Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (118)

Search Parameters:
Keywords = MoLaWa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 3349 KiB  
Article
Predictive and Prognostic 18F-Fluorocholine PET/CT Radiomics Nomogram in Patients with Castration-Resistant Prostate Cancer with Bone Metastases Treated with 223Ra
by Marcos Cruz-Montijano, Mariano Amo-Salas, Javier Cassinello-Espinosa, Iciar García-Carbonero, Jose Carlos Villa-Guzman and Ana Maria Garcia-Vicente
Cancers 2024, 16(15), 2695; https://doi.org/10.3390/cancers16152695 - 29 Jul 2024
Viewed by 702
Abstract
Purpose: We aimed to develop a nomogram able to predict treatment failure, skeletal events, and overall survival (OS) in patients with castration-resistant prostate cancer with bone metastases (CRPC-BM) treated with Radium-223 dichloride (223Ra). Patients and Methods: Patients from the Castilla-La Mancha [...] Read more.
Purpose: We aimed to develop a nomogram able to predict treatment failure, skeletal events, and overall survival (OS) in patients with castration-resistant prostate cancer with bone metastases (CRPC-BM) treated with Radium-223 dichloride (223Ra). Patients and Methods: Patients from the Castilla-La Mancha Spanish region were prospectively included in the ChoPET-Rad multicenter study from January 2015 to December 2022. Patients underwent baseline, interim, and end-of-treatment bone scintigraphy (BS) and 18F-Fluorocholine PET/CT (FCH PET/CT) scans, obtaining multiple imaging radiomics as well as clinical and biochemical variables during follow-up and studying their association with the previously defined end-points. Survival analysis was performed using the Kaplan–Meier method and Cox regression. Multivariate logistic and Cox regression models were calculated, and these models were depicted by means of nomograms. Results: Median progression-free survival (PFS) and OS were 4 and 14 months (mo), respectively. The variables that showed independent and significant association with therapeutic failure were baseline alkaline phosphatase (AP) levels (p = 0.022) and the characteristics of BM on the CT portion of PET/CT (p = 0.017). In the case of OS, the significant variables were therapeutic failure (p = 0.038), the number of lines received after 223Ra (p < 0.001), average SUVmax (p = 0.002), bone marrow infiltration in FCH PET/CT (p = 0.006), and interim FCH PET/CT response (p = 0.048). Final nomograms included these variables, showing good discrimination among the 100 patients included in our study. In the study of skeletal events, only OS showed a significant association in the multivariate analysis, resulting in an inconsistent nomogram design. Conclusions: FCH PET/CT appears to be a good tool for evaluating patients eligible for treatment with 223Ra, as well as for their follow-up. Thus, findings derived from it, such as the morphological characteristics of BM in the CT, bone marrow infiltration, or the response to 223Ra in the interim study, have proven to be solid and useful variables in the creation of nomograms for predicting therapeutic failure and OS. Full article
Show Figures

Figure 1

29 pages, 8708 KiB  
Article
Chitosan/Hyaluronate Complex-Coated Electrospun Poly(3-hydroxybutyrate) Materials Containing Extracts from Melissa officinalis and/or Hypericum perforatum with Various Biological Activities: Antioxidant, Antibacterial and In Vitro Anticancer Effects
by Ina Anastasova, Milena Ignatova, Nevena Manolova, Iliya Rashkov, Nadya Markova, Reneta Toshkova, Ani Georgieva, Mariana Kamenova-Nacheva, Antoaneta Trendafilova, Viktoria Ivanova and Tsvetelina Doncheva
Polymers 2024, 16(15), 2105; https://doi.org/10.3390/polym16152105 - 24 Jul 2024
Viewed by 705
Abstract
The present study aimed to fabricate innovative fibrous materials with various biological activities from poly(3-hydroxybutyrate), sodium hyaluronate (HA), chitosan (Ch), Melissa officinalis (MO), Hypericum perforatum (HP) extract, or a combination of both extracts. Electrospinning or electrospinning followed by dip coating and the subsequent [...] Read more.
The present study aimed to fabricate innovative fibrous materials with various biological activities from poly(3-hydroxybutyrate), sodium hyaluronate (HA), chitosan (Ch), Melissa officinalis (MO), Hypericum perforatum (HP) extract, or a combination of both extracts. Electrospinning or electrospinning followed by dip coating and the subsequent formation of a polyelectrolyte complex were the methods used to prepare these materials. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and attenuated total reflection–Fourier transform infrared spectroscopy (ATR–FTIR) were applied for investigating the morphology of materials, their thermal characteristics, and their surface chemical composition. The composition and design of the mats had an influence on the in vitro release behavior of the main bioactive compounds present in the MO and HP extracts incorporated in the materials. It was found that as-created materials comprising a combination of both extracts and a Ch/HA complex exerted higher antioxidant activity than that of (non-)coated MO-containing mats and Ch/HA-coated mats containing HP. The novel materials manifested antibacterial efficacy towards the pathogenic bacteria S. aureus and E. coli, as evidenced by the performed microbiological screening. Furthermore, the mats possessed a great growth inhibitory effect on HeLa cancer cells but had a less pronounced effect on the growth of normal mouse BALB/3T3 fibroblasts. The loading of both extracts in the mats and the formation of coating led to the enhancement of the in vitro anticancer and antibacterial activities of the materials. Thus, the novel materials have potential for use in local cancer therapy as well as for use as wound dressings. Full article
(This article belongs to the Special Issue Electrospinning of Polymer Systems)
Show Figures

Graphical abstract

19 pages, 5902 KiB  
Article
Fire-Induced Changes in Geochemical Elements of Forest Floor in Southern Siberia
by Olga A. Shapchenkova, Elena A. Kukavskaya and Pavel Y. Groisman
Fire 2024, 7(7), 243; https://doi.org/10.3390/fire7070243 - 11 Jul 2024
Viewed by 751
Abstract
Wildfires significantly influence the environmental distribution of various elements through their fire-induced input and mobilization, yet little is known about their effects on the forest floor in Siberian forests. The present study evaluated the effects of spring wildfires of various severities on the [...] Read more.
Wildfires significantly influence the environmental distribution of various elements through their fire-induced input and mobilization, yet little is known about their effects on the forest floor in Siberian forests. The present study evaluated the effects of spring wildfires of various severities on the levels of major and minor (Ca, Al, Fe, S, Mg, K, Na, Mn, P, Ti, Ba, and Sr) trace and ultra-trace (B, Co, Cr, Cu, Ni, Se, V, Zn, Pb, As, La, Sn, Sc, Sb, Be, Bi, Hg, Li, Mo, and Cd) elements in the forest floors of Siberian forests. The forest floor (Oi layer) samples were collected immediately following wildfires in Scots pine (Pinus sylvestris L.), larch (Larix sibirica Ledeb.), spruce (Picea obovata Ledeb.), and birch (Betula pendula Roth) forests. Total concentrations of elements were determined using inductively coupled plasma–optical emission spectroscopy. All fires resulted in a decrease in organic matter content and an increase in mineral material content and pH values in the forest floor. The concentrations of most elements studied in a burned layer of forest floor were statistically significantly higher than in unburned precursors. Sb and Sn showed no statistically significant changes. The forest floor in the birch forest showed a higher increase in mineral material content after the fire and higher levels of most elements studied than the burned coniferous forest floors. Ca was a predominant element in both unburned and burned samples in all forests studied. Our study highlighted the role of wildfires in Siberia in enhancing the levels of geochemical elements in forest floor and the effect of forest type and fire severity on ash characteristics. The increased concentrations of elements represent a potential source of surface water contamination with toxic and eutrophying elements if wildfire ash is transported with overland flow. Full article
Show Figures

Figure 1

12 pages, 1975 KiB  
Article
Hydroprocessing of Gasoline on Modified Alumina Catalysts
by Balga Tuktin, Galymzhan Saidilda, Saule Nurzhanova and Yerdos Ongarbayev
Catalysts 2024, 14(7), 404; https://doi.org/10.3390/catal14070404 - 26 Jun 2024
Cited by 1 | Viewed by 901
Abstract
The hydroprocessing of gasoline on modified alumina catalysts makes it possible to obtain high-octane products. The implementation and development of the process have largely become possible due to the development of modified alumina catalysts that do not contain noble metals and exhibit special [...] Read more.
The hydroprocessing of gasoline on modified alumina catalysts makes it possible to obtain high-octane products. The implementation and development of the process have largely become possible due to the development of modified alumina catalysts that do not contain noble metals and exhibit special catalytic properties. This article discusses topical issues of petrochemistry, namely the creation of catalysts with improved characteristics for the production of high-octane gasoline with low sulfur content. New catalytic systems based on alumina and other carriers modified with transition metals, lanthanum and phosphorus were synthesized. By physico-chemical methods of analysis TPD of ammonia, TEM and XRD, we studied the acid–base and structural characteristics of the developed catalysts. The activity of the developed catalysts in the studied process of hydrotreating gasoline fractions depends on the structure and condition of the active centers. The process of hydrotreating straight-run gasoline in the presence of synthesized catalysts was carried out on a laboratory flow unit. It was shown that, during the hydrotreating of straight-run gasoline on the NiO-MoO3-La-P-HZSM-HY-Al2O3 catalyst, the octane number in the final product increased to 88.6, and the sulfur content decreased from 0.0088 to 0.001%. It was found that the minimum sulfur content in the gasoline hydrotreating product of 0.0005% was achieved on the catalyst CoO-WO3-La-P-HZSM-HY-Al2O3, which is significantly lower than for other studied catalytic systems. The obtained results of the sulfur content in the hydrotreating products fully comply with the Euro-5 standard. Thus, the efficiency of hydrotreating the gasoline fractions studied in this work was mainly determined by the nature of the carriers and modifiers used for the synthesis of catalysts and the technological parameters of the process. The synthesized catalysts showed high activity and selectivity, resulting in high-octane gasoline with a low sulfur content that meets international quality standards. Full article
(This article belongs to the Special Issue Catalysis for Bitumen/Heavy Oil Upgrading and Petroleum Refining)
Show Figures

Figure 1

20 pages, 52685 KiB  
Article
Characteristics and Metallogenic Significance of Fe-Mn Carbonate Minerals in the Erdaokan Ag Deposit, Heilongjiang Province, Northeast China: Constraints from Sm-Nd Geochronology and Trace Elements
by Yuanjiang Yang, Chenglu Li, Zeyu Wang, Huajuan Gu, Wenpeng Yang, Maowen Yuan, Anzong Fu, Bo Zheng, Zhaoxun Cheng and Baoshan Liu
Minerals 2024, 14(7), 655; https://doi.org/10.3390/min14070655 - 26 Jun 2024
Viewed by 912
Abstract
Fe-Mn carbonate is the dominant mineral in the Erdaokan Ag deposit, which represents the first large independent silver deposit during the Late Triassic Period in the Duobaoshan Cu-Mo-Au mineralization concentrated area of Heilongjiang Province, NE China. The Fe-Mn carbonates in the deposit frequently [...] Read more.
Fe-Mn carbonate is the dominant mineral in the Erdaokan Ag deposit, which represents the first large independent silver deposit during the Late Triassic Period in the Duobaoshan Cu-Mo-Au mineralization concentrated area of Heilongjiang Province, NE China. The Fe-Mn carbonates in the deposit frequently co-exist with Ag minerals. Thus, the presence of Fe-Mn carbonates plays a crucial role in the ore-formation process, making their analysis essential for obtaining valuable metallogenic information about the Erdaokan deposit. Through microexamination, SEM and EDS analysis, a clear relationship between Fe-Mn carbonate minerals and Ag minerals was established. Furthermore, electron probe microanalysis, LA-ICP-MS, and Sr-Nd isotope tests were conducted to analyze Fe-Mn carbonates for significant metallogenic insights. The distribution pattern of trace elements and rare-earth elements in Fe-Mn carbonates is similar, characterized by Zr depletion (below 0.131 ppm), enrichment of light rare-earth elements, a noticeable deficit of Eu (δEu = 0.06–0.63), and an average Y/Ho value of 34.29, indicating the involvement of upper mantle-derived deep magma in the formation of ore-forming materials. The samples had a Sm-Nd isochron age of 233.7 ± 1.2 Ma, suggesting that the Erdaokan Ag deposit was formed during the Late Triassic Period. This study highlights the significance of Fe-Mn carbonate as a valuable mineral indicator for regional silver prospecting purposes, and confirms the Late Triassic Period as another important metallogenic stage in the Duobaoshan Cu-Mo-Au mineralization concentrated area. Full article
Show Figures

Figure 1

19 pages, 2461 KiB  
Article
Development of Dry and Liquid Duplex Reagent Mix-Based Polymerase Chain Reaction Assays as Novel Tools for the Rapid and Easy Quantification of Bovine Leukemia Virus (BLV) Proviral Loads
by Sonoko Watanuki, Kazuyuki Shoji, Masaki Izawa, Mitsuaki Okami, Yingbao Ye, Aronggaowa Bao, Yulin Liu, Etsuko Saitou, Kimikazu Sugiyama, Michiru Endo, Yasunobu Matsumoto and Yoko Aida
Viruses 2024, 16(7), 1016; https://doi.org/10.3390/v16071016 - 25 Jun 2024
Viewed by 1107
Abstract
Bovine leukemia virus (BLV) is prevalent worldwide, causing serious problems in the cattle industry. The BLV proviral load (PVL) is a useful index for estimating disease progression and transmission risk. We previously developed a quantitative real-time PCR (qPCR) assay to measure the PVL [...] Read more.
Bovine leukemia virus (BLV) is prevalent worldwide, causing serious problems in the cattle industry. The BLV proviral load (PVL) is a useful index for estimating disease progression and transmission risk. We previously developed a quantitative real-time PCR (qPCR) assay to measure the PVL using the coordination of common motif (CoCoMo) degenerate primers. Here, we constructed a novel duplex BLV-CoCoMo qPCR assay that can amplify two genes simultaneously using a FAM-labeled MGB probe for the BLV LTR gene and a VIC-labeled MGB probe for the BoLA-DRA gene. This liquid duplex assay maintained its original sensitivity and reproducibility in field samples. Furthermore, we developed a dry duplex assay composed of PCR reagents necessary for the optimized liquid duplex assay. We observed a strong positive correlation between the PVLs measured using the dry and liquid duplex assays. Validation analyses showed that the sensitivity of the dry duplex assay was slightly lower than that of the other methods for the detection of a BLV molecular clone, but it showed similar sensitivity to the singleplex assay and slightly higher sensitivity than the liquid duplex assay for the PVL quantification of 82 field samples. Thus, our liquid and dry duplex assays are useful for measuring the BLV PVL in field samples, similar to the original singleplex assay. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

12 pages, 1047 KiB  
Article
Prediction of Cesarean Section for Intrapartum Fetal Compromise: A Multivariable Model from a Prospective Observational Approach
by Blanca Novillo-Del Álamo, Alicia Martínez-Varea, Mar Nieto-Tous, Carmen Padilla-Prieto, Fernando Modrego-Pardo, Silvia Bello-Martínez de Velasco, María Victoria García-Florenciano and José Morales-Roselló
J. Pers. Med. 2024, 14(6), 658; https://doi.org/10.3390/jpm14060658 - 20 Jun 2024
Viewed by 668
Abstract
Objective: A cesarean section for intrapartum fetal compromise (IFC) is performed to avoid potential damage to the newborn. It is, therefore, crucial to develop an accurate prediction model that can anticipate, prior to labor, which fetus may be at risk of presenting this [...] Read more.
Objective: A cesarean section for intrapartum fetal compromise (IFC) is performed to avoid potential damage to the newborn. It is, therefore, crucial to develop an accurate prediction model that can anticipate, prior to labor, which fetus may be at risk of presenting this condition. Material and Methods: To calculate a prediction model for IFC, the clinical, epidemiological, and ultrasonographic variables of 538 patients admitted to the maternity of La Fe Hospital were studied and evaluated using univariable and multivariable logistic regression analysis, using the area under the curve (AUC) and the Akaike Information Criteria (AIC). Results: In the univariable analysis, CPR MoM was the best single parameter for the prediction of CS for IFC (OR 0.043, p < 0.0001; AUC 0.72, p < 0.0001). Concerning the multivariable analysis, for the general population, the best prediction model (lower AIC) included the CPR multiples of the median (MoM), the maternal age, height, and parity, the smoking habits, and the type of labor onset (spontaneous or induction) (AUC 0.80, p < 0.0001). In contrast, for the pregnancies undergoing labor induction, the best prediction model included the CPR MoM, the maternal height and parity, and the smoking habits (AUC 0.80, p < 0.0001). None of the models included estimated fetal weight (EFW). Conclusions: CS for IFC can be moderately predicted prior to labor using maternal characteristics and CPR MoM. A validation study is pending to apply these models in daily clinical practice. Full article
(This article belongs to the Section Methodology, Drug and Device Discovery)
Show Figures

Figure 1

21 pages, 9899 KiB  
Article
Multi-Elemental Characterization of Soils in the Vicinity of Siderurgical Industry: Levels, Depth Migration and Toxic Risk
by Antoaneta Ene, Florin Sloată, Marina V. Frontasyeva, Octavian G. Duliu, Alina Sion, Steluta Gosav and Diana Persa
Minerals 2024, 14(6), 559; https://doi.org/10.3390/min14060559 - 29 May 2024
Cited by 1 | Viewed by 734
Abstract
The assessment of soil contamination in the vicinity of integrated siderurgical plants is of outmost importance for agroecosystems and human health, and sensitive techniques should be employed for accurate assessment of chemical elements (metals, potential toxic elements, rare earths, radioelements) in soil and [...] Read more.
The assessment of soil contamination in the vicinity of integrated siderurgical plants is of outmost importance for agroecosystems and human health, and sensitive techniques should be employed for accurate assessment of chemical elements (metals, potential toxic elements, rare earths, radioelements) in soil and further evaluation of potential ecological and safety risk. In this paper a total of 45 major, minor and trace elements (Al, As, Au, Ba, Br, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Eu, Fe, Hf, Hg, I, K, La, Mg, Mn, Mo, Na, Nd, Ni, Pb, Rb, Sb, Sc, Sm, Sn, Sr, Ta, Tb, Th, Ti, Tm, U, V, W, Y, Yb, Zn and Zr) were quantified in soils located around a large siderurgical works (Galati, SE Romania) using instrumental neutron activation analysis (INAA) in combination with X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP–MS). The statistical analysis results and vertical distribution patterns for three depths (0–5 cm, 5–20 cm, 20–30 cm) indicate inputs of toxic elements in the sites close to the ironmaking and steelmaking facilities and industrial wastes dumping site. For selected elements, a comparison with historical, legislated and world reported concentration values in soil was performed and depth migration, contamination and toxic risk indices were assessed. The distribution of major, rock forming elements was closer to the Upper Continental Crust (UCC), and to the Dobrogea loess, a finding confirmed by the ternary diagram of the incompatible trace elements Sc, La and Th, as well as by the La to Th rate. At the same time, the La/Th vs. Sc and Th/Sc vs. Zr/Sc bi-plots suggested a felsic origin and a weak recycling of soils’ mineral components. Full article
Show Figures

Figure 1

12 pages, 1911 KiB  
Article
Production of Margarine Fat Containing Medium- and Long-Chain Triacylglycerols by Enzymatic Interesterification of Peony Seed Oil, Palm Stearin and Coconut Oil Blends
by Man Zhang, Baocheng Xu, Dongkun Zhao, Mengqi Shen, Mengjie Li, Donghao Liu and Lili Liu
Foods 2024, 13(9), 1405; https://doi.org/10.3390/foods13091405 - 2 May 2024
Viewed by 1413
Abstract
This paper reports the preparation of margarine fat using Lipozyme TL IM as a catalyst and peony seed oil (PSO), palm stearin (PS) and coconut oil (CO) as raw materials. The results indicate that there were no significant changes in fatty acid composition [...] Read more.
This paper reports the preparation of margarine fat using Lipozyme TL IM as a catalyst and peony seed oil (PSO), palm stearin (PS) and coconut oil (CO) as raw materials. The results indicate that there were no significant changes in fatty acid composition before or after interesterification of the oil samples. However, the total amount of medium- and long-chain triglycerides (MLCTs) increased from 2.92% to 11.38% in sample E1 after interesterification, mainly including LaLaO, LaMO, LaPM, LaOO, LaPO and LaPP. Moreover, the slip melting point (SMP) of sample E1 decreased from 45.9 °C (B1) to 33.5 °C. The solid fat content (SFC) of all the samples at 20 °C was greater than 10%, indicating that they could effectively prevent oil exudation. After interesterification, the samples exhibited a β′ crystal form and could be used to prepare functional margarine. Full article
(This article belongs to the Special Issue Healthy Lipids for Food Processing)
Show Figures

Figure 1

11 pages, 4901 KiB  
Article
CoMoO4 Nanoflowers Doped with La Element for Advanced Electrode Materials
by Donghua Chen, Yang Liu, Danting Li, Tenghao Ma and Jing Wang
Coatings 2024, 14(4), 388; https://doi.org/10.3390/coatings14040388 - 27 Mar 2024
Viewed by 999
Abstract
La-CoMoO4 was prepared as the electrode material for supercapacitors using the freeze-drying method. The physical and structural properties of the prepared electrode La-CoMoO4 were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We further investigated the electrochemical performance [...] Read more.
La-CoMoO4 was prepared as the electrode material for supercapacitors using the freeze-drying method. The physical and structural properties of the prepared electrode La-CoMoO4 were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). We further investigated the electrochemical performance of La-CoMoO4 electrode materials through cyclic voltammetry, constant current charge–discharge, and electrochemical impedance spectroscopy. The research results indicate that compared with CoMoO4 material (1400 F/g), La-CoMoO4 material has a high specific capacitance of 2248 F/g at a current density of 1 A/g. In addition, La-CoMoO4 has a high stability, with a capacitance retention rate of up to 99.2% after 5500 cycles. Finally, supercapacitor devices using La-CoMoO4 material as the positive electrode have a high energy density of 55 Wh/Kg (power density of 1000 W/Kg), making them a promising electrode material. Full article
Show Figures

Figure 1

0 pages, 9862 KiB  
Article
Moss as a Biomonitor to Identify Atmospheric Deposition of Minor and Trace Elements in Macedonia
by Robert Šajn, Katerina Bačeva Andonovska, Trajče Stafilov and Lambe Barandovski
Atmosphere 2024, 15(3), 297; https://doi.org/10.3390/atmos15030297 - 28 Feb 2024
Viewed by 933
Abstract
The present work was carried out to obtain and highlight the fifth comprehensive baseline dataset on atmospheric deposition of trace elements and to assess air quality in Macedonia. In the period from August to September 2020, a total of 72 moss samples were [...] Read more.
The present work was carried out to obtain and highlight the fifth comprehensive baseline dataset on atmospheric deposition of trace elements and to assess air quality in Macedonia. In the period from August to September 2020, a total of 72 moss samples were collected in accessible areas in the country. The content of 28 elements (Ag, Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Ti, U, and Zn) was determined using inductively coupled plasma–mass spectrometry. Based on the data obtained on the content of the elements, a factor analysis was carried out to identify and characterise different sources of pollution. In addition, distribution maps were created for all elements to show the regions most affected by anthropogenic activities. The survey conducted in 2020 has shown that air pollution with potentially toxic elements (PTEs) has slightly decreased compared to the results of the previous survey from 2015. This is due to the fact that, despite the operation of all mining and smelting facilities with the same capacity, government regulations for the installation of cleaning systems and additional regulations to reduce pollution have been introduced in the last five years. Nevertheless, the fact remains that the highest anthropogenic air pollution with PTEs is still caused by the operation of the ferronickel smelter in Kavadarci (Ni and Cr) in the southern part and by the lead and zinc mines in Probištip, Makedonska Kamenica, and Kriva Palanka in the eastern part of the country (Cd, Pb, and Zn). Full article
Show Figures

Figure 1

17 pages, 5319 KiB  
Article
Zircon U-Pb and Whole-Rock Geochemistry of the Aolunhua Mo-Associated Granitoid Intrusion, Inner Mongolia, NE China
by Hao Li, Xuguang Li, Jiang Xin and Yongqiang Yang
Minerals 2024, 14(3), 226; https://doi.org/10.3390/min14030226 - 23 Feb 2024
Viewed by 928
Abstract
The Aolunhua Mo deposit is a typical porphyry deposit, which is located in the middle southern section of the Da Hinggan Range metallogenic belt. Here, we report LA-ICP-MS zircon U-Pb age data from the Mo-associated granitoid, together with the element geochemistry of the [...] Read more.
The Aolunhua Mo deposit is a typical porphyry deposit, which is located in the middle southern section of the Da Hinggan Range metallogenic belt. Here, we report LA-ICP-MS zircon U-Pb age data from the Mo-associated granitoid, together with the element geochemistry of the zircons, discussing the source material of the ore-forming rock of the deposit. The zircon data constrain the crystallization age of the granite porphyry as 135.0 ± 1.0 Ma, correlating it with the widespread Yanshanian intermediate–felsic magmatic activity. The Th/U ratio of the zircon is greater than 0.1, with a significant positive Ce anomaly (Ce* = 1.72–188.71) and a negative Eu anomaly (Eu* = 0.05–0.57). The zircons show depleted LREE and enriched HREE patterns, as well as low La and Pr contents, suggesting crystallization from crust-derived magmas. Based on the geology of the ore deposit and the age data, in combination with the regional geodynamic evolution, we infer that the Aolunhua Mo deposit was formed near the peak stage of Sn poly-metallic metallogenesis in the Da Hinggan Range region at around 140 Ma, associated with a tectonic setting, characterized by the transition from compression to extension. Based on a comparison with the newly found Mo deposits along the banks of the Xilamulun River, we propose that the Tianshan–Linxi is an important Mo-metallogenic belt. It also suggests an increased likelihood for the occurrence of Mo along the north bank of the Xilamulun River. Full article
Show Figures

Graphical abstract

15 pages, 3268 KiB  
Article
Mo-Doped LSCF as a Novel Coke-Resistant Anode for Biofuel-Fed SOFC
by Kimia Y. Javan, Massimiliano Lo Faro, Sebastian Vecino-Mantilla and Vincenzo M. Sglavo
Materials 2024, 17(4), 869; https://doi.org/10.3390/ma17040869 - 13 Feb 2024
Viewed by 987
Abstract
Climate change and damage to the environment, as well as the limitations of fossil fuels, have pushed governments to explore infinite renewable energy options such as biofuels. Solid Oxide Fuel Cell (SOFC) is a sustainable energy device that transforms biofuels into power and [...] Read more.
Climate change and damage to the environment, as well as the limitations of fossil fuels, have pushed governments to explore infinite renewable energy options such as biofuels. Solid Oxide Fuel Cell (SOFC) is a sustainable energy device that transforms biofuels into power and heat. It is now being researched to function at intermediate temperatures (600–700 °C) in order to prevent material deterioration and improve system life span. However, one of the major disadvantages of reducing the temperature is that carbon deposition impairs the electrochemical performance of the cell with a Ni-YSZ traditional anode. Here, molybdenum was doped into La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCFMo) as an innovative anode material with higher coke resistance and better phase stability under reducing conditions. X-ray diffraction (XRD) analysis showed increasing phase stability by increasing the Mo dopant. Electrochemical measurements proved that the LSCFMo anode is an active catalyst towards the methanol oxidation even at low temperatures as 600 °C, with an open circuit voltage (OCV) of 0.55 V, while GDC10 (Ga0.9Ce0.1O1.95) is used as the electrolyte. As an insightful result, no trace of any carbon deposition was found on the anode side after the tests. The combination of phase composition, morphological, and electrochemical studies demonstrate that LSCFMo is a suitable anode material for SOFCs fed by biofuels. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

21 pages, 3801 KiB  
Article
Chemostratigraphic Approach to the Study of Resources’ Deposit in the Upper Silesian Coal Basin (Poland)
by Ewa Krzeszowska
Energies 2024, 17(3), 642; https://doi.org/10.3390/en17030642 - 29 Jan 2024
Viewed by 769
Abstract
The Upper Silesian Coal Basin (USCB), located in southern Poland, is the major coal basin in Poland, and all technological types of hard coal, including coking coal, are exploited. It is also an area of high potential for coal-bed methane (CBM). Despite the [...] Read more.
The Upper Silesian Coal Basin (USCB), located in southern Poland, is the major coal basin in Poland, and all technological types of hard coal, including coking coal, are exploited. It is also an area of high potential for coal-bed methane (CBM). Despite the increasing availability of alternative energy sources globally, it is a fact that the use of fossil fuels will remain necessary for the next few decades. Therefore, research on coal-bearing formations using modern research methods is still very important. The application of geochemistry and chemostratigraphy in reservoir characterization has become increasingly common in recent years. This paper presents the possibility of applying chemostratigraphic techniques to the study of the Carboniferous coal-bearing succession of the Upper Silesian Coal Basin. The material studied comes from 121 core samples (depth 481–1298 m), representing the Mudstone Series (Westphalian A, B). Major oxide concentrations of Al2O3, SiO2, Fe2O3, P2O5, K2O, MgO, CaO, Na2O, K2O, MnO, TiO2, and Cr2O3 were obtained using X-ray fluorescence (XRF) spectrometry. Trace elements were analyzed using inductively coupled plasma mass spectrometry (ICP/MS). The geochemical record from the Mudstone Series shows changes in the concentration of major elements and selected trace elements, leading to the identification of four chemostratigraphic units. These units differ primarily in the content of Fe, Ca, Mg, Mn, and P as well as the concentration of Zr, Hf, Nb, Ta, and Ti. The study also discusses quartz origin (based on SiO2 and TiO2), sediment provenance and source-area rock compositions (based on Al2O3/ TiO2, TiO2/Zr, and La/Th), and paleoredox conditions (based on V/Cr, Ni/Co, U/Th, (Cu+Mo)/Zn, and Sr/Ba) for the chemostratigraphic units. Chemostratigraphy was used for the first time in the study of the Carboniferous coal-bearing series of the USCB, concluding that it can be used as an effective stratigraphic tool and provide new information on the possibility of correlating barren sequences of the coal-bearing succession. Full article
Show Figures

Figure 1

12 pages, 2632 KiB  
Article
Electrochemical Properties of LaMO3(M=Cr, Mn, and Co) Perovskite Materials
by Hongquan Zhao, Qiudong Zhu, Xin Ye, Lei Wang and Songtao Dong
Coatings 2024, 14(1), 147; https://doi.org/10.3390/coatings14010147 - 21 Jan 2024
Cited by 4 | Viewed by 1424
Abstract
The utilization of lanthanide perovskite oxides as electrode materials for supercapacitors has garnered significant interest owing to their excellent electrical conductivity, low cost, and excellent thermal stability. In this study, LaMO3(M=Cr, Mn, and Co) nanoparticles were prepared by the sol–gel method [...] Read more.
The utilization of lanthanide perovskite oxides as electrode materials for supercapacitors has garnered significant interest owing to their excellent electrical conductivity, low cost, and excellent thermal stability. In this study, LaMO3(M=Cr, Mn, and Co) nanoparticles were prepared by the sol–gel method coupled with a calcination process. To evaluate the microstructures, morphologies, and electrochemical properties of the samples, a variety of techniques were employed, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area measurements, cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) cycling, and electrochemical impedance spectroscopy (EIS). The results revealed that the LaCoO3 electrodes exhibited a maximum specific capacitance of 118.4 F/g at a current density of 1 A/g, attributed to its higher concentration of oxygen vacancy, larger specific surface area, and lower charge transfer resistance. This discovery substantiates the notion that the electrochemical efficacy is enhanced with the diminishing B-site cation radius in the perovskite LaMO3 system. The charge–discharge process was employed to investigate the anion-intercalation mechanism of LaMO3(M=Cr, Mn, and Co). Full article
(This article belongs to the Topic Properties of the Corroding Interface)
Show Figures

Figure 1

Back to TopTop