Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,665)

Search Parameters:
Keywords = LBS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 14403 KiB  
Article
Maize Endophytic Plant Growth-Promoting Bacteria Peribacillus simplex Can Alleviate Plant Saline and Alkaline Stress
by Guoliang Li, Miaoxin Shi, Wenhao Wan, Zongying Wang, Shangwei Ji, Fengshan Yang, Shumei Jin and Jianguo Zhang
Int. J. Mol. Sci. 2024, 25(20), 10870; https://doi.org/10.3390/ijms252010870 - 10 Oct 2024
Abstract
Soil salinization is currently one of the main abiotic stresses that restrict plant growth. Plant endophytic bacteria can alleviate abiotic stress. The aim of the current study was to isolate, characterize, and assess the plant growth-promoting and saline and alkaline stress-alleviating traits of [...] Read more.
Soil salinization is currently one of the main abiotic stresses that restrict plant growth. Plant endophytic bacteria can alleviate abiotic stress. The aim of the current study was to isolate, characterize, and assess the plant growth-promoting and saline and alkaline stress-alleviating traits of Peribacillus simplex M1 (P. simplex M1) isolates from maize. One endophytic bacterial isolate, named P. simplex M1, was selected from the roots of maize grown in saline–alkali soil. The P. simplex M1 genome sequence analysis of the bacteria with a length of 5.8 Mbp includes about 700 genes that promote growth and 16 antioxidant activity genes that alleviate saline and alkaline stress. P. simplex M1 can grow below 400 mM NaHCO3 on the LB culture medium; The isolate displayed multiple plant growth-stimulating features, such as nitrogen fixation, produced indole-3-acetic acid (IAA), and siderophore production. This isolate had a positive effect on the resistance to salt of maize in addition to the growth. P. simplex M1 significantly promoted seed germination by enhancing seed vigor in maize whether under normal growth or NaHCO3 stress conditions. The seeds with NaHCO3 treatment exhibited higher reactive oxygen species (ROS) levels than the maize in P. simplex M1 inoculant on maize. P. simplex M1 can colonize the roots of maize. The P. simplex M1 inoculant plant increased chlorophyll in leaves, stimulated root and leaf growth, increased the number of lateral roots and root dry weight, increased the length and width of the blades, and dry weight of the blades. The application of inoculants can significantly reduce the content of malondialdehyde (MDA) and increase the activity of plant antioxidant enzymes (Catalase (CAT), Superoxide Dismutase (SOD), and Peroxidase (POD)), which may thereby improve maize resistance to saline and alkaline stress. Conclusion: P. simplex M1 isolate belongs to plant growth-promoting bacteria by having high nitrogen concentration, indoleacetic acid (IAA), and siderophore, and reducing the content of ROS through the antioxidant system to alleviate salt alkali stress. This study presents the potential application of P. simplex M1 as a biological inoculant to promote plant growth and mitigate the saline and alkaline effects of maize and other crops. Full article
Show Figures

Figure 1

25 pages, 16110 KiB  
Article
Optimizing Routing Protocol Design for Long-Range Distributed Multi-Hop Networks
by Shengli Pang, Jing Lu, Ruoyu Pan, Honggang Wang, Xute Wang, Zhifan Ye and Jingyi Feng
Electronics 2024, 13(19), 3957; https://doi.org/10.3390/electronics13193957 - 8 Oct 2024
Abstract
The advancement of communication technologies has facilitated the deployment of numerous sensors, terminal human–machine interfaces, and smart devices in various complex environments for data collection and analysis, providing automated and intelligent services. The increasing urgency of monitoring demands in complex environments necessitates low-cost [...] Read more.
The advancement of communication technologies has facilitated the deployment of numerous sensors, terminal human–machine interfaces, and smart devices in various complex environments for data collection and analysis, providing automated and intelligent services. The increasing urgency of monitoring demands in complex environments necessitates low-cost and efficient network deployment solutions to support various monitoring tasks. Distributed networks offer high stability, reliability, and economic feasibility. Among various Low-Power Wide-Area Network (LPWAN) technologies, Long Range (LoRa) has emerged as the preferred choice due to its openness and flexibility. However, traditional LoRa networks face challenges such as limited coverage range and poor scalability, emphasizing the need for research into distributed routing strategies tailored for LoRa networks. This paper proposes the Optimizing Link-State Routing Based on Load Balancing (LB-OLSR) protocol as an ideal approach for constructing LoRa distributed multi-hop networks. The protocol considers the selection of Multipoint Relay (MPR) nodes to reduce unnecessary network overhead. In addition, route planning integrates factors such as business communication latency, link reliability, node occupancy rate, and node load rate to construct an optimization model and optimize the route establishment decision criteria through a load-balancing approach. The simulation results demonstrate that the improved routing protocol exhibits superior performance in node load balancing, average node load duration, and average business latency. Full article
Show Figures

Figure 1

15 pages, 2953 KiB  
Article
Evaluation of Straw Mulch as an Erosion Control Practice for Varying Soil Types on a 4:1 Slope
by John R. Cater, Wesley N. Donald, Michael Perez and Xing Fang
Water 2024, 16(19), 2819; https://doi.org/10.3390/w16192819 - 4 Oct 2024
Abstract
Construction sites rely on erosion control practices to protect bare slopes and prevent soil loss. The effectiveness of certain erosion controls is often under-evaluated if they are not a part of a product evaluation program. Furthermore, erosion controls in general are not fully [...] Read more.
Construction sites rely on erosion control practices to protect bare slopes and prevent soil loss. The effectiveness of certain erosion controls is often under-evaluated if they are not a part of a product evaluation program. Furthermore, erosion controls in general are not fully understood regarding how their performance can be affected by site specific variables, such as soil variations. This study used large-scale rainfall simulators to evaluate how a commonly used erosion control on construction sites, broadcasted straw mulch, performs on three common soil types in Alabama. The study at the Auburn University, Stormwater Research Facility (AU-SRF) used the industry standard testing method and three different soil types: sand, loam, and clay in accordance with ASTM D6459-19, the standard test method for testing rolled erosion control products’ (RECPs) performance in protecting hillslopes from rainfall-induced erosion. As required by ASTM D6459-19, the rainfall simulators simulated a storm of varying 20 min increments of 2 in./h (5.08 cm/h), 4 in./h (10.16 cm/h), and 6 in./h (15.24 cm/h). A total of nine bare soil tests on the 4:1 test plots was performed with an average total soil loss of 1977 lb (897 kg), 236.2 lb (107 kg), and 114.2 lb (51.8 kg) for sand, loam, and clay, respectively. The average erodibility K-factor for each soil type is calculated to be 0.37 (sand), 0.043 (loam), and 0.013 (clay). Nine straw tests were performed on the 4:1 plots, with an average total soil loss of 44.31 lb (20.1 kg), 6.74 lb (3.1 kg), and 17.13 lb (7.8 kg) for sand, loam, and clay, respectively. Straw testing indicated substantial soil loss reduction with average cover management C-factor values under the revised universal soil loss equation (RUSLE) method of 0.021, 0.047, and 0.193 for sand, loam, and clay applications, respectively. This variation in C-factor across the three soil types indicates that the single C-factor, often reported by product manufacturers, is not adequate to imply performance. Full article
Show Figures

Figure 1

15 pages, 1099 KiB  
Article
Genetic Variability in the Physicochemical Characteristics of Cultivated Coffea canephora Genotypes
by Hilton Lopes Junior, Rodrigo Barros Rocha, Alana Mara Kolln, Ramiciely Nunes de Paula Silva, Enrique Anastácio Alves, Alexsandro Lara Teixeira and Marcelo Curitiba Espíndula
Plants 2024, 13(19), 2780; https://doi.org/10.3390/plants13192780 - 4 Oct 2024
Abstract
The objective of this study was to characterize the genetic divergence and selection gains of the physicochemical grains traits of 68 genotypes of C. canephora most cultivated in the Western Amazon. For this purpose, the following characteristics were evaluated over two harvests: aqueous [...] Read more.
The objective of this study was to characterize the genetic divergence and selection gains of the physicochemical grains traits of 68 genotypes of C. canephora most cultivated in the Western Amazon. For this purpose, the following characteristics were evaluated over two harvests: aqueous extract, ash, acidity, pH, protein, ether extract, soluble solids, phenolic compounds, soluble sugars, reducing sugars, and non-reducing sugars. The genotype × measurement interaction effect was significant for all characteristics, with a predominant simple interaction, resulting in smaller changes in the ranking of genotypes. Out of a total of 45 genotypic correlation estimates, 8 were significant, of which 5 were related to acidity. The dispersion of the first two components associated with reference points shows that the genotypes BRS3193, AS1, AS2, AS3, N16, CA1, and AS7 were closest to the ideal type of higher performance. Selection for the main characteristic of soluble sugars resulted in estimates of genetic progress lower than those observed using selection indices. The genetic materials present high genetic diversity, allowing the selection of reference plants with high levels of sugars (BRS3193, AS3, GJ25, and LB30), proteins (BRS2357), lipids (GJ30), and phenolic compounds in their green beans (BRS3193) and high water solubility (AS2). Full article
(This article belongs to the Special Issue Genetics and Breeding of Nut Crops and Other Fruit Crops)
Show Figures

Figure 1

18 pages, 10096 KiB  
Article
Volatile Organic Compounds Produced by Trichoderma asperellum with Antifungal Properties against Colletotrichum acutatum
by Mauricio Nahuam Chávez-Avilés, Margarita García-Álvarez, José Luis Ávila-Oviedo, Irving Hernández-Hernández, Paula Itzel Bautista-Ortega and Lourdes Iveth Macías-Rodríguez
Microorganisms 2024, 12(10), 2007; https://doi.org/10.3390/microorganisms12102007 - 3 Oct 2024
Abstract
Managing plant diseases caused by phytopathogenic fungi, such as anthracnose caused by Colletotrichum species, is challenging. Different methods have been used to identify compounds with antibiotic properties. Trichoderma strains are a source of novel molecules with antifungal properties, including volatile organic compounds (VOCs), [...] Read more.
Managing plant diseases caused by phytopathogenic fungi, such as anthracnose caused by Colletotrichum species, is challenging. Different methods have been used to identify compounds with antibiotic properties. Trichoderma strains are a source of novel molecules with antifungal properties, including volatile organic compounds (VOCs), whose production is influenced by the nutrient content of the medium. In this study, we assessed the VOCs produced in dual confrontation systems performed in two culture media by Trichoderma strains (T. atroviride IMI206040, T. asperellum T1 and T3, and Trichoderma sp. T2) on Colletotrichum acutatum. We analysed the VOC profiles using gas chromatography coupled with mass spectrometry. The Luria Bertani (LB) medium stimulated the production of VOCs with antifungal properties in most systems. We identified 2-pentyl furan, dimethyl disulfide, and α-phellandrene and determined their antifungal activity in vitro. The equimolar mixture of those VOCs (250 µM ea.) resulted in 14% C. acutatum diametral growth inhibition. The infective ability and disease severity caused by the mycelia exposed to the VOCs mixture were notably diminished in strawberry leaves. Application of these VOCs as biofumigants may contribute to the management of anthracnose. LB represents a feasible strategy for identifying novel VOCs produced by Trichoderma strains with antifungal properties. Full article
(This article belongs to the Special Issue Colletotrichum Pathogens in Plants)
Show Figures

Figure 1

29 pages, 31375 KiB  
Article
The Dispersion-Strengthening Effect of TiN Nanoparticles Evoked by Ex Situ Nitridation of Gas-Atomized, NiCu-Based Alloy 400 in Fluidized Bed Reactor for Laser Powder Bed Fusion
by Jan-Philipp Roth, Ivo Šulák, Markéta Gálíková, Antoine Duval, Germain Boissonnet, Fernando Pedraza, Ulrich Krupp and Katrin Jahns
J. Manuf. Mater. Process. 2024, 8(5), 223; https://doi.org/10.3390/jmmp8050223 - 2 Oct 2024
Abstract
Throughout recent years, the implementation of nanoparticles into the microstructure of additively manufactured (AM) parts has gained great attention in the material science community. The dispersion strengthening (DS) effect achieved leads to a substantial improvement in the mechanical properties of the alloy used. [...] Read more.
Throughout recent years, the implementation of nanoparticles into the microstructure of additively manufactured (AM) parts has gained great attention in the material science community. The dispersion strengthening (DS) effect achieved leads to a substantial improvement in the mechanical properties of the alloy used. In this work, an ex situ approach of powder conditioning prior to the AM process as per a newly developed fluidized bed reactor (FBR) was applied to a titanium-enriched variant of the NiCu-based Alloy 400. Powders were investigated before and after FBR exposure, and it was found that the conditioning led to a significant increase in the TiN formation along grain boundaries. Manufactured to parts via laser-based powder bed fusion of metals (PBF-LB/M), the ex situ FBR approach not only revealed a superior microstructure compared to unconditioned parts but also with respect to a recently introduced in situ approach based on a gas atomization reaction synthesis (GARS). A substantially higher number of nanoparticles formed along cell walls and enabled an effective suppression of dislocation movement, resulting in excellent tensile, creep, and fatigue properties, even at elevated temperatures up to 750 °C. Such outstanding properties have never been documented for AM-processed Alloy 400, which is why the demonstrated FBR ex situ conditioning marks a promising modification route for future alloy systems. Full article
(This article belongs to the Special Issue High-Performance Metal Additive Manufacturing)
Show Figures

Figure 1

10 pages, 242 KiB  
Article
Comparison of Lineblot and Immunoprecipitation Methods in the Detection of Myositis-Specific and Myositis-Associated Antibodies in Patients with Idiopathic Inflammatory Myopathies: Consistency with Clinical Diagnoses
by Fabrizio Angeli, Eleonora Pedretti, Emirena Garrafa, Micaela Fredi, Angela Ceribelli, Franco Franceschini and Ilaria Cavazzana
Diagnostics 2024, 14(19), 2192; https://doi.org/10.3390/diagnostics14192192 - 30 Sep 2024
Abstract
Background: the reference method for detection of myositis-specific and myositis-associated antibodies (MSAs and MAAs) is considered immunoprecipitation (IP), but it is routinely replaced by semi-automated methods, like lineblot (LB). Few data are available on the consistency with clinical diagnoses; thus, we aim at [...] Read more.
Background: the reference method for detection of myositis-specific and myositis-associated antibodies (MSAs and MAAs) is considered immunoprecipitation (IP), but it is routinely replaced by semi-automated methods, like lineblot (LB). Few data are available on the consistency with clinical diagnoses; thus, we aim at analysing these aspects. Methods: sixty-nine patients with idiopathic inflammatory myopathies (IIM) were studied via LB (Myositis Antigens Profile 3 EUROLINE, Euroimmun) and IP (RNA and protein antigens). The degree of concordance between methods was calculated using Cohen’s coefficient. Results: a substantial concordance was found for anti-Ku and anti-PM/Scl and a moderate concordance was found for anti-Jo1 and anti–Mi-2, while a fair concordance was found for anti-EJ, anti-SRP, and anti-Ro52 antibodies. The concordance could not be calculated for anti-OJ, anti-PL-7, anti-PL-12, anti-NXP2, anti-TIF1ɣ, and anti-MDA5, because they were only detected with one method. Multiple MSAs were found only with LB in 2/69 sera. Anti-MDA5, TIF1ɣ, NXP2 (detected via IP), and anti-Jo1 in anti-synthetase syndrome (both LB and IP) had the best concordance with clinical diagnosis. Conclusions: LB and IP show substantial concordance for PM/Scl and Ku, and moderate concordance for Jo1 and Mi-2, with a good concordance with clinical diagnoses. IP shows a high performance for DM-associated MSAs. LB seems to be more sensitive in detecting anti-Ro52 antibodies, but it identified multiple MSAs, unlike IP. Full article
(This article belongs to the Special Issue Recent Advances in Diagnosis and Treatment in Rheumatology)
12 pages, 550 KiB  
Systematic Review
The Role of Liquid Biopsy in Gastroenteropancreatic Neuroendocrine Neoplasms
by Catarina Almeida, Lorenzo Gervaso, Gianmaria Frigè, Francesca Spada, Lavinia Benini, Chiara Alessandra Cella, Luca Mazzarella and Nicola Fazio
Cancers 2024, 16(19), 3349; https://doi.org/10.3390/cancers16193349 - 30 Sep 2024
Abstract
Neuroendocrine neoplasms incidence has been increasing, arising the need for precise and early diagnostic tools. Liquid biopsy (LB) offers a less invasive alternative to tissue biopsy, providing real-time molecular information from circulating tumour components in body fluids. The aim of this review is [...] Read more.
Neuroendocrine neoplasms incidence has been increasing, arising the need for precise and early diagnostic tools. Liquid biopsy (LB) offers a less invasive alternative to tissue biopsy, providing real-time molecular information from circulating tumour components in body fluids. The aim of this review is to analyse the current evidence concerning LB in NENs and its role in clinical practice. We conducted a systematic review in July 2024 focusing on LB applications in NENs, including circulating tumour cells (CTCs), circulating tumour DNA (ctDNA), micro RNA (miRNA), messenger RNA (mRNA) and extracellular vesicles. Sixty-five relevant articles were analysed. The LB showed potential in diagnosing and monitoring NENs. While CTCs face limitations due to low shedding, ctDNA provides valuable information on high-grade neoplasms. MiRNA and mRNA (e.g., the NETest) offer high sensitivity and specificity for diagnosis and prognosis, outperforming traditional markers like chromogranin A. The LB has significant potential for NEN diagnosis and monitoring but lacks widespread clinical integration due to limited prospective studies and guidelines, requiring further validation. Advances in sequencing technologies may enhance the clinical utility of LB in NENs. Future research should focus on refining LB methods, standardising protocols and exploring applications in high-grade NENs. Full article
(This article belongs to the Special Issue Updates in Neuroendocrine Neoplasms)
Show Figures

Figure 1

11 pages, 2851 KiB  
Article
Granular Bait Applications for Management of Rangeland Grasshoppers Using a Remotely Piloted Aerial Application System
by Roberto Rodriguez, Derek A. Woller, Daniel E. Martin, K. Chris Reuter, Lonnie R. Black, Mohamed A. Latheef, Kiara M. López Colón and Mason Taylor
Drones 2024, 8(10), 535; https://doi.org/10.3390/drones8100535 - 30 Sep 2024
Abstract
Rangeland grasshoppers are an endemic species that play an essential role in the rangeland ecosystem but can cause severe economic damage when populations reach outbreak levels. Remotely piloted aerial application systems (RPAASs) offer an alternative method to carry out aerial insecticide applications in [...] Read more.
Rangeland grasshoppers are an endemic species that play an essential role in the rangeland ecosystem but can cause severe economic damage when populations reach outbreak levels. Remotely piloted aerial application systems (RPAASs) offer an alternative method to carry out aerial insecticide applications in relatively small areas. The objective of this study was to investigate the efficacy of a granular bait, 2% Sevin (with the active ingredient carbaryl), applied by an RPAAS. The bait was applied on four replicated 4.05-hectare (10-acre) plots at a rate of 2.27 kg/ha (5 lbs/acre) with an RPAAS on a private ranch in New Mexico. Applications resulted in a normalized population reduction of 70.32% ± 16.54% standard error of the mean (SEM) of bait-susceptible species. Although some of the observed reduction in population may be attributed to aging, the net effect was most likely due to the ingestion of bait based on field observations of rapid mortality after ingestion and other factors, like past experience with carbaryl bait treatments on grasshoppers. Plots required at least two flights due to the Federal Aviation Administration’s (FAA) maximum takeoff weight requirement for small RPAASs. Combined, these results indicate that RPAASs can provide treatment capabilities in relatively small areas, i.e., population hotspots, preferably before outbreak levels are reached. Full article
Show Figures

Figure 1

17 pages, 2150 KiB  
Review
Liquid and Tissue Biopsies for Lung Cancer: Algorithms and Perspectives
by Paul Hofman
Cancers 2024, 16(19), 3340; https://doi.org/10.3390/cancers16193340 - 29 Sep 2024
Abstract
The targeted therapies and immunotherapies in thoracic oncology, particularly for NS-NSCLC, are associated with an increase in the number of predictive biomarkers to be assessed in routine clinical practice. These treatments are administered thanks to marketing authorization for use in daily practice or [...] Read more.
The targeted therapies and immunotherapies in thoracic oncology, particularly for NS-NSCLC, are associated with an increase in the number of predictive biomarkers to be assessed in routine clinical practice. These treatments are administered thanks to marketing authorization for use in daily practice or are evaluated during clinical trials. Since the molecular targets to be identified are more and more complex and numerous, it is now mandatory to use NGS. NGS can be developed from both tissue and fluid (mainly blood). The blood tests in oncology, so-called “liquid biopsies” (LB), are performed with plasmatic circulating free DNA (cf-DNA) and are complementary to the molecular testing performed with a TB. LB use in lung cancer is associated with international guidelines, but additional algorithms could be set up. However, even if useful for better care of patients, notably with advanced and metastatic NS-NSCLC, until now LB are not often integrated into daily practice, at least in Europe and notably in France. The purpose of this review is to describe the different opportunities and algorithms leading to the identification of the molecular signature of NS-NSCLC, using both tissue and liquid biopsies, and to introduce the principle limitations but also some perspectives in this field. Full article
Show Figures

Figure 1

16 pages, 2507 KiB  
Article
Variation in Leaf Functional Traits of Populus laurifolia Ldb and Ulmus pumila L. Across Five Contrasting Urban Sites in Ulaanbaatar, Mongolia
by Otgonsaikhan Byambasuren, Anujin Bat-Amgalan, Ser-Oddamba Byambadorj, Jonathan O. Hernandez, Tuguldur Nyam-Osor and Batkhuu Nyam-Osor
Plants 2024, 13(19), 2709; https://doi.org/10.3390/plants13192709 - 27 Sep 2024
Abstract
Amid urbanization, studying leaf functional traits of woody plants in urban environments is essential for understanding how urban green spaces function and how they can be effectively managed sustainably. In this study, we investigated the effects of different growing conditions on the morpho-physiological [...] Read more.
Amid urbanization, studying leaf functional traits of woody plants in urban environments is essential for understanding how urban green spaces function and how they can be effectively managed sustainably. In this study, we investigated the effects of different growing conditions on the morpho-physiological traits of Populus laurifolia and Ulmus pumila across five contrasting urban sites. The leaf area (LA), leaf length (LL), leaf width (LW), leaf biomass (LB), specific leaf area (SLA), leaf chlorophyll concentration, chlorophyll fluorescence parameters, leaf water potential at predawn (Ψpd) and midday (Ψmd), leaf performance index (PIabs), and phenotypic plasticity index (PPI) were compared across five contrasting urban sites. The soil chemical and physical properties were also compared between sites. There were significant differences in soil physicochemical characteristics between sites. We found significant effects of site on most of the morpho-physiological traits measured, except for Ψmd. The leaf chlorophyll concentration of P. laurifolia and U. pumila varied significantly between sites. The Ψpd was significantly different between years and sites. In U. pumila, the mean PPI for morphological traits (0.20) was lower than that for physiological traits (0.21). In conclusion, we revealed significant variations in the morpho-physiological traits of P. laurifolia and U. pumila across the five urban sites. Hence, long-term, large-scale studies are recommended to examine how diverse species respond to different urban growing conditions and to include other ecologically important plant traits for a better understanding of urban trees in a changing environment. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

22 pages, 1098 KiB  
Article
Enhanced Link Prediction and Traffic Load Balancing in Unmanned Aerial Vehicle-Based Cloud-Edge-Local Networks
by Hao Long, Feng Hu and Lingjun Kong
Drones 2024, 8(10), 528; https://doi.org/10.3390/drones8100528 - 27 Sep 2024
Abstract
With the advancement of cloud-edge-local computing, Unmanned Aerial Vehicles (UAVs), as flexible mobile nodes, offer novel solutions for dynamic network deployment. However, existing research on UAV networks faces substantial challenges in accurately predicting link dynamics and efficiently managing traffic loads, particularly in highly [...] Read more.
With the advancement of cloud-edge-local computing, Unmanned Aerial Vehicles (UAVs), as flexible mobile nodes, offer novel solutions for dynamic network deployment. However, existing research on UAV networks faces substantial challenges in accurately predicting link dynamics and efficiently managing traffic loads, particularly in highly distributed and rapidly changing environments. These limitations result in inefficient resource allocation and suboptimal network performance. To address these challenges, this paper proposes a UAV-based cloud-edge-local network resource elastic scheduling architecture, which integrates the Graph-Autoencoder–GAN-LSTM (GA–GLU) algorithm for accurate link prediction and the FlowBender-Enhanced Reinforcement Learning for Load Balancing (FERL-LB) algorithm for dynamic traffic load balancing. GA–GLU accurately predicts dynamic changes in UAV network topologies, enabling adaptive and efficient scheduling of network resources. FERL-LB leverages these predictions to optimize traffic load balancing within the architecture, enhancing both performance and resource utilization. To validate the effectiveness of GA–GLU, comparisons are made with classical methods such as CN and Katz, as well as modern approaches like Node2vec and GAE–LSTM, which are commonly used for link prediction. Experimental results demonstrate that GA–GLU consistently outperforms these competitors in metrics such as AUC, MAP, and error rate. The integration of GA–GLU and FERL-LB within the proposed architecture significantly improves network performance in highly dynamic environments. Full article
Show Figures

Figure 1

19 pages, 7437 KiB  
Article
Comparative Study on Growth and Metabolomic Profiles of Six Lactobacilli Strains by Sodium Selenite
by Longrui Wang, Jiasheng Ju, Huichun Xie, Feng Qiao, Qiaoyu Luo and Lianyu Zhou
Microorganisms 2024, 12(10), 1937; https://doi.org/10.3390/microorganisms12101937 - 24 Sep 2024
Abstract
Selenium (Se) has garnered increasing attention in the field of nutrition, as it is essential for both humans and animals. Certain microorganisms can enrich inorganic selenium and convert it into organic selenium. The growth and metabolomic profiles of six lactobacilli strains exposed to [...] Read more.
Selenium (Se) has garnered increasing attention in the field of nutrition, as it is essential for both humans and animals. Certain microorganisms can enrich inorganic selenium and convert it into organic selenium. The growth and metabolomic profiles of six lactobacilli strains exposed to 50 μg/mL of sodium selenite were performed using gas chromatography tandem time-off light mass spectrometry (GC-TOF-MS) analysis. The addition of selenium significantly increased both the population and weight of the Lacticaseibacillus rhamnosus PS5, Lbs. rhamnosus RT-B, Limosilactobacillus reuteri 3630, and Lmb. reuteri 1663 strains, while those of the other two strains decreased. A total of 271 metabolites were determined, with their concentrations ranked from highest to lowest as follows: organic acids and derivatives, oxygen compounds, lipids and lipid-like molecules, and benzenoids. In certain groups, the concentrations of serine, aspartic acid, trehalose, palmitic acid, methylthreonine, and melibiose increased significantly, whereas glucuronic acid, ribose, ornithine, and methionine were downregulated. The metabolic pathways were significantly associated with ABC transporters, glycine, serine, threonine metabolism, and aminobenzoate degradation and other pathways. Based on these findings, we concluded that the transport, absorption, assimilation, and stress response to selenium by lactobacilli in metabolomic changed. Furthermore, the metabolomic alterations among different types of lactobacilli varied primarily due to their distinct properties. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

21 pages, 4710 KiB  
Article
TWPT: Through-Wall Position Detection and Tracking System Using IR-UWB Radar Utilizing Kalman Filter-Based Clutter Reduction and CLEAN Algorithm
by Jinlong Zhang, Xiaochao Dang and Zhanjun Hao
Electronics 2024, 13(19), 3792; https://doi.org/10.3390/electronics13193792 - 24 Sep 2024
Abstract
Against the backdrop of rapidly advancing Artificial Intelligence of Things (AIOT) and sensing technologies, there is a growing demand for indoor location-based services (LBSs). This paper proposes a through-the-wall localization and tracking (TWPT) system based on an improved ultra-wideband (IR-UWB) radar to achieve [...] Read more.
Against the backdrop of rapidly advancing Artificial Intelligence of Things (AIOT) and sensing technologies, there is a growing demand for indoor location-based services (LBSs). This paper proposes a through-the-wall localization and tracking (TWPT) system based on an improved ultra-wideband (IR-UWB) radar to achieve more accurate localization of indoor moving targets. The TWPT system overcomes the limitations of traditional localization methods, such as multipath effects and environmental interference, using the high penetration and high accuracy of IR-UWB radar based on multi-sensor fusion technology. In the study, an improved Kalman filter (KF) algorithm is used for clutter reduction, while the CLEAN algorithm, combined with a compensation mechanism, is utilized to increase the target detection probability. Finally, a three-point localization estimation algorithm based on multi-IR-UWB radar is applied for the precise position and trajectory estimation of the target. Experimental validation indicates the TWPT system achieves a high positioning accuracy of 96.91%, with a root mean square error (RMSE) of 0.082 m and a Maximum Position Error (MPE) of 0.259 m. This study provides a highly accurate and precise solution for indoor TWPT based on IR-UWB radar. Full article
(This article belongs to the Topic Radar Signal and Data Processing with Applications)
Show Figures

Figure 1

24 pages, 6162 KiB  
Article
Location Privacy Protection for the Internet of Things with Edge Computing Based on Clustering K-Anonymity
by Nanlan Jiang, Yinan Zhai, Yujun Wang, Xuesong Yin, Sai Yang and Pingping Xu
Sensors 2024, 24(18), 6153; https://doi.org/10.3390/s24186153 - 23 Sep 2024
Abstract
With the development of the Internet of Things (IoT) and edge computing, more and more devices, such as sensor nodes and intelligent automated guided vehicles (AGVs), can serve as edge devices to provide Location-Based Services (LBS) through the IoT. As the number of [...] Read more.
With the development of the Internet of Things (IoT) and edge computing, more and more devices, such as sensor nodes and intelligent automated guided vehicles (AGVs), can serve as edge devices to provide Location-Based Services (LBS) through the IoT. As the number of applications increases, there is an abundance of sensitive information in the communication process, pushing the focus of privacy protection towards the communication process and edge devices. The challenge lies in the fact that most traditional location privacy protection algorithms are not suited for the IoT with edge computing, as they primarily focus on the security of remote servers. To enhance the capability of location privacy protection, this paper proposes a novel K-anonymity algorithm based on clustering. This novel algorithm incorporates a scheme that flexibly combines real and virtual locations based on the requirements of applications. Simulation results demonstrate that the proposed algorithm significantly improves location privacy protection for the IoT with edge computing. When compared to traditional K-anonymity algorithms, the proposed algorithm further enhances the security of location privacy by expanding the potential region in which the real node may be located, thereby limiting the effectiveness of “narrow-region” attacks. Full article
(This article belongs to the Special Issue Advanced Mobile Edge Computing in 5G Networks)
Show Figures

Figure 1

Back to TopTop