Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (357)

Search Parameters:
Keywords = LoRaWAN

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3996 KiB  
Article
Maximal LoRa Range for Unmanned Aerial Vehicle Fleet Service in Different Environmental Conditions
by Lorenzo Felli, Romeo Giuliano, Andrea De Negri, Francesco Terlizzi, Franco Mazzenga and Alessandro Vizzarri
IoT 2024, 5(3), 509-523; https://doi.org/10.3390/iot5030023 - 31 Jul 2024
Viewed by 173
Abstract
This study investigates communication between UAVs using long range (LoRa) devices, focusing on the interaction between a LoRa gateway UAV and other UAVs equipped with LoRa transmitters. By conducting experiments across various geographical regions, this study aims to delineate the fundamental boundary conditions [...] Read more.
This study investigates communication between UAVs using long range (LoRa) devices, focusing on the interaction between a LoRa gateway UAV and other UAVs equipped with LoRa transmitters. By conducting experiments across various geographical regions, this study aims to delineate the fundamental boundary conditions for the efficient control of a UAV fleet. The parameters under analysis encompass inter-device spacing, radio interference effects, and terrain topography. This research yields pivotal insights into communication network design and optimization, thereby enhancing operational efficiency and safety within diverse geographical contexts for UAV operations. Further research insights could involve a weather analysis and implementation of improved solutions in terms of communication systems. Full article
Show Figures

Figure 1

25 pages, 3289 KiB  
Article
Software-Defined Radio Implementation of a LoRa Transceiver
by João Pedro de Omena Simas, Daniel Gaetano Riviello and Roberto Garello
Sensors 2024, 24(15), 4825; https://doi.org/10.3390/s24154825 - 25 Jul 2024
Viewed by 243
Abstract
The number of applications of low-power wide-area networks (LPWANs) has been growing quite considerably in the past few years and so has the number of protocol stacks. Despite this fact, there is still no fully open LPWAN protocol stack available to the public, [...] Read more.
The number of applications of low-power wide-area networks (LPWANs) has been growing quite considerably in the past few years and so has the number of protocol stacks. Despite this fact, there is still no fully open LPWAN protocol stack available to the public, which limits the flexibility and ease of integration of the existing ones. The closest to being fully open is LoRa; however, only its medium access control (MAC) layer, known as LoRaWAN, is open and its physical and logical link control layers, also known as LoRa PHY, are still only partially understood. In this paper, the essential missing aspects of LoRa PHY are not only reverse engineered, but also, a new design of the transceiver and its sub-components are proposed and implemented in a modular and flexible way using GNU Radio. Finally, some examples of applications of both the transceiver and its components, which are made to be run in a simple setup by using cheap and widely available off-the-shelf hardware, are given to show how the library can be used and extended. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

30 pages, 2328 KiB  
Review
Recent Developments in AI and ML for IoT: A Systematic Literature Review on LoRaWAN Energy Efficiency and Performance Optimization
by Maram Alkhayyal and Almetwally Mostafa
Sensors 2024, 24(14), 4482; https://doi.org/10.3390/s24144482 - 11 Jul 2024
Viewed by 493
Abstract
The field of the Internet of Things (IoT) is dominating various areas of technology. As the number of devices has increased, there is a need for efficient communication with low resource consumption and energy efficiency. Low Power Wide Area Networks (LPWANs) have emerged [...] Read more.
The field of the Internet of Things (IoT) is dominating various areas of technology. As the number of devices has increased, there is a need for efficient communication with low resource consumption and energy efficiency. Low Power Wide Area Networks (LPWANs) have emerged as a transformative technology for the IoT as they provide long-range communication capabilities with low power consumption. Among the various LPWAN technologies, Long Range Wide Area Networks (LoRaWAN) are widely adopted due to their open standard architecture, which supports secure, bi-directional communication and is particularly effective in outdoor and complex urban environments. This technology is helpful in enabling a variety of IoT applications that require wide coverage and long battery life, such as smart cities, industrial IoT, and environmental monitoring. The integration of Machine Leaning (ML) and Artificial Intelligence (AI) into LoRaWAN operations has further enhanced its capability and particularly optimized resource allocation and energy efficiency. This systematic literature review provides a comprehensive examination of the integration of ML and AI technologies in the optimization of LPWANs, with a specific focus on LoRaWAN. This review follows the PRISMA model and systematically synthesizes current research to highlight how ML and AI enhance operational efficiency, particularly in terms of energy consumption, resource management, and network stability. The SLR aims to review the key methods and techniques that are used in state-of-the-art LoRaWAN to enhance the overall network performance. We identified 25 relevant primary studies. The study provides an analysis of key findings based on research questions on how various LoRaWAN parameters are optimized through advanced ML, DL, and RL techniques to achieve optimized performance. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

38 pages, 2585 KiB  
Review
A Comprehensive Survey on Deep Learning-Based LoRa Radio Frequency Fingerprinting Identification
by Aqeel Ahmed, Bruno Quoitin, Alexander Gros and Veronique Moeyaert
Sensors 2024, 24(13), 4411; https://doi.org/10.3390/s24134411 - 8 Jul 2024
Viewed by 622
Abstract
LoRa enables long-range communication for Internet of Things (IoT) devices, especially those with limited resources and low power requirements. Consequently, LoRa has emerged as a popular choice for numerous IoT applications. However, the security of LoRa devices is one of the major concerns [...] Read more.
LoRa enables long-range communication for Internet of Things (IoT) devices, especially those with limited resources and low power requirements. Consequently, LoRa has emerged as a popular choice for numerous IoT applications. However, the security of LoRa devices is one of the major concerns that requires attention. Existing device identification mechanisms use cryptography which has two major issues: (1) cryptography is hard on the device resources and (2) physical attacks might prevent them from being effective. Deep learning-based radio frequency fingerprinting identification (RFFI) is emerging as a key candidate for device identification using hardware-intrinsic features. In this paper, we present a comprehensive survey of the state of the art in the area of deep learning-based radio frequency fingerprinting identification for LoRa devices. We discuss various categories of radio frequency fingerprinting techniques along with hardware imperfections that can be exploited to identify an emitter. Furthermore, we describe different deep learning algorithms implemented for the task of LoRa device classification and summarize the main approaches and results. We discuss several representations of the LoRa signal used as input to deep learning models. Additionally, we provide a thorough review of all the LoRa RF signal datasets used in the literature and summarize details about the hardware used, the type of signals collected, the features provided, availability, and size. Finally, we conclude this paper by discussing the existing challenges in deep learning-based LoRa device identification and also envisage future research directions and opportunities. Full article
(This article belongs to the Special Issue Data Protection and Privacy in Industry 4.0 Era)
Show Figures

Figure 1

21 pages, 99916 KiB  
Article
Analysis and Development of an IoT System for an Agrivoltaics Plant
by Francesco Zito, Nicola Ivan Giannoccaro, Roberto Serio and Sergio Strazzella
Technologies 2024, 12(7), 106; https://doi.org/10.3390/technologies12070106 - 7 Jul 2024
Viewed by 772
Abstract
This article illustrates the development of SolarFertigation (SF), an IoT (Internet of Things) solution for precision agriculture. Contrary to similar systems on the market, SolarFertigation can monitor and optimize fertigation autonomously, based on the analysis of data collected through the cloud. The system [...] Read more.
This article illustrates the development of SolarFertigation (SF), an IoT (Internet of Things) solution for precision agriculture. Contrary to similar systems on the market, SolarFertigation can monitor and optimize fertigation autonomously, based on the analysis of data collected through the cloud. The system is made up of two main components: the central unit, which enables the precise deployment and distribution of water and fertilizers in different areas of the agricultural field, and the sensor node, which oversees collecting environmental and soil data. This article delves into the evolution of the system, focusing on structural and architectural changes to develop an infrastructure suitable for implementing a predictive model based on artificial intelligence and big data. Aspects concerning both the sensor node, such as energy management, accuracy of solar radiation readings, and qualitative soil moisture measurements, as well as implementations to the hydraulic system and the control and monitoring system of the central unit, are explored. This article provides an overview of the results obtained from solar radiation and soil moisture measurements. In addition, the results of an experimental campaign, in which 300 salad plants were grown using the SolarFertigation system in a photovoltaic field, are presented. This study demonstrated the effectiveness and applicability of the system under real-world conditions and highlighted its potential in optimizing resources and increasing agricultural productivity, especially in agrivoltaic settings. Full article
(This article belongs to the Special Issue IoT-Enabling Technologies and Applications)
Show Figures

Figure 1

18 pages, 6764 KiB  
Article
Towards Mass-Scale IoT with Energy-Autonomous LoRaWAN Sensor Nodes
by Roberto La Rosa, Lokman Boulebnane, Antonino Pagano, Fabrizio Giuliano and Daniele Croce
Sensors 2024, 24(13), 4279; https://doi.org/10.3390/s24134279 - 1 Jul 2024
Viewed by 618
Abstract
By 2030, it is expected that a trillion things will be connected. In such a scenario, the power required for the trillion nodes would necessitate using trillions of batteries, resulting in maintenance challenges and significant management costs. The objective of this research is [...] Read more.
By 2030, it is expected that a trillion things will be connected. In such a scenario, the power required for the trillion nodes would necessitate using trillions of batteries, resulting in maintenance challenges and significant management costs. The objective of this research is to contribute to sustainable wireless sensor nodes through the introduction of an energy-autonomous wireless sensor node (EAWSN) designed to be an energy-autonomous, self-sufficient, and maintenance-free device, to be suitable for long-term mass-scale internet of things (IoT) applications in remote and inaccessible environments. The EAWSN utilizes Low-Power Wide Area Networks (LPWANs) via LoRaWAN connectivity, and it is powered by a commercial photovoltaic cell, which can also harvest ambient light in an indoor environment. Storage components include a capacitor of 2 mF, which allows EAWSN to successfully transmit 30-byte data packets up to 560 m, thanks to opportunistic LoRaWAN data rate selection that enables a significant trade-off between energy consumption and network coverage. The reliability of the designed platform is demonstrated through validation in an urban environment, showing exceptional performance over remarkable distances. Full article
(This article belongs to the Special Issue LoRa Communication Technology for IoT Applications)
Show Figures

Figure 1

20 pages, 7415 KiB  
Article
Model and Implementation of a Novel Heat-Powered Battery-Less IIoT Architecture for Predictive Industrial Maintenance
by Raúl Aragonés, Joan Oliver, Roger Malet, Maria Oliver-Parera and Carles Ferrer
Information 2024, 15(6), 330; https://doi.org/10.3390/info15060330 - 5 Jun 2024
Viewed by 605
Abstract
The research and management of Industry 4.0 increasingly relies on accurate real-time quality data to apply efficient algorithms for predictive maintenance. Currently, Low-Power Wide-Area Networks (LPWANs) offer potential advantages in monitoring tasks for predictive maintenance. However, their applicability requires improvements in aspects such [...] Read more.
The research and management of Industry 4.0 increasingly relies on accurate real-time quality data to apply efficient algorithms for predictive maintenance. Currently, Low-Power Wide-Area Networks (LPWANs) offer potential advantages in monitoring tasks for predictive maintenance. However, their applicability requires improvements in aspects such as energy consumption, transmission range, data rate and constant quality of service. Commonly used battery-operated IIoT devices have several limitations in their adoption in large facilities or heat-intensive industries (iron and steel, cement, etc.). In these cases, the self-heating nodes together with the appropriate low-power processing platform and industrial sensors are aligned with the requirements and real-time criteria required for industrial monitoring. From an environmental point of view, the carbon footprint associated with human activity leads to a steady rise in global average temperature. Most of the gases emitted into the atmosphere are due to these heat-intensive industries. In fact, much of the energy consumed by industries is dissipated in the form of waste heat. With this scenario, it makes sense to build heat transformation collection systems as guarantors of battery-free self-powered IIoT devices. Thermal energy harvesters work on the physical basis of the Seebeck effect. In this way, this paper gathers the methodology that standardizes the modelling and simulation of waste heat recovery systems for IoT nodes, gathering energy from any hot surface, such as a pipe or chimney. The statistical analysis is carried out with the data obtained from two different IoT architectures showing a good correlation between model simulation and prototype behaviour. Additionally, the selected model will be coupled to a low-power processing platform with LoRaWAN connectivity to demonstrate its effectiveness and self-powering ability in a real industrial environment. Full article
(This article belongs to the Special Issue Internet of Things and Cloud-Fog-Edge Computing)
Show Figures

Figure 1

25 pages, 2165 KiB  
Article
A Sensor to Monitor Soil Moisture, Salinity, and Temperature Profiles for Wireless Networks
by Xavier Chavanne and Jean-Pierre Frangi
J. Sens. Actuator Netw. 2024, 13(3), 32; https://doi.org/10.3390/jsan13030032 - 27 May 2024
Cited by 1 | Viewed by 503
Abstract
This article presents a wireless in situ sensor designed to continuously monitor profiles of parameters in porous media, such as soil moisture, salinity, and temperature. A review of existing in situ soil sensors reveals that it is the only device capable of measuring [...] Read more.
This article presents a wireless in situ sensor designed to continuously monitor profiles of parameters in porous media, such as soil moisture, salinity, and temperature. A review of existing in situ soil sensors reveals that it is the only device capable of measuring the complex permittivity of the medium, allowing for conversions into moisture and salinity that are independent of the instrument. Flow perturbation and invasiveness have also been minimized to maintain good representativeness. Plans include autonomous networks of such sensors, facilitated by the use of the recent radio mode LoRaWAN and cost optimizations for series production. Costs were reduced through electronic simplification and integration, and the use of low-cost modular sensing parts in soil, while still maintaining high measurement quality. A complete set of sensor data recorded during a three-month trial is also presented and interpreted. Full article
Show Figures

Figure 1

19 pages, 2039 KiB  
Article
A Nature-Inspired Approach to Energy-Efficient Relay Selection in Low-Power Wide-Area Networks (LPWAN)
by Anna Strzoda and Krzysztof Grochla
Sensors 2024, 24(11), 3348; https://doi.org/10.3390/s24113348 - 23 May 2024
Viewed by 457
Abstract
Despite the ability of Low-Power Wide-Area Networks to offer extended range, they encounter challenges with coverage blind spots in the network. This article proposes an innovative energy-efficient and nature-inspired relay selection algorithm for LoRa-based LPWAN networks, serving as a solution for challenges related [...] Read more.
Despite the ability of Low-Power Wide-Area Networks to offer extended range, they encounter challenges with coverage blind spots in the network. This article proposes an innovative energy-efficient and nature-inspired relay selection algorithm for LoRa-based LPWAN networks, serving as a solution for challenges related to poor signal range in areas with limited coverage. A swarm behavior-inspired approach is utilized to select the relays’ localization in the network, providing network energy efficiency and radio signal extension. These relays help to bridge communication gaps, significantly reducing the impact of coverage blind spots by forwarding signals from devices with poor direct connectivity with the gateway. The proposed algorithm considers critical factors for the LoRa standard, such as the Spreading Factor and device energy budget analysis. Simulation experiments validate the proposed scheme’s effectiveness in terms of energy efficiency under diverse multi-gateway (up to six gateways) network topology scenarios involving thousands of devices (1000–1500). Specifically, it is verified that the proposed approach outperforms a reference method in preventing battery depletion of the relays, which is vital for battery-powered IoT devices. Furthermore, the proposed heuristic method achieves over twice the speed of the exact method for some large-scale problems, with a negligible accuracy loss of less than 2%. Full article
(This article belongs to the Special Issue Nature-Inspired Algorithms for Sensor Networks and Image Processing)
Show Figures

Figure 1

22 pages, 4173 KiB  
Article
A Deep Learning Approach for Accurate Path Loss Prediction in LoRaWAN Livestock Monitoring
by Mike O. Ojo, Irene Viola, Silvia Miretti, Eugenio Martignani, Stefano Giordano and Mario Baratta
Sensors 2024, 24(10), 2991; https://doi.org/10.3390/s24102991 - 8 May 2024
Viewed by 653
Abstract
The agricultural sector is amidst an industrial revolution driven by the integration of sensing, communication, and artificial intelligence (AI). Within this context, the internet of things (IoT) takes center stage, particularly in facilitating remote livestock monitoring. Challenges persist, particularly in effective field communication, [...] Read more.
The agricultural sector is amidst an industrial revolution driven by the integration of sensing, communication, and artificial intelligence (AI). Within this context, the internet of things (IoT) takes center stage, particularly in facilitating remote livestock monitoring. Challenges persist, particularly in effective field communication, adequate coverage, and long-range data transmission. This study focuses on employing LoRa communication for livestock monitoring in mountainous pastures in the north-western Alps in Italy. The empirical assessment tackles the complexity of predicting LoRa path loss attributed to diverse land-cover types, highlighting the subtle difficulty of gateway deployment to ensure reliable coverage in real-world scenarios. Moreover, the high expense of densely deploying end devices makes it difficult to fully analyze LoRa link behavior, hindering a complete understanding of networking coverage in mountainous environments. This study aims to elucidate the stability of LoRa link performance in spatial dimensions and ascertain the extent of reliable communication coverage achievable by gateways in mountainous environments. Additionally, an innovative deep learning approach was proposed to accurately estimate path loss across challenging terrains. Remote sensing contributes to land-cover recognition, while Bidirectional Long Short-Term Memory (Bi-LSTM) enhances the path loss model’s precision. Through rigorous implementation and comprehensive evaluation using collected experimental data, this deep learning approach significantly curtails estimation errors, outperforming established models. Our results demonstrate that our prediction model outperforms established models with a reduction in estimation error to less than 5 dB, marking a 2X improvement over state-of-the-art models. Overall, this study signifies a substantial advancement in IoT-driven livestock monitoring, presenting robust communication and precise path loss prediction in rugged landscapes. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

17 pages, 429 KiB  
Article
Realization of Authenticated One-Pass Key Establishment on RISC-V Micro-Controller for IoT Applications
by Tuan-Kiet Dang, Khai-Duy Nguyen, Binh Kieu-Do-Nguyen, Trong-Thuc Hoang and Cong-Kha Pham
Future Internet 2024, 16(5), 157; https://doi.org/10.3390/fi16050157 - 3 May 2024
Viewed by 927
Abstract
Internet-of-things networks consist of multiple sensor devices spread over a wide area. In order to protect the data from unauthorized access and tampering, it is essential to ensure secure communication between the sensor devices and the central server. This security measure aims to [...] Read more.
Internet-of-things networks consist of multiple sensor devices spread over a wide area. In order to protect the data from unauthorized access and tampering, it is essential to ensure secure communication between the sensor devices and the central server. This security measure aims to guarantee authenticity, confidentiality, and data integrity. Unlike traditional computing systems, sensor node devices are often limited regarding memory and computing power. Lightweight communication protocols, such as LoRaWAN, were introduced to overcome these limitations. However, despite the lightweight feature, the protocol is vulnerable to different types of attacks. This proposal presents a highly secure key establishment protocol that combines two cryptography schemes: Elliptic Curve Qu–Vanstone and signcryption key encapsulation. The protocol provides a method to establish a secure channel that inherits the security properties of the two schemes. Also, it allows for fast rekeying with only one exchange message, significantly reducing the handshake complexity in low-bandwidth communication. In addition, the selected schemes complement each other and share the same mathematical operations in elliptic curve cryptography. Moreover, with the rise of a community-friendly platform like RISC-V, we implemented the protocol on a RISC-V system to evaluate its overheads regarding the cycle count and execution time. Full article
(This article belongs to the Special Issue Cybersecurity in the IoT)
Show Figures

Figure 1

25 pages, 6941 KiB  
Article
Bat2Web: A Framework for Real-Time Classification of Bat Species Echolocation Signals Using Audio Sensor Data
by Taslim Mahbub, Azadan Bhagwagar, Priyanka Chand, Imran Zualkernan, Jacky Judas and Dana Dghaym
Sensors 2024, 24(9), 2899; https://doi.org/10.3390/s24092899 - 1 May 2024
Viewed by 943
Abstract
Bats play a pivotal role in maintaining ecological balance, and studying their behaviors offers vital insights into environmental health and aids in conservation efforts. Determining the presence of various bat species in an environment is essential for many bat studies. Specialized audio sensors [...] Read more.
Bats play a pivotal role in maintaining ecological balance, and studying their behaviors offers vital insights into environmental health and aids in conservation efforts. Determining the presence of various bat species in an environment is essential for many bat studies. Specialized audio sensors can be used to record bat echolocation calls that can then be used to identify bat species. However, the complexity of bat calls presents a significant challenge, necessitating expert analysis and extensive time for accurate interpretation. Recent advances in neural networks can help identify bat species automatically from their echolocation calls. Such neural networks can be integrated into a complete end-to-end system that leverages recent internet of things (IoT) technologies with long-range, low-powered communication protocols to implement automated acoustical monitoring. This paper presents the design and implementation of such a system that uses a tiny neural network for interpreting sensor data derived from bat echolocation signals. A highly compact convolutional neural network (CNN) model was developed that demonstrated excellent performance in bat species identification, achieving an F1-score of 0.9578 and an accuracy rate of 97.5%. The neural network was deployed, and its performance was evaluated on various alternative edge devices, including the NVIDIA Jetson Nano and Google Coral. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

16 pages, 6143 KiB  
Article
An End-to-End Artificial Intelligence of Things (AIoT) Solution for Protecting Pipeline Easements against External Interference—An Australian Use-Case
by Umair Iqbal, Johan Barthelemy and Guillaume Michal
Sensors 2024, 24(9), 2799; https://doi.org/10.3390/s24092799 - 27 Apr 2024
Viewed by 848
Abstract
High-pressure pipelines are critical for transporting hazardous materials over long distances, but they face threats from third-party interference activities. Preventive measures are implemented, but interference accidents can still occur, making the need for high-quality detection strategies vital. This paper proposes an end-to-end Artificial [...] Read more.
High-pressure pipelines are critical for transporting hazardous materials over long distances, but they face threats from third-party interference activities. Preventive measures are implemented, but interference accidents can still occur, making the need for high-quality detection strategies vital. This paper proposes an end-to-end Artificial Intelligence of Things (AIoT) solution to detect potential interference threats in real time. The solution involves developing a smart visual sensor capable of processing images using state-of-the-art computer vision algorithms and transmitting alerts to pipeline operators in real time. The system’s core is based on the object-detection model (e.g., You Only Look Once version 4 (YOLOv4) and DETR with Improved deNoising anchOr boxes (DINO)), trained on a custom Pipeline Visual Threat Assessment (Pipe-VisTA) dataset. Among the trained models, DINO was able to achieve the best Mean Average Precision (mAP) of 71.2% for the unseen test dataset. However, for the deployment on a limited computational-ability edge computer (i.e., the NVIDIA Jetson Nano), the simpler and TensorRT-optimized YOLOv4 model was used, which achieved a mAP of 61.8% for the test dataset. The developed AIoT device captures the image using a camera, processes on the edge using the trained YOLOv4 model to detect the potential threat, transmits the threat alert to a Fleet Portal via LoRaWAN, and hosts the alert on a dashboard via a satellite network. The device has been fully tested in the field to ensure its functionality prior to deployment for the SEA Gas use-case. The AIoT smart solution has been deployed across the 10km stretch of the SEA Gas pipeline across the Murray Bridge section. In total, 48 AIoT devices and three Fleet Portals are installed to ensure the line-of-sight communication between the devices and portals. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

20 pages, 2463 KiB  
Article
Piezoelectric Sensors as Energy Harvesters for Ultra Low-Power IoT Applications
by Francesco Rigo, Marco Migliorini and Alessandro Pozzebon
Sensors 2024, 24(8), 2587; https://doi.org/10.3390/s24082587 - 18 Apr 2024
Viewed by 1199
Abstract
The aim of this paper is to discuss the usability of vibrations as energy sources, for the implementation of energy self-sufficient wireless sensing platforms within the Industrial Internet of Things (IIoT) framework. In this context, this paper proposes to equip vibrating assets like [...] Read more.
The aim of this paper is to discuss the usability of vibrations as energy sources, for the implementation of energy self-sufficient wireless sensing platforms within the Industrial Internet of Things (IIoT) framework. In this context, this paper proposes to equip vibrating assets like machinery with piezoelectric sensors, used to set up energy self-sufficient sensing platforms for hard-to-reach positions. Preliminary measurements as well as extended laboratory tests are proposed to understand the behavior of commercial piezoelectric sensors when employed as energy harvesters. First, a general architecture for a vibration-powered LoRaWAN-based sensor node is proposed. Final tests are then performed to identify an ideal trade-off between sensor sampling rates and energy availability. The target is to ensure continuous operation of the device while guaranteeing a charging trend of the storage component connected to the system. In this context, an Ultra-Low-Power Energy-Harvesting Integrated Circuit plays a crucial role by ensuring the correct regulation of the output with very high efficiency. Full article
(This article belongs to the Special Issue Sensors for Severe Environments)
Show Figures

Figure 1

18 pages, 7381 KiB  
Article
Polling Mechanisms for Industrial IoT Applications in Long-Range Wide-Area Networks
by David Todoli-Ferrandis, Javier Silvestre-Blanes, Víctor Sempere-Payá and Salvador Santonja-Climent
Future Internet 2024, 16(4), 130; https://doi.org/10.3390/fi16040130 - 12 Apr 2024
Viewed by 997
Abstract
LoRaWAN is a low-power wide-area network (LPWAN) technology that is well suited for industrial IoT (IIoT) applications. One of the challenges of using LoRaWAN for IIoT is the need to collect data from a large number of devices. Polling is a common way [...] Read more.
LoRaWAN is a low-power wide-area network (LPWAN) technology that is well suited for industrial IoT (IIoT) applications. One of the challenges of using LoRaWAN for IIoT is the need to collect data from a large number of devices. Polling is a common way to collect data from devices, but it can be inefficient for LoRaWANs, which are designed for low data rates and long battery life. LoRaWAN devices operating in two specific modes can receive messages from a gateway even when they are not sending data themselves. This allows the gateway to send commands to devices at any time, without having to wait for them to check for messages. This paper proposes various polling mechanisms for industrial IoT applications in LoRaWANs and presents specific considerations for designing efficient polling mechanisms in the context of industrial IoT applications leveraging LoRaWAN technology. Full article
(This article belongs to the Special Issue Industrial Internet of Things (IIoT): Trends and Technologies)
Show Figures

Figure 1

Back to TopTop