 5824; https://doi.org/10.3390/en16155824 - 5 Aug 2023
Cited by 7 | Viewed by 1241
Abstract
The present study introduces a novel approach employing weightless neural networks (WNN) for the detection and diagnosis of visual faults in photovoltaic (PV) modules. WNN leverages random access memory (RAM) devices to simulate the functionality of neurons. The network is trained using a [...] Read more.
The present study introduces a novel approach employing weightless neural networks (WNN) for the detection and diagnosis of visual faults in photovoltaic (PV) modules. WNN leverages random access memory (RAM) devices to simulate the functionality of neurons. The network is trained using a flexible and efficient algorithm designed to produce consistent and precise outputs. The primary advantage of adopting WNN lies in its capacity to obviate the need for network retraining and residual generation, making it highly promising in classification and pattern recognition domains. In this study, visible faults in PV modules were captured using an unmanned aerial vehicle (UAV) equipped with a digital camera capable of capturing RGB images. The collected images underwent preprocessing and resizing before being fed as input into a pre-trained deep learning network, specifically, DenseNet-201, which performed feature extraction. Subsequently, a decision tree algorithm (J48) was employed to select the most significant features for classification. The selected features were divided into training and testing datasets that were further utilized to determine the training, test and validation accuracies of the WNN (WiSARD classifier). Hyperparameter tuning enhances WNN’s performance by achieving optimal values, maximizing classification accuracy while minimizing computational time. The obtained results indicate that the WiSARD classifier achieved a classification accuracy of 100.00% within a testing time of 1.44 s, utilizing the optimal hyperparameter settings. This study underscores the potential of WNN in efficiently and accurately diagnosing visual faults in PV modules, with implications for enhancing the reliability and performance of photovoltaic systems. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

14 pages, 2540 KiB  
Article
Machine Learning-Driven Ubiquitous Mobile Edge Computing as a Solution to Network Challenges in Next-Generation IoT
by Moteeb Al Moteri, Surbhi Bhatia Khan and Mohammed Alojail
Systems 2023, 11(6), 308; https://doi.org/10.3390/systems11060308 - 16 Jun 2023
Cited by 5 | Viewed by 1762
Abstract
Ubiquitous mobile edge computing (MEC) using the internet of things (IoT) is a promising technology for providing low-latency and high-throughput services to end-users. Resource allocation and quality of service (QoS) optimization are critical challenges in MEC systems due to the large number of [...] Read more.
Ubiquitous mobile edge computing (MEC) using the internet of things (IoT) is a promising technology for providing low-latency and high-throughput services to end-users. Resource allocation and quality of service (QoS) optimization are critical challenges in MEC systems due to the large number of devices and applications involved. This results in poor latency with minimum throughput and energy consumption as well as a high delay rate. Therefore, this paper proposes a novel approach for resource allocation and QoS optimization in MEC using IoT by combining the hybrid kernel random Forest (HKRF) and ensemble support vector machine (ESVM) algorithms with crossover-based hunter–prey optimization (CHPO). The HKRF algorithm uses decision trees and kernel functions to capture the complex relationships between input features and output labels. The ESVM algorithm combines multiple SVM classifiers to improve the classification accuracy and robustness. The CHPO algorithm is a metaheuristic optimization algorithm that mimics the hunting behavior of predators and prey in nature. The proposed approach aims to optimize the parameters of the HKRF and ESVM algorithms and allocate resources to different applications running on the MEC network to improve the QoS metrics such as latency, throughput, and energy efficiency. The experimental results show that the proposed approach outperforms other algorithms in terms of QoS metrics and resource allocation efficiency. The throughput and the energy consumption attained by our proposed approach are 595 mbit/s and 9.4 mJ, respectively. Full article
Show Figures

Figure 1

Back to TopTop