Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (360)

Search Parameters:
Keywords = LS-Dyna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8188 KiB  
Article
Numerical Simulation of Seismic-Wave Propagation in Specific Layered Geological Structures
by Chunyue Hao, Zhoupeng Gu, Kai Li and Xianqian Wu
Appl. Sci. 2024, 14(18), 8278; https://doi.org/10.3390/app14188278 - 13 Sep 2024
Abstract
This study presents a numerical simulation approach used to investigate seismic-wave propagation in specific geological structures. Using the LS-DYNA software, the simulation incorporated a TNT explosion model to simulate seismic energy released during earthquakes. It provides a new method to investigate the propagation [...] Read more.
This study presents a numerical simulation approach used to investigate seismic-wave propagation in specific geological structures. Using the LS-DYNA software, the simulation incorporated a TNT explosion model to simulate seismic energy released during earthquakes. It provides a new method to investigate the propagation characteristics of seismic-waves within geological structures. Firstly, the measurement conditions and geological settings of the seismic event on 18 February 2012 in Northeast China are presented. Subsequently, a numerical simulation model of seismic-wave propagation is developed. The simulation result validates it by comparing it with recorded data from seismic stations, demonstrating a promising correspondence between the simulated and observed data. Additionally, the simulation simulates the seismic-wave propagation within water and layered geological structures, validating the numerical simulation model. The numerical model is an effective tool for simulating the propagation of seismic waves in geological structures. This study is important for evaluating seismic-wave propagation using the simulation method. Full article
Show Figures

Figure 1

29 pages, 10327 KiB  
Article
Simulation and Testing of Grapevine Branch Crushing and Collection Components
by Lei He, Zhimin Wang, Long Song, Pengyu Bao and Silin Cao
Agriculture 2024, 14(9), 1583; https://doi.org/10.3390/agriculture14091583 - 11 Sep 2024
Abstract
Aiming at the problem of the low rate of resource utilization of large amounts of grape branch pruning and the high cost of leaving the garden, we design a kind of grape branch picking and crushing collection machine that integrates the collection of [...] Read more.
Aiming at the problem of the low rate of resource utilization of large amounts of grape branch pruning and the high cost of leaving the garden, we design a kind of grape branch picking and crushing collection machine that integrates the collection of strips, the picking up, crushing, and collecting operations. The crushing and collecting parts of the machine are simulated, analyzed, and tested. Using the method of numerical simulation, combined with the results of the pre-branch material properties measurement, the branch crushing process is simulated based on LS-DYNA software. Our analysis found that in the branch destruction process, not only does knife cutting exist, but the bending fracture of the opposite side of the cutting place also exists. With the increase in the knife roller speed, the cutting resistance of the tool increases, reaching 2690 N at 2500 r/min. In the cutting simulation under different tool edge angles, the cutting resistance of the tool is the smallest when the edge angle is 55°, which is 1860 N, and this edge angle is more suitable for branch crushing and cutting. In the cutting simulation under different cutting edge angles, the cutting resistance of the tool is the smallest when the edge angle is 55°, which is 1860 N, and this edge angle is more suitable for branch crushing and cutting. Using Fluent software to analyze the characteristics of the airflow field of the pulverizing device, it was found that with the increase in the knife roller speed, the inlet flow and negative pressure of the pulverizing chamber increase. When the knife roller speed is 2500 r/min, the inlet flow rate and negative pressure are 1.92 kg/s and 37.16 Pa, respectively, which will be favorable to the feeding of the branches, but the speed is too high and will also lead to the enhancement of the vortex in some areas within the pulverizing device, which will in turn affect the feeding of the branches as well as the throwing out of pulverized materials. Therefore, the speed range of the pulverizing knife roller was finally determined to be 1800~2220 r/min. Based on the ANSYS/Model module modal analysis of the crushing knife roller, the knife roller of the first six orders of the intrinsic frequency and vibration pattern, the crushing knife roller of the lowest order had a modal intrinsic frequency of 137.42 Hz, much larger than the crushing knife roller operating frequency of 37 Hz, above which the machine will not resonate during operation. The research results can provide a theoretical basis and technical support for other similar crops to be crushed and collected. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

16 pages, 5785 KiB  
Article
Study on the Propagation Law and Waveform Characteristics of a Blasting Shock Wave in a Highway Tunnel with the Bench Method
by Tao Yu, Junfeng Sun, Jianfeng Wang, Jianping Feng, Liangjun Chen, Guofeng Su, Jun Man and Zhen Wu
Buildings 2024, 14(9), 2802; https://doi.org/10.3390/buildings14092802 - 6 Sep 2024
Abstract
In the bench method of tunnel excavation, the blasting impact from upper bench blasting poses significant risks to personnel and equipment. This study employed dynamic analysis software, ANSYS/LS-DYNA, and field testing to examine the propagation characteristics and attenuation behavior of tunnel shock waves. [...] Read more.
In the bench method of tunnel excavation, the blasting impact from upper bench blasting poses significant risks to personnel and equipment. This study employed dynamic analysis software, ANSYS/LS-DYNA, and field testing to examine the propagation characteristics and attenuation behavior of tunnel shock waves. The findings revealed that, near the central axis of the tunnel, shock wave overpressure was lower compared to areas near the tunnel wall due to reflections from the wall. As the shock wave traveled a distance six times the tunnel diameter, it transitioned from a spherical wave to a plane wave. The attenuation coefficient for the plane wave ranged from 1.03 to 1.17. A fitting formula for shock wave overpressure attenuation, based on field test results, was proposed, and it showed good agreement with the numerical simulation results. This provided valuable theoretical insights for predicting shock wave overpressure during bench method tunnel excavation. Full article
(This article belongs to the Special Issue Structural Analysis of Underground Space Construction)
Show Figures

Figure 1

20 pages, 11882 KiB  
Article
Estimating the Cowper–Symonds Parameters for High-Strength Steel Using DIC Combined with Integral Measures of Deviation
by Andrej Škrlec, Branislav Panić, Marko Nagode and Jernej Klemenc
Metals 2024, 14(9), 992; https://doi.org/10.3390/met14090992 - 31 Aug 2024
Viewed by 296
Abstract
Cowper–Symonds parameters were estimated for the complex-phase high-strength steel with a commercial name of SZBS800. The parameter estimation was based on a series of conventional tensile tests and unconventional high-strain rate experiments. The parameters were estimated using a reverse engineering approach. LS-Dyna was [...] Read more.
Cowper–Symonds parameters were estimated for the complex-phase high-strength steel with a commercial name of SZBS800. The parameter estimation was based on a series of conventional tensile tests and unconventional high-strain rate experiments. The parameters were estimated using a reverse engineering approach. LS-Dyna was used for numerical simulations, and the material’s response was modelled using a piece-wise linear plasticity model with a visco-plastic formulation of the Cowper–Symonds material model. A multi-criteria cost function was defined and applied to obtain a response function for the parameters p and C. The cost function was modelled with a response surface, and the optimal parameters were estimated using a real-valued genetic algorithm. The main novelty and innovation of this article is the definition of a cost function that measures a deviation between the deformed geometry of the flat plate-like specimens and the results of the numerical simulations. The results are compared to the relevant literature. A critical evaluation of our results and references is another novelty of this article. Full article
Show Figures

Figure 1

17 pages, 20093 KiB  
Article
Numerical Investigation of Low-Velocity Ice Impact on a Composite Ship Hull Using an FEM/SPH Formulation
by Ana Pavlovic and Giangiacomo Minak
Appl. Sci. 2024, 14(17), 7679; https://doi.org/10.3390/app14177679 - 30 Aug 2024
Viewed by 316
Abstract
In cold climate regions, ships navigate through diverse ice conditions, making the varied interaction scenarios between hulls and ice critically important. It is crucial to consider the safety and integrity of the hull during an ice–hull interaction, especially in the presence of lightweight [...] Read more.
In cold climate regions, ships navigate through diverse ice conditions, making the varied interaction scenarios between hulls and ice critically important. It is crucial to consider the safety and integrity of the hull during an ice–hull interaction, especially in the presence of lightweight structures. Proper design and material selection can help improve the structure’s ability to withstand ice forces. Within the scope, understanding the behavior of ice and its interaction with the structure can inform the development of appropriate measures to minimize possible damage or failure. The current study focuses on the interactions occurring during the impact loading phases, which are characteristic of thin first-year ice. A sandwich structure made with carbon fiber-reinforced epoxy prepreg and PVC core was investigated. Low-velocity ice impact was modelled using the Ansys Workbench 2023 R2 and LS-DYNA R11 explicit solver. As the material model, the *MAT055 was chosen based on the literature, while ice was represented with its equation of state. The Tsai Wu criterion was adopted to identify tensile and compressive failure in the matrix and fibers. This simulation allowed us to evaluate how the composite material responds to ice impacts, considering factors such as the speed of the impact, the shape and thickness of the ice, and the properties of the composite material itself. Full article
(This article belongs to the Special Issue Mathematical Methods and Simulations in Mechanics and Engineering)
Show Figures

Figure 1

13 pages, 14597 KiB  
Article
An Experimental and Simulation Study on the Formability of Commercial Pure Titanium Foil
by Jenn-Terng Gau, Kechuang Zhang and Jiaqi Zhu
Micromachines 2024, 15(9), 1096; https://doi.org/10.3390/mi15091096 - 29 Aug 2024
Viewed by 254
Abstract
In order to understand the formability of as-received tempered commercial pure titanium grade 2 foils (CP Ti Gr2) with a thickness of 38 µm, a series of micro limited dome height (µ-LDH) tests were conducted in quasi-static speed (0.01 mm/s) at room temperature [...] Read more.
In order to understand the formability of as-received tempered commercial pure titanium grade 2 foils (CP Ti Gr2) with a thickness of 38 µm, a series of micro limited dome height (µ-LDH) tests were conducted in quasi-static speed (0.01 mm/s) at room temperature without the use of a lubricant. A technique developed at NIU was also used to create micro-circular grids (ϕ50 μm) on the as-received material. The forming limit curve (FLC) of the CP Ti Gr2 foils was obtained through the proposed µ-LDH test. For having mechanical properties of the CP Ti Gr2 foils for LS-Dyna FEA (Finite Element Analysis) simulations, a series of tensile tests in three directions were also conducted at room temperature with the same speed. The obtained FLC has been validated using a micro deep drawing case study in which both FEA simulations and experiments were conducted and compared. It has been proven in this study that the FLC obtained using the proposed µ-LDH test can be used for an extremely thin sheet-metal-forming process by the automotive, aerospace, medical, energy, and electronic industries, etc., right away for product design, forming process development, tool and die designs, and simulations, etc. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

12 pages, 5873 KiB  
Article
Validation of Experimental Data for the Application of the Magnesium Alloy “Elektron 43”
by Michele Guida
Aerospace 2024, 11(9), 695; https://doi.org/10.3390/aerospace11090695 - 25 Aug 2024
Viewed by 373
Abstract
The behaviour of a structural component, such as the spreader installed on an aeroplane passenger seat made of the magnesium alloy Elektron® 43, is evaluated under a variety of load conditions. The purpose of this research project is to considerably reduce weight [...] Read more.
The behaviour of a structural component, such as the spreader installed on an aeroplane passenger seat made of the magnesium alloy Elektron® 43, is evaluated under a variety of load conditions. The purpose of this research project is to considerably reduce weight by employing the new alloy while keeping the strength and ductility necessary to meet the dynamic standards for both the 16 g forward and 14 g downward tests. A comprehensive campaign of static and dynamic testing on coupons was conducted to characterise the mechanical behaviour of the E43 magnesium alloy, from quasi-static to dynamic loading, and across a wide range of deformation rates. The elastic–plastic and strain rate sensitive material model of E43 is then calibrated using an FEA approach and LS-DYNA software, utilising stress–strain curves and properties determined from standardised experimental tensile and compression trials at varied strain rates. Finally, this material model was used to perform a finite element structural study of a major component of an aeroplane seat built using Elektron® 43 under typical in-flight stresses. Full article
(This article belongs to the Special Issue Advanced Aerospace Composite Materials and Smart Structures)
Show Figures

Figure 1

18 pages, 11712 KiB  
Article
Reducing the Rebound Effect in Microscale Laser Dynamic Forming through Multi-Pulse Laser Shock Loading
by Fuliang Wang, Boyu Liu, Yujie Sun and Zongbao Shen
Metals 2024, 14(8), 945; https://doi.org/10.3390/met14080945 - 20 Aug 2024
Viewed by 333
Abstract
Microscale laser dynamic forming, as a novel high-speed microforming technique, can overcome the shortcomings of traditional microforming methods. However, in practical applications, laser dynamic microforming technology is often affected by the rebound behavior of the workpiece, limiting the further improvement of processing quality [...] Read more.
Microscale laser dynamic forming, as a novel high-speed microforming technique, can overcome the shortcomings of traditional microforming methods. However, in practical applications, laser dynamic microforming technology is often affected by the rebound behavior of the workpiece, limiting the further improvement of processing quality and efficiency. This paper aims to reduce the rebound effect in laser dynamic forming by using multi-pulse laser shock loading. The forming results of workpieces under different laser energies and laser impact numbers were studied using experimental and numerical simulation methods. After multiple laser shocks, numerical simulations of the forming results were conducted using ANSYS/LS-DYNA software. These numerical simulation results were then experimentally validated and compared. The surface morphology of the workpieces was characterized using a confocal microscope and a scanning electron microscope (SEM). Energy-dispersive spectroscopy (EDS) was used to analyze the chemical element content changes in the collision regions at the bottoms of the workpieces after multi-pulse loading. The SEM and EDS results revealed the collision behavior patterns during the forming process. Finally, the forming laws of workpieces under multiple laser shocks were summarized. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

11 pages, 2016 KiB  
Article
A Dynamic Damage Constitutive Model of Rock-like Materials Based on Elastic Tensile Strain
by Xuan Zou, Yibo Xiong, Leiyuan Wang, You Zhou, Wanpeng Wang and Fangping Zhong
Appl. Sci. 2024, 14(16), 6852; https://doi.org/10.3390/app14166852 - 6 Aug 2024
Viewed by 751
Abstract
To accurately characterize the damage of rock-like materials under simultaneous or alternating tensile and compressive loading, a dynamic damage constitutive model for rock-like materials based on elastic tensile strain is developed by integrating the classical compressive plastic damage model and the tensile elastic [...] Read more.
To accurately characterize the damage of rock-like materials under simultaneous or alternating tensile and compressive loading, a dynamic damage constitutive model for rock-like materials based on elastic tensile strain is developed by integrating the classical compressive plastic damage model and the tensile elastic damage model. The model is based on the Holmquist–Johnson–Cook (HJC) and Kuszmaul (KUS) models, categorizing the element stress state into tensile and compressive states through positive and negative elastic volumetric strain. It utilizes elastic tensile strain to enhance the calculation method for tensile cracks, determining the tensile strength of the principal direction based on the contribution rate of tensile principal stress for uniaxial/multiaxial loading. Additionally, it establishes a maximum elastic tensile strain rate function to rectify the model’s effect on the tensile strain rate. Through the LS-DYNA subroutine development, the model proficiently delineates the distribution of ring-shaped cracks on the frontal side and strip-shaped cracks on the rear side of the reinforced concrete slab subjected to impact loading. Numerical simulations demonstrate that the model provides more accurate damage prediction results for stress conditions involving simultaneous or alternating compression and tension, offering valuable insights for damage analysis in engineering blasting or impact penetration. Full article
Show Figures

Figure 1

20 pages, 6538 KiB  
Article
Experimental and Numerical Study of Carbon Fibre-Reinforced Polymer-Strengthened Reinforced Concrete Beams under Static and Impact Loads
by Mohamed H. Mussa, Azrul A. Mutalib and Hong Hao
Fibers 2024, 12(8), 63; https://doi.org/10.3390/fib12080063 - 31 Jul 2024
Cited by 1 | Viewed by 617
Abstract
This study aims to investigate the behaviour of reinforced concrete (RC) beams strengthened by Carbon Fibre-Reinforced Polymer (CFRP) under static and impact loads. A series of RC beams were tested and categorized into four groups, namely, unstrengthened RC beams (B1), RC beams strengthened [...] Read more.
This study aims to investigate the behaviour of reinforced concrete (RC) beams strengthened by Carbon Fibre-Reinforced Polymer (CFRP) under static and impact loads. A series of RC beams were tested and categorized into four groups, namely, unstrengthened RC beams (B1), RC beams strengthened with a CFRP longitudinal strip in the tension zone (B2), RC beams wrapped with CFRP fabric (B3), and RC beams strengthened with a combination of both CFRP longitudinal strips and wraps (B4). The results show that the average load–displacement capacity of RC beam group (B4) was improved by 84.88% as compared with the unstrengthened beam (B1) under static loads. The dynamic test results demonstrated an increase in the deflection resistance of RC beam group (B4) by −57.89% as compared with unstrengthened RC beam group (B1) under identical drop weights of 1 m. In addition, a collapse failure mode was noticed in the unstrengthened beams, while minor damage was recorded mainly in the case of RC beam group (B4). Furthermore, the numerical analysis conducted using LS-DYNA software (V 971 R6.0.0) proved that the adopted numerical models can efficiently predict the behaviour of RC beams under dynamic loads, with maximum differences reaching up to −12.5% compared with the experimental test results. Full article
Show Figures

Figure 1

21 pages, 6999 KiB  
Article
Effects of In-Situ Stress on Damage and Fractal during Cutting Blasting Excavation
by Yongbo Wu, Xiaojun Zhang, Zhuo Li, Wenxue Gao, Zehui Xu, Yifeng Zhang and Jiguo Zhou
Fractal Fract. 2024, 8(8), 450; https://doi.org/10.3390/fractalfract8080450 - 30 Jul 2024
Viewed by 539
Abstract
Blasting excavation of rock masses under high in-situ stress often encounters difficulties in rock fragmentation and a high boulder rate. To gain a deeper understanding of this issue, the stress distribution of rock masses under dynamic and static loads was first studied through [...] Read more.
Blasting excavation of rock masses under high in-situ stress often encounters difficulties in rock fragmentation and a high boulder rate. To gain a deeper understanding of this issue, the stress distribution of rock masses under dynamic and static loads was first studied through theoretical analysis. Then, the ANSYS/LS-DYNA software was employed to simulate the blasting crack propagation in rock masses under various in-situ stress conditions. The fractal dimension was introduced to quantitatively analyze the influence of in-situ stress on the distribution of blasting cracks. The results indicate that in-situ stress primarily affects crack propagation in the later stages of the explosion, while crack initiation and propagation in the early stages are mainly driven by the explosion load. In-situ stress significantly influences the damage area and fractal dimension of cut blasting. Under hydrostatic in-situ stress, as the in-situ stress increases, the damage area and fractal dimension of blasting cracks gradually decrease. Under non-hydrostatic in-situ stress, when the principal stress difference is small, in-situ stress promotes the damage area and fractal dimension of the surrounding rock, enhancing rock fragmentation. However, when the principal stress difference is large, in-situ stress inhibits the damage area and fractal dimension of the surrounding rock, hindering effective rock breaking. Full article
(This article belongs to the Special Issue Fractal Analysis and Its Applications in Rock Engineering)
Show Figures

Figure 1

14 pages, 4408 KiB  
Article
Comparative Study on Mechanical Response in Rigid Pavement Structures of Static and Dynamic Finite Element Models
by Qiao Meng, Ke Zhong, Yuchun Li and Mingzhi Sun
Aerospace 2024, 11(7), 596; https://doi.org/10.3390/aerospace11070596 - 22 Jul 2024
Viewed by 635
Abstract
The safety of airport runways is important to guarantee aircraft taking-off, landing, and taxiing, and the comparison of the mechanical response of pavement structures under dynamic and static loading by LS-DYNA has rarely been studied. The purpose of this work is to separate [...] Read more.
The safety of airport runways is important to guarantee aircraft taking-off, landing, and taxiing, and the comparison of the mechanical response of pavement structures under dynamic and static loading by LS-DYNA has rarely been studied. The purpose of this work is to separate two analysis methods to investigate the mechanical response of rigid airport pavements. Firstly, a tire–road coupling model of an airfield was established to evaluate the suitability of dynamic and static analyses. Then, the effects of landing pitch angles, sinking speeds, and tire pressures on the effective stress, effective strain, and z-displacement of the runway were investigated for both dynamic and static analysis. Finally, the significance of influence factors was analyzed by regression analysis in Statistical Product and Service Solutions (SPSS). The results indicated that the effective stress, effective strain, and z-displacement of the runway increased with a decrease in the landing pitch angle, which also increased with an increase in the sinking speed and tire pressure. It was demonstrated that the difference in pavement mechanical response between dynamic and static analyses progressively widened at high tire pressure and sinking speed. In other words, the static analysis method can be adopted to assess the dynamic mechanical behavior when the landing pitch angle is large and the tire pressure is small. Among the various factors of mechanical response, the effect of tire pressure was the most obvious, followed by sinking speed and landing pitch angle. The work proposes a new approach to understanding the mechanical behavior of runways under complicated and varied conditions, evaluates the applicability of the dynamic and static mechanical analysis methods, identifies key factors in the dynamic and static mechanical analysis of rigid runways, and provides technical support for improving and maintaining the impact resistance of pavement facilities. Full article
Show Figures

Figure 1

19 pages, 18904 KiB  
Article
Seismic Response and Collapse Analysis of a Transmission Tower Structure: Assessing the Impact of the Damage Accumulation Effect
by Pingping Nie, Haiqing Liu, Yunlong Wang and Siyu Han
Buildings 2024, 14(7), 2243; https://doi.org/10.3390/buildings14072243 - 21 Jul 2024
Viewed by 628
Abstract
This paper delves into the impact of the damage accumulation effect, which leads to the degradation of material strength and stiffness, on the seismic resistance of transmission towers. Building upon the elastic–plastic finite element theory, a mixed hardening constitutive model is derived for [...] Read more.
This paper delves into the impact of the damage accumulation effect, which leads to the degradation of material strength and stiffness, on the seismic resistance of transmission towers. Building upon the elastic–plastic finite element theory, a mixed hardening constitutive model is derived for circular steel tubes, standard elements in transmission towers, incorporating the damage accumulation effect. A user material subroutine, UMAT, is created within the LS–DYNA framework. The program’s validity and reliability are established through axial constant–amplitude loading tests on single steel tubes. The subroutine is employed to conduct the incremental dynamic analysis (IDA) of an individual transmission tower and to contrast it with the structure utilizing the Plastic Kinematic material model, assessing the discrepancies in tower top displacements and segment damage indices (SDIs) at both macroscopic and microscopic scales. The results shows that the Plastic Kinematic model inflates the seismic performance of the transmission tower. When considering the damage accumulation effect in structural failure, the damage index of the members increases, leading to a reduction in both the structural strength and stiffness. The dynamic response in the plastic phase becomes more pronounced, and the onset of structural failure is accelerated. Consequently, structural analysis under seismic conditions should account for the damage accumulation process. Through the delineation of member and segment damage, the extent of damage to transmission tower segments can be quantitatively assessed. Subsequently, the ultimate load–bearing capacity and the most vulnerable location of the transmission tower can be ascertained. Finally, this paper provides a detailed analysis of the transmission tower collapse process under seismic action and summarizes the mechanism of collapse for the structure. Full article
(This article belongs to the Special Issue Seismic Performance and Durability of Engineering Structures)
Show Figures

Figure 1

20 pages, 9703 KiB  
Article
Predicting Blast-Induced Damage and Dynamic Response of Drill-and-Blast Tunnel Using Three-Dimensional Finite Element Analysis
by Jawad Ur Rehman, Duhee Park and Jae-Kwang Ahn
Appl. Sci. 2024, 14(14), 6152; https://doi.org/10.3390/app14146152 - 15 Jul 2024
Viewed by 697
Abstract
The significance of predicting the dynamic response and damage of an existing concrete tunnel during underground blasting has increased owing to the close proximity between the newly built and existing tunnels. Peak particle velocity (PPV) is a commonly used criterion in the assessment [...] Read more.
The significance of predicting the dynamic response and damage of an existing concrete tunnel during underground blasting has increased owing to the close proximity between the newly built and existing tunnels. Peak particle velocity (PPV) is a commonly used criterion in the assessment of blast-induced structural damage. However, such structural damage is also associated with the frequency content of the blast wave. Nevertheless, the recommended threshold PPVs, which are based on empirical criteria, predict conservative estimations. Using stringent and regulated blasting methods often results in project delays and escalates the total project expenditure. In this paper, a three-dimensional finite element model of an underground tunnel has been developed in LS-DYNA to analyze damage to the concrete tunnels under blast loading. A suite of analyses was performed to examine the potential damage induced in the underground tunnel. A lower frequency load was found to have a greater potential for producing damage compared with a high frequency blast load. The results showed that the location of the cracking within the tunnel, such as the arch foot or tunnel wall, was also influenced by the frequency of the blast wave. The maximum allowable PPV for the concrete tunnel was determined for a range of frequencies based on predicted free field PPV and additional factors of safety of 1.2 and 1.5 were established, depending on the safety needs and importance of the tunnel construction. Thus, our findings provide useful information for improving the evaluation of tunnel damage and guaranteeing the safety of underground tunnels. Full article
(This article belongs to the Special Issue Geotechnical Engineering: Principles and Applications)
Show Figures

Figure 1

14 pages, 7666 KiB  
Article
Validation of Frontal Crashworthiness Simulation for Low-Entry Type Bus Body According to UNECE R29 Requirements
by Kostyantyn Holenko, Oleksandr Dykha, Eugeniusz Koda, Ivan Kernytskyy, Yuriy Royko, Orest Horbay, Oksana Berezovetska, Vasyl Rys, Ruslan Humenuyk, Serhii Berezovetskyi, Mariusz Żółtowski, Anna Markiewicz and Tomasz Wierzbicki
Appl. Sci. 2024, 14(13), 5595; https://doi.org/10.3390/app14135595 - 27 Jun 2024
Viewed by 528
Abstract
Frontal crash tests are an essential element in assessing vehicle safety. They simulate a collision that occurs when the front of the bus hits another vehicle or an obstacle. In recent years, much attention has been paid to the frontal crash testing of [...] Read more.
Frontal crash tests are an essential element in assessing vehicle safety. They simulate a collision that occurs when the front of the bus hits another vehicle or an obstacle. In recent years, much attention has been paid to the frontal crash testing of city buses, especially after a series of accidents resulting in deaths and injuries. Unlike car manufacturers, most bus bodybuilders do not include deformation zones in their designs. The next two regulations are widely used to assess whether a structure can withstand impact loading: UNECE Regulation No. 29—United Nations Economic Commission for Europe (UNECE R29) and the New Car Assessment Program (NCAP), which is more typical of car crash tests. The main goal of the research is to develop an applicable methodology for a frontal impact simulation on a city bus, considering UNECE R29 requirements for the passenger’s safety and distinctive features of the low-entry body layout. Among the contributions to current knowledge are such research results as: unlike suburban and intercity buses, city buses are characterized by lower stiffness in the event of a frontal collision, and therefore, when developing new models, it is necessary to lay deformation zones (currently absent from most city buses). Maximum deformation values in the bus front part are reached earlier for R29 (137 ms) than for most impacts tested by NCAP (170–230 ms) but have higher values: 577 mm vs. 150–250 mm for the sills tested. Such a short shock absorption time and high deformations indicate a significantly lighter front part of a low-entry and low-floor bus compared with classic layouts. Furthermore, it is unjustified to use the R29 boundary conditions of trucks to attach the bus with chains behind its frontal axe both in natural tests and appropriate finite element simulation—the scheme of fixing the city bus should be accordingly adapted and normatively revised. Full article
Show Figures

Figure 1

Back to TopTop