Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (296)

Search Parameters:
Keywords = LPWAN

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6331 KiB  
Article
Use of Wireless Sensor Networks for Area-Based Speed Control and Traffic Monitoring
by Mariusz Rychlicki, Zbigniew Kasprzyk, Małgorzata Pełka and Adam Rosiński
Appl. Sci. 2024, 14(20), 9243; https://doi.org/10.3390/app14209243 - 11 Oct 2024
Abstract
This paper reviews the potential of low-power wireless networks to improve road safety. The authors characterized this type of network and its application in road transport. They also presented the available technologies, highlighting one that was considered the most promising for transport applications. [...] Read more.
This paper reviews the potential of low-power wireless networks to improve road safety. The authors characterized this type of network and its application in road transport. They also presented the available technologies, highlighting one that was considered the most promising for transport applications. The study includes an innovative and proprietary concept of area-based vehicle speed monitoring using this technology and describes its potential for enhancing road safety. Assumptions and a model for the deployment of network equipment within the planned implementation area were developed. Using radio coverage planning software, the authors conducted a series of simulations to assess the radio coverage of the proposed solution. The results were used to evaluate the feasibility of deployment and to select system operating parameters. It was also noted that the proposed solution could be applied to traffic monitoring. The main objective of this paper is to present a new solution for improving road safety and to assess its feasibility for practical implementation. To achieve this, the authors conducted and presented the results of a series of simulations using radio coverage planning software. The key contribution of this research is the authors′ proposal to implement simultaneous vehicle speed control across the entire monitored area, rather than limiting it to specific, designated points. The simulation results, primarily related to the deployment and selection of operating parameters for wireless sensor network devices, as well as the type and height of antenna placement, suggest that the practical implementation of the proposed solution is feasible. This approach has the potential to significantly improve road safety and alter drivers′ perceptions of speed control. Additionally, the positive outcomes of the research could serve as a foundation for changing the selection of speed control sites, focusing on areas with the highest road safety risk at any given time. Full article
(This article belongs to the Special Issue Research and Estimation of Traffic Flow Characteristics)
Show Figures

Figure 1

25 pages, 16110 KiB  
Article
Optimizing Routing Protocol Design for Long-Range Distributed Multi-Hop Networks
by Shengli Pang, Jing Lu, Ruoyu Pan, Honggang Wang, Xute Wang, Zhifan Ye and Jingyi Feng
Electronics 2024, 13(19), 3957; https://doi.org/10.3390/electronics13193957 - 8 Oct 2024
Abstract
The advancement of communication technologies has facilitated the deployment of numerous sensors, terminal human–machine interfaces, and smart devices in various complex environments for data collection and analysis, providing automated and intelligent services. The increasing urgency of monitoring demands in complex environments necessitates low-cost [...] Read more.
The advancement of communication technologies has facilitated the deployment of numerous sensors, terminal human–machine interfaces, and smart devices in various complex environments for data collection and analysis, providing automated and intelligent services. The increasing urgency of monitoring demands in complex environments necessitates low-cost and efficient network deployment solutions to support various monitoring tasks. Distributed networks offer high stability, reliability, and economic feasibility. Among various Low-Power Wide-Area Network (LPWAN) technologies, Long Range (LoRa) has emerged as the preferred choice due to its openness and flexibility. However, traditional LoRa networks face challenges such as limited coverage range and poor scalability, emphasizing the need for research into distributed routing strategies tailored for LoRa networks. This paper proposes the Optimizing Link-State Routing Based on Load Balancing (LB-OLSR) protocol as an ideal approach for constructing LoRa distributed multi-hop networks. The protocol considers the selection of Multipoint Relay (MPR) nodes to reduce unnecessary network overhead. In addition, route planning integrates factors such as business communication latency, link reliability, node occupancy rate, and node load rate to construct an optimization model and optimize the route establishment decision criteria through a load-balancing approach. The simulation results demonstrate that the improved routing protocol exhibits superior performance in node load balancing, average node load duration, and average business latency. Full article
Show Figures

Figure 1

30 pages, 1427 KiB  
Review
Wearable Fall Detectors Based on Low Power Transmission Systems: A Systematic Review
by Manny Villa and Eduardo Casilari
Technologies 2024, 12(9), 166; https://doi.org/10.3390/technologies12090166 - 13 Sep 2024
Abstract
Early attention to individuals who suffer falls is a critical aspect when determining the consequences of such accidents, which are among the leading causes of mortality and disability in older adults. For this reason and considering the high number of older adults living [...] Read more.
Early attention to individuals who suffer falls is a critical aspect when determining the consequences of such accidents, which are among the leading causes of mortality and disability in older adults. For this reason and considering the high number of older adults living alone, the development of automatic fall alerting systems has garnered significant research attention over the past decade. A key element for deploying a fall detection system (FDS) based on wearables is the wireless transmission method employed to transmit the medical alarms. In this regard, the vast majority of prototypes in the related literature utilize short-range technologies, such as Bluetooth, which must be complemented by the existence of a gateway device (e.g., a smartphone). In other studies, standards like Wi-Fi or 3G communications are proposed, which offer greater range but come with high power consumption, which can be unsuitable for most wearables, and higher service fees. In addition, they require reliable radio coverage, which is not always guaranteed in all application scenarios. An interesting alternative to these standards is Low Power Wide Area Network (LPWAN) technologies, which minimize both energy consumption and hardware costs while maximizing transmission range. This article provides a comprehensive search and review of that works in the literature that have implemented and evaluated wearable FDSs utilizing LPWAN interfaces to transmit alarms. The review systematically examines these proposals, considering various operational aspects and identifying key areas that have not yet been adequately addressed for the viable implementation of such detectors. Full article
Show Figures

Figure 1

21 pages, 5536 KiB  
Article
A Machine Learning Approach for Path Loss Prediction Using Combination of Regression and Classification Models
by Ilia Iliev, Yuliyan Velchev, Peter Z. Petkov, Boncho Bonev, Georgi Iliev and Ivaylo Nachev
Sensors 2024, 24(17), 5855; https://doi.org/10.3390/s24175855 - 9 Sep 2024
Abstract
One of the key parameters in radio link planning is the propagation path loss. Most of the existing methods for its prediction are not characterized by a good balance between accuracy, generality, and low computational complexity. To address this problem, a machine learning [...] Read more.
One of the key parameters in radio link planning is the propagation path loss. Most of the existing methods for its prediction are not characterized by a good balance between accuracy, generality, and low computational complexity. To address this problem, a machine learning approach for path loss prediction is presented in this study. The novelty is the proposal of a compound model, which consists of two regression models and one classifier. The first regression model is adequate when a line-of-sight scenario is fulfilled in radio wave propagation, whereas the second one is appropriate for non-line-of-sight conditions. The classification model is intended to provide a probabilistic output, through which the outputs of the regression models are combined. The number of used input parameters is only five. They are related to the distance, the antenna heights, and the statistics of the terrain profile and line-of-sight obstacles. The proposed approach allows creation of a generalized model that is valid for various types of areas and terrains, different antenna heights, and line-of-sight and non line-of-sight propagation conditions. An experimental dataset is provided by measurements for a variety of relief types (flat, hilly, mountain, and foothill) and for rural, urban, and suburban areas. The experimental results show an excellent performances in terms of a root mean square error of a prediction as low as 7.3 dB and a coefficient of determination as high as 0.702. Although the study covers only one operating frequency of 433 MHz, the proposed model can be trained and applied for any frequency in the decimeter wavelength range. The main reason for the choice of such an operating frequency is because it falls within the range in which many wireless systems of different types are operating. These include Internet of Things (IoT), machine-to-machine (M2M) mesh radio networks, power efficient communication over long distances such as Low-Power Wide-Area Network (LPWAN)—LoRa, etc. Full article
(This article belongs to the Topic Advances in Wireless and Mobile Networking)
Show Figures

Figure 1

28 pages, 12062 KiB  
Article
Performance Analysis for Time Difference of Arrival Localization in Long-Range Networks
by Ioannis Daramouskas, Isidoros Perikos, Michael Paraskevas, Vaios Lappas and Vaggelis Kapoulas
Smart Cities 2024, 7(5), 2514-2541; https://doi.org/10.3390/smartcities7050098 - 6 Sep 2024
Abstract
LoRa technology is a recent technology belonging to the Low Power and Wide Area Networks (LPWANs), which offers distinct advantages for wireless communications and possesses unique features. Among others, it can be used for localization procedures offering minimal energy consumption and quite long-range [...] Read more.
LoRa technology is a recent technology belonging to the Low Power and Wide Area Networks (LPWANs), which offers distinct advantages for wireless communications and possesses unique features. Among others, it can be used for localization procedures offering minimal energy consumption and quite long-range transmissions. However, the exact capabilities of LoRa localization performance are yet to be employed thoroughly. This article examines the efficiency of the LoRa technology in localization tasks using Time Difference of Arrival (TDoA) measurements. An extensive and concrete experimental study was conducted in a real-world setup on the University of Patras campus, employing both real-world data and simulations to assess the precision of geodetic coordinate determination. Through our experiments, we implemented advanced localization algorithms, including Social Learning Particle Swarm Optimization (PSO), Least Squares, and Chan techniques. The results are quite interesting and highlight the conditions and parameters that result in accurate LoRa-based localization in real-world scenarios in smart cities. In our context, we were able to achieve state-of-the-art localization results reporting localization errors as low as 300 m in a quite complex 8 km × 6 km real-world environment. Full article
Show Figures

Figure 1

23 pages, 2085 KiB  
Article
Energy Performance of LR-FHSS: Analysis and Evaluation
by Roger Sanchez-Vital, Lluís Casals, Bartomeu Heer-Salva, Rafael Vidal, Carles Gomez and Eduard Garcia-Villegas
Sensors 2024, 24(17), 5770; https://doi.org/10.3390/s24175770 - 5 Sep 2024
Abstract
Long-range frequency hopping spread spectrum (LR-FHSS) is a pivotal advancement in the LoRaWAN protocol that is designed to enhance the network’s capacity and robustness, particularly in densely populated environments. Although energy consumption is paramount in LoRaWAN-based end devices, this is the first study [...] Read more.
Long-range frequency hopping spread spectrum (LR-FHSS) is a pivotal advancement in the LoRaWAN protocol that is designed to enhance the network’s capacity and robustness, particularly in densely populated environments. Although energy consumption is paramount in LoRaWAN-based end devices, this is the first study in the literature, to our knowledge, that models the impact of this novel mechanism on energy consumption. In this article, we provide a comprehensive energy consumption analytical model of LR-FHSS, focusing on three critical metrics: average current consumption, battery lifetime, and energy efficiency of data transmission. The model is based on measurements performed on real hardware in a fully operational LR-FHSS network. While in our evaluation, LR-FHSS can show worse consumption figures than LoRa, we find that with optimal configuration, the battery lifetime of LR-FHSS end devices can reach 2.5 years for a 50 min notification period. For the most energy-efficient payload size, this lifespan can be extended to a theoretical maximum of up to 16 years with a one-day notification interval using a cell-coin battery. Full article
(This article belongs to the Special Issue Feature Papers in the 'Sensor Networks' Section 2024)
Show Figures

Figure 1

46 pages, 8707 KiB  
Article
Design and Enhancement of a Fog-Enabled Air Quality Monitoring and Prediction System: An Optimized Lightweight Deep Learning Model for a Smart Fog Environmental Gateway
by Divya Bharathi Pazhanivel, Anantha Narayanan Velu and Bagavathi Sivakumar Palaniappan
Sensors 2024, 24(15), 5069; https://doi.org/10.3390/s24155069 - 5 Aug 2024
Viewed by 779
Abstract
Effective air quality monitoring and forecasting are essential for safeguarding public health, protecting the environment, and promoting sustainable development in smart cities. Conventional systems are cloud-based, incur high costs, lack accurate Deep Learning (DL)models for multi-step forecasting, and fail to optimize DL models [...] Read more.
Effective air quality monitoring and forecasting are essential for safeguarding public health, protecting the environment, and promoting sustainable development in smart cities. Conventional systems are cloud-based, incur high costs, lack accurate Deep Learning (DL)models for multi-step forecasting, and fail to optimize DL models for fog nodes. To address these challenges, this paper proposes a Fog-enabled Air Quality Monitoring and Prediction (FAQMP) system by integrating the Internet of Things (IoT), Fog Computing (FC), Low-Power Wide-Area Networks (LPWANs), and Deep Learning (DL) for improved accuracy and efficiency in monitoring and forecasting air quality levels. The three-layered FAQMP system includes a low-cost Air Quality Monitoring (AQM) node transmitting data via LoRa to the Fog Computing layer and then the cloud layer for complex processing. The Smart Fog Environmental Gateway (SFEG) in the FC layer introduces efficient Fog Intelligence by employing an optimized lightweight DL-based Sequence-to-Sequence (Seq2Seq) Gated Recurrent Unit (GRU) attention model, enabling real-time processing, accurate forecasting, and timely warnings of dangerous AQI levels while optimizing fog resource usage. Initially, the Seq2Seq GRU Attention model, validated for multi-step forecasting, outperformed the state-of-the-art DL methods with an average RMSE of 5.5576, MAE of 3.4975, MAPE of 19.1991%, R2 of 0.6926, and Theil’s U1 of 0.1325. This model is then made lightweight and optimized using post-training quantization (PTQ), specifically dynamic range quantization, which reduced the model size to less than a quarter of the original, improved execution time by 81.53% while maintaining forecast accuracy. This optimization enables efficient deployment on resource-constrained fog nodes like SFEG by balancing performance and computational efficiency, thereby enhancing the effectiveness of the FAQMP system through efficient Fog Intelligence. The FAQMP system, supported by the EnviroWeb application, provides real-time AQI updates, forecasts, and alerts, aiding the government in proactively addressing pollution concerns, maintaining air quality standards, and fostering a healthier and more sustainable environment. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

25 pages, 3289 KiB  
Article
Software-Defined Radio Implementation of a LoRa Transceiver
by João Pedro de Omena Simas, Daniel Gaetano Riviello and Roberto Garello
Sensors 2024, 24(15), 4825; https://doi.org/10.3390/s24154825 - 25 Jul 2024
Viewed by 465
Abstract
The number of applications of low-power wide-area networks (LPWANs) has been growing quite considerably in the past few years and so has the number of protocol stacks. Despite this fact, there is still no fully open LPWAN protocol stack available to the public, [...] Read more.
The number of applications of low-power wide-area networks (LPWANs) has been growing quite considerably in the past few years and so has the number of protocol stacks. Despite this fact, there is still no fully open LPWAN protocol stack available to the public, which limits the flexibility and ease of integration of the existing ones. The closest to being fully open is LoRa; however, only its medium access control (MAC) layer, known as LoRaWAN, is open and its physical and logical link control layers, also known as LoRa PHY, are still only partially understood. In this paper, the essential missing aspects of LoRa PHY are not only reverse engineered, but also, a new design of the transceiver and its sub-components are proposed and implemented in a modular and flexible way using GNU Radio. Finally, some examples of applications of both the transceiver and its components, which are made to be run in a simple setup by using cheap and widely available off-the-shelf hardware, are given to show how the library can be used and extended. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

30 pages, 2328 KiB  
Review
Recent Developments in AI and ML for IoT: A Systematic Literature Review on LoRaWAN Energy Efficiency and Performance Optimization
by Maram Alkhayyal and Almetwally Mostafa
Sensors 2024, 24(14), 4482; https://doi.org/10.3390/s24144482 - 11 Jul 2024
Cited by 1 | Viewed by 757
Abstract
The field of the Internet of Things (IoT) is dominating various areas of technology. As the number of devices has increased, there is a need for efficient communication with low resource consumption and energy efficiency. Low Power Wide Area Networks (LPWANs) have emerged [...] Read more.
The field of the Internet of Things (IoT) is dominating various areas of technology. As the number of devices has increased, there is a need for efficient communication with low resource consumption and energy efficiency. Low Power Wide Area Networks (LPWANs) have emerged as a transformative technology for the IoT as they provide long-range communication capabilities with low power consumption. Among the various LPWAN technologies, Long Range Wide Area Networks (LoRaWAN) are widely adopted due to their open standard architecture, which supports secure, bi-directional communication and is particularly effective in outdoor and complex urban environments. This technology is helpful in enabling a variety of IoT applications that require wide coverage and long battery life, such as smart cities, industrial IoT, and environmental monitoring. The integration of Machine Leaning (ML) and Artificial Intelligence (AI) into LoRaWAN operations has further enhanced its capability and particularly optimized resource allocation and energy efficiency. This systematic literature review provides a comprehensive examination of the integration of ML and AI technologies in the optimization of LPWANs, with a specific focus on LoRaWAN. This review follows the PRISMA model and systematically synthesizes current research to highlight how ML and AI enhance operational efficiency, particularly in terms of energy consumption, resource management, and network stability. The SLR aims to review the key methods and techniques that are used in state-of-the-art LoRaWAN to enhance the overall network performance. We identified 25 relevant primary studies. The study provides an analysis of key findings based on research questions on how various LoRaWAN parameters are optimized through advanced ML, DL, and RL techniques to achieve optimized performance. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

18 pages, 6764 KiB  
Article
Towards Mass-Scale IoT with Energy-Autonomous LoRaWAN Sensor Nodes
by Roberto La Rosa, Lokman Boulebnane, Antonino Pagano, Fabrizio Giuliano and Daniele Croce
Sensors 2024, 24(13), 4279; https://doi.org/10.3390/s24134279 - 1 Jul 2024
Cited by 1 | Viewed by 799
Abstract
By 2030, it is expected that a trillion things will be connected. In such a scenario, the power required for the trillion nodes would necessitate using trillions of batteries, resulting in maintenance challenges and significant management costs. The objective of this research is [...] Read more.
By 2030, it is expected that a trillion things will be connected. In such a scenario, the power required for the trillion nodes would necessitate using trillions of batteries, resulting in maintenance challenges and significant management costs. The objective of this research is to contribute to sustainable wireless sensor nodes through the introduction of an energy-autonomous wireless sensor node (EAWSN) designed to be an energy-autonomous, self-sufficient, and maintenance-free device, to be suitable for long-term mass-scale internet of things (IoT) applications in remote and inaccessible environments. The EAWSN utilizes Low-Power Wide Area Networks (LPWANs) via LoRaWAN connectivity, and it is powered by a commercial photovoltaic cell, which can also harvest ambient light in an indoor environment. Storage components include a capacitor of 2 mF, which allows EAWSN to successfully transmit 30-byte data packets up to 560 m, thanks to opportunistic LoRaWAN data rate selection that enables a significant trade-off between energy consumption and network coverage. The reliability of the designed platform is demonstrated through validation in an urban environment, showing exceptional performance over remarkable distances. Full article
(This article belongs to the Special Issue LoRa Communication Technology for IoT Applications)
Show Figures

Figure 1

20 pages, 7415 KiB  
Article
Model and Implementation of a Novel Heat-Powered Battery-Less IIoT Architecture for Predictive Industrial Maintenance
by Raúl Aragonés, Joan Oliver, Roger Malet, Maria Oliver-Parera and Carles Ferrer
Information 2024, 15(6), 330; https://doi.org/10.3390/info15060330 - 5 Jun 2024
Viewed by 735
Abstract
The research and management of Industry 4.0 increasingly relies on accurate real-time quality data to apply efficient algorithms for predictive maintenance. Currently, Low-Power Wide-Area Networks (LPWANs) offer potential advantages in monitoring tasks for predictive maintenance. However, their applicability requires improvements in aspects such [...] Read more.
The research and management of Industry 4.0 increasingly relies on accurate real-time quality data to apply efficient algorithms for predictive maintenance. Currently, Low-Power Wide-Area Networks (LPWANs) offer potential advantages in monitoring tasks for predictive maintenance. However, their applicability requires improvements in aspects such as energy consumption, transmission range, data rate and constant quality of service. Commonly used battery-operated IIoT devices have several limitations in their adoption in large facilities or heat-intensive industries (iron and steel, cement, etc.). In these cases, the self-heating nodes together with the appropriate low-power processing platform and industrial sensors are aligned with the requirements and real-time criteria required for industrial monitoring. From an environmental point of view, the carbon footprint associated with human activity leads to a steady rise in global average temperature. Most of the gases emitted into the atmosphere are due to these heat-intensive industries. In fact, much of the energy consumed by industries is dissipated in the form of waste heat. With this scenario, it makes sense to build heat transformation collection systems as guarantors of battery-free self-powered IIoT devices. Thermal energy harvesters work on the physical basis of the Seebeck effect. In this way, this paper gathers the methodology that standardizes the modelling and simulation of waste heat recovery systems for IoT nodes, gathering energy from any hot surface, such as a pipe or chimney. The statistical analysis is carried out with the data obtained from two different IoT architectures showing a good correlation between model simulation and prototype behaviour. Additionally, the selected model will be coupled to a low-power processing platform with LoRaWAN connectivity to demonstrate its effectiveness and self-powering ability in a real industrial environment. Full article
(This article belongs to the Special Issue Internet of Things and Cloud-Fog-Edge Computing)
Show Figures

Figure 1

28 pages, 9511 KiB  
Article
Design and Evaluation of a Low-Power Wide-Area Network (LPWAN)-Based Emergency Response System for Individuals with Special Needs in Smart Buildings
by Habibullah Safi, Ali Imran Jehangiri, Zulfiqar Ahmad, Mohammed Alaa Ala’anzy, Omar Imhemed Alramli and Abdulmohsen Algarni
Sensors 2024, 24(11), 3433; https://doi.org/10.3390/s24113433 - 26 May 2024
Cited by 1 | Viewed by 873
Abstract
The Internet of Things (IoT) is a growing network of interconnected devices used in transportation, finance, public services, healthcare, smart cities, surveillance, and agriculture. IoT devices are increasingly integrated into mobile assets like trains, cars, and airplanes. Among the IoT components, wearable sensors [...] Read more.
The Internet of Things (IoT) is a growing network of interconnected devices used in transportation, finance, public services, healthcare, smart cities, surveillance, and agriculture. IoT devices are increasingly integrated into mobile assets like trains, cars, and airplanes. Among the IoT components, wearable sensors are expected to reach three billion by 2050, becoming more common in smart environments like buildings, campuses, and healthcare facilities. A notable IoT application is the smart campus for educational purposes. Timely notifications are essential in critical scenarios. IoT devices gather and relay important information in real time to individuals with special needs via mobile applications and connected devices, aiding health-monitoring and decision-making. Ensuring IoT connectivity with end users requires long-range communication, low power consumption, and cost-effectiveness. The LPWAN is a promising technology for meeting these needs, offering a low cost, long range, and minimal power use. Despite their potential, mobile IoT and LPWANs in healthcare, especially for emergency response systems, have not received adequate research attention. Our study evaluated an LPWAN-based emergency response system for visually impaired individuals on the Hazara University campus in Mansehra, Pakistan. Experiments showed that the LPWAN technology is reliable, with 98% reliability, and suitable for implementing emergency response systems in smart campus environments. Full article
(This article belongs to the Special Issue LoRa Communication Technology for IoT Applications)
Show Figures

Figure 1

21 pages, 1646 KiB  
Article
Adaptive Mobility-Based IoT LoRa Clustering Communication Scheme
by Dick Mugerwa, Youngju Nam, Hyunseok Choi, Yongje Shin and Euisin Lee
Electronics 2024, 13(11), 2052; https://doi.org/10.3390/electronics13112052 - 24 May 2024
Viewed by 790
Abstract
Long Range (LoRa) as a low-power wide-area technology is distinguished by its robust long-distance communications tailored for Internet of Things (IoT) networks. Because LoRa was primarily designed for stationary devices, when applied to mobile devices, they become susceptible to frequent channel attenuation. Such [...] Read more.
Long Range (LoRa) as a low-power wide-area technology is distinguished by its robust long-distance communications tailored for Internet of Things (IoT) networks. Because LoRa was primarily designed for stationary devices, when applied to mobile devices, they become susceptible to frequent channel attenuation. Such a condition can result in packet loss, higher energy consumption, and extended transmission times. To address these inherent challenges posed by mobility, we propose an adaptive mobility-based IoT LoRa clustering communication (AMILCC) scheme, which employs the 2D random waypoint mobility model, strategically partitions the network into optimal spreading factor (SF) regions, and incorporates an adaptive clustering approach. The AMILCC scheme is bolstered by a hybrid adaptive data rate (HADR) mechanism categorized into two approaches, namely intra-SF and inter-SF region HADRs, derived from the standard network-based ADR mechanism for stationary devices, to ensure efficient resource allocation for mobile IoT LoRa devices. Evaluation results show that, based on simulations at low mobility speeds of up to 5 m/s, AMILCC successfully maximizes the packet success ratio to the gateway (GW) by over 70%, reduces energy consumption by an average of 55.5%, and minimizes the end-to-end delay by 47.62%, outperforming stationary schemes. Consequently, AMILCC stands as a prime solution for mobile IoT LoRa networks by balancing the high packet success ratio (PSR) with reliability with energy efficiency. Full article
(This article belongs to the Special Issue Ubiquitous Sensor Networks, 2nd Edition)
Show Figures

Figure 1

20 pages, 4830 KiB  
Article
Self-Tuning of Signal Detection Level for Energy Detection-Based Carrier Sense in Low-Power Wide-Area Networks
by Shusuke Narieda and Takeo Fujii
Sensors 2024, 24(11), 3368; https://doi.org/10.3390/s24113368 - 24 May 2024
Viewed by 425
Abstract
Carrier sense allows end devices to improve the communication quality through autonomous decentralization by consuming power. In particular, energy detection-based carrier sense can improve communication quality compared with peak detection-based carrier sense. To improve the trade-off between communication quality and energy consumption in [...] Read more.
Carrier sense allows end devices to improve the communication quality through autonomous decentralization by consuming power. In particular, energy detection-based carrier sense can improve communication quality compared with peak detection-based carrier sense. To improve the trade-off between communication quality and energy consumption in low-power wide-area networks (LPWANs), this study proposes a self-tuning method for the signal detection level of an energy detection-based carrier sense, that is, the carrier sense level in sub-GHz band LPWANs. In the proposed method, the carrier sense level of each end device is determined based on the reception success probability of the acknowledgment packet, such that they become low carrier sense levels for an end device with low probability and high carrier sense levels for an end device with high probability. The proposed method enables autonomous decentralized derivation of the carrier sense level using only existing protocols. Numerical examples show that the proposed method can improve the performance of end devices with a high path loss to a gateway. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

19 pages, 2039 KiB  
Article
A Nature-Inspired Approach to Energy-Efficient Relay Selection in Low-Power Wide-Area Networks (LPWAN)
by Anna Strzoda and Krzysztof Grochla
Sensors 2024, 24(11), 3348; https://doi.org/10.3390/s24113348 - 23 May 2024
Viewed by 544
Abstract
Despite the ability of Low-Power Wide-Area Networks to offer extended range, they encounter challenges with coverage blind spots in the network. This article proposes an innovative energy-efficient and nature-inspired relay selection algorithm for LoRa-based LPWAN networks, serving as a solution for challenges related [...] Read more.
Despite the ability of Low-Power Wide-Area Networks to offer extended range, they encounter challenges with coverage blind spots in the network. This article proposes an innovative energy-efficient and nature-inspired relay selection algorithm for LoRa-based LPWAN networks, serving as a solution for challenges related to poor signal range in areas with limited coverage. A swarm behavior-inspired approach is utilized to select the relays’ localization in the network, providing network energy efficiency and radio signal extension. These relays help to bridge communication gaps, significantly reducing the impact of coverage blind spots by forwarding signals from devices with poor direct connectivity with the gateway. The proposed algorithm considers critical factors for the LoRa standard, such as the Spreading Factor and device energy budget analysis. Simulation experiments validate the proposed scheme’s effectiveness in terms of energy efficiency under diverse multi-gateway (up to six gateways) network topology scenarios involving thousands of devices (1000–1500). Specifically, it is verified that the proposed approach outperforms a reference method in preventing battery depletion of the relays, which is vital for battery-powered IoT devices. Furthermore, the proposed heuristic method achieves over twice the speed of the exact method for some large-scale problems, with a negligible accuracy loss of less than 2%. Full article
(This article belongs to the Special Issue Nature-Inspired Algorithms for Sensor Networks and Image Processing)
Show Figures

Figure 1

Back to TopTop