Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = ND Solve

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1773 KiB  
Article
Stretching the Limits of Refractometric Sensing in Water Using Whispering-Gallery-Mode Resonators
by Kevin Soler-Carracedo, Antonia Ruiz, Susana Ríos, Sergio de Armas-Rillo, Leopoldo L. Martín, Martin Hohmann, Inocencio R. Martín and Fernando Lahoz
Chemosensors 2025, 13(2), 33; https://doi.org/10.3390/chemosensors13020033 - 24 Jan 2025
Viewed by 449
Abstract
A novel application of microresonators for refractometric sensing in aqueous media is presented. To carry out this approach, microspheres of different materials and sizes were fabricated and doped with Nd3+ ions. Under 532 nm excitation, the microspheres presented typical NIR Nd3+ [...] Read more.
A novel application of microresonators for refractometric sensing in aqueous media is presented. To carry out this approach, microspheres of different materials and sizes were fabricated and doped with Nd3+ ions. Under 532 nm excitation, the microspheres presented typical NIR Nd3+ emission bands with superimposed sharp peaks, related to the Whispering Gallery Modes (WGMs), due to the geometry of the microspheres. When the microspheres were submerged in water with increasing concentrations of glycerol, spectral shifts for the WGMs were observed as a function of the glycerol concentration. These spectral shifts were studied and calibrated for three different microspheres and validated with the theoretical shifts, obtained by solving the Helmholtz equations for the electromagnetic field, considering the geometry of the system, and also by calculating the extinction cross-section. WGM shifts strongly depend on the diameter of the microspheres and their refractive index (RI) difference compared with the external medium, and are greater for decreasing values of the diameter and lower values of RI difference. Experimental sensitivities ranging from 2.18 to 113.36 nm/RIU (refractive index unit) were obtained for different microspheres. Furthermore, reproducibility measurements were carried out, leading to a repeatability of 2.3 pm and a limit of detection of 5 × 10−4 RIU. The proposed sensors, taking advantage of confocal microscopy for excitation and detection, offer a robust, reliable, and contactless alternative for environmental water analysis. Full article
Show Figures

Figure 1

21 pages, 7720 KiB  
Article
Circulating Current Suppression Combined with APF Current Control for the Suppression of MMC Voltage Fluctuations
by Ci Huang, Yizhi Tian and Jie Chen
Electronics 2025, 14(1), 64; https://doi.org/10.3390/electronics14010064 - 27 Dec 2024
Viewed by 407
Abstract
Modular Multilevel Converters (MMCs) are widely used in HV and MVDC transmission. However, their application causes the voltage level to increase, and the number of sub-modules also increases. Problems such as circulating currents and sub-module voltage fluctuations should not be neglected. Considering the [...] Read more.
Modular Multilevel Converters (MMCs) are widely used in HV and MVDC transmission. However, their application causes the voltage level to increase, and the number of sub-modules also increases. Problems such as circulating currents and sub-module voltage fluctuations should not be neglected. Considering the coupling relationship between the circulating current and the sub-module capacitor voltage fluctuation, the circulating current suppressing controller (CCSC) and the active power filter (APF) techniques are used to solve the two problems mentioned above simultaneously. Firstly, in order to reduce the influence of clutter on the tracking of the target components of the CCSC, a Second-Order Generalized Integrator (SOGI) is added to accurately lock the main 2nd and 4th harmonic components in the circulating current. Secondly, an APF is added on top of the circulating current suppression, and the two methods can be mutually reinforcing in their roles. The APF applies the strategy of current inner-loop dominant and voltage outer-loop bias control. It is regarded as a whole for absorbing the voltage fluctuations of the sub-module and also eliminates the error caused by the inductive voltage. Finally, the effectiveness of the above method is verified in MATLAB/Simulink, which demonstrates that the proposed method provides better suppression of both circulating current and sub-module voltage fluctuations compared to the conventional MMC that only incorporates APF. Full article
Show Figures

Figure 1

32 pages, 356 KiB  
Article
Introducing the Second-Order Features Adjoint Sensitivity Analysis Methodology for Fredholm-Type Neural Integral Equations
by Dan Gabriel Cacuci
Mathematics 2025, 13(1), 14; https://doi.org/10.3390/math13010014 - 24 Dec 2024
Viewed by 326
Abstract
This work presents the “First-Order Features Adjoint Sensitivity Analysis Methodology for Fredholm-Type Neural Integral Equations” (1st-FASAM-NIE-Fredholm) and the “Second-Order Features Adjoint Sensitivity Analysis Methodology for Fredholm-Type Neural Integral Equations” (2nd-FASAM-NIE-Fredholm). It is shown that the 1st-FASAM-NIE-Fredholm methodology enables the efficient computation of exactly [...] Read more.
This work presents the “First-Order Features Adjoint Sensitivity Analysis Methodology for Fredholm-Type Neural Integral Equations” (1st-FASAM-NIE-Fredholm) and the “Second-Order Features Adjoint Sensitivity Analysis Methodology for Fredholm-Type Neural Integral Equations” (2nd-FASAM-NIE-Fredholm). It is shown that the 1st-FASAM-NIE-Fredholm methodology enables the efficient computation of exactly determined first-order sensitivities of decoder response with respect to the optimized NIE-parameters, requiring a single “large-scale” computation for solving the First-Level Adjoint Sensitivity System (1st-LASS), regardless of the number of weights/parameters underlying the NIE-net. The 2nd-FASAM-NIE-Fredholm methodology enables the computation, with unparalleled efficiency, of the second-order sensitivities of decoder responses with respect to the optimized/trained weights involved in the NIE’s decoder, hidden layers, and encoder, requiring only as many “large-scale” computations as there are first-order sensitivities with respect to the feature functions. The application of both the 1st-FASAM-NIE-Fredholm and the 2nd-FASAM-NIE-Fredholm methodologies is illustrated by considering a system of nonlinear Fredholm-type NIE that admits analytical solutions, thereby facilitating the verification of the expressions obtained for the first- and second-order sensitivities of NIE-decoder responses with respect to the model parameters (weights) that characterize the respective NIE-net. Full article
68 pages, 5954 KiB  
Article
Mechanical and Civil Engineering Optimization with a Very Simple Hybrid Grey Wolf—JAYA Metaheuristic Optimizer
by Chiara Furio, Luciano Lamberti and Catalin I. Pruncu
Mathematics 2024, 12(22), 3464; https://doi.org/10.3390/math12223464 - 6 Nov 2024
Viewed by 1292
Abstract
Metaheuristic algorithms (MAs) now are the standard in engineering optimization. Progress in computing power has favored the development of new MAs and improved versions of existing methods and hybrid MAs. However, most MAs (especially hybrid algorithms) have very complicated formulations. The present study [...] Read more.
Metaheuristic algorithms (MAs) now are the standard in engineering optimization. Progress in computing power has favored the development of new MAs and improved versions of existing methods and hybrid MAs. However, most MAs (especially hybrid algorithms) have very complicated formulations. The present study demonstrated that it is possible to build a very simple hybrid metaheuristic algorithm combining basic versions of classical MAs, and including very simple modifications in the optimization formulation to maximize computational efficiency. The very simple hybrid metaheuristic algorithm (SHGWJA) developed here combines two classical optimization methods, namely the grey wolf optimizer (GWO) and JAYA, that are widely used in engineering problems and continue to attract the attention of the scientific community. SHGWJA overcame the limitations of GWO and JAYA in the exploitation phase using simple elitist strategies. The proposed SHGWJA was tested very successfully in seven “real-world” engineering optimization problems taken from various fields, such as civil engineering, aeronautical engineering, mechanical engineering (included in the CEC 2020 test suite on real-world constrained optimization problems) and robotics; these problems include up to 14 optimization variables and 721 nonlinear constraints. Two representative mathematical optimization problems (i.e., Rosenbrock and Rastrigin functions) including up to 1000 variables were also solved. Remarkably, SHGWJA always outperformed or was very competitive with other state-of-the-art MAs, including CEC competition winners and high-performance methods in all test cases. In fact, SHGWJA always found the global optimum or a best cost at most 0.0121% larger than the target optimum. Furthermore, SHGWJA was very robust: (i) in most cases, SHGWJA obtained a 0 or near-0 standard deviation and all optimization runs practically converged to the target optimum solution; (ii) standard deviation on optimized cost was at most 0.0876% of the best design; (iii) the standard deviation on function evaluations was at most 35% of the average computational cost. Last, SHGWJA always ranked 1st or 2nd for average computational speed and its fastest optimization runs outperformed or were highly competitive with their counterpart recorded for the best MAs. Full article
(This article belongs to the Special Issue Mathematical Applications in Mechanical and Civil Engineering)
Show Figures

Figure 1

26 pages, 10468 KiB  
Article
Design and Technological Aspects of Integrating Multi-Blade Machining and Surface Hardening on a Single Machine Base
by Vadim Skeeba, Vladimir Ivancivsky, Aleksey Chernikov, Nikita Martyushev, Nikita Vakhrushev and Kristina Titova
J. Manuf. Mater. Process. 2024, 8(5), 200; https://doi.org/10.3390/jmmp8050200 - 17 Sep 2024
Cited by 1 | Viewed by 1471
Abstract
Modern mechanical engineering faces high competition in global markets, which requires manufacturers of process equipment to significantly reduce production costs while ensuring high product quality and maximum productivity. Metalworking occupies a significant part of industrial production and consumes a significant share of the [...] Read more.
Modern mechanical engineering faces high competition in global markets, which requires manufacturers of process equipment to significantly reduce production costs while ensuring high product quality and maximum productivity. Metalworking occupies a significant part of industrial production and consumes a significant share of the world’s energy and natural resources. Improving the technology of manufacturing parts with an emphasis on more efficient use of metalworking machines is necessary to maintain the competitiveness of the domestic machine tool industry. Hybrid metalworking systems based on the principles of multi-purpose integration eliminate the disadvantages of monotechnologies and increase efficiency by reducing time losses and intermediate operations. The purpose of this work is to develop and implement a hybrid machine tool system and an appropriate combined technology for manufacturing machine parts. Theory and methods. Studies of the possible structural composition and layout of hybrid equipment at integration of mechanical and surface-thermal processes were carried out, taking into account the basic provisions of structural synthesis and componentization of metalworking systems. Theoretical studies were carried out using the basic provisions of system analysis, geometric theory of surface formation, design of metalworking machines, methods of finite elements, and mathematical and computer modeling. The mathematical modeling of thermal fields and structural-phase transformations during HEH HFC was carried out in ANSYS (version 19.1) and SYSWELD (version 2010) software packages using numerical methods of solving differential equations of unsteady heat conduction (Fourier equation), carbon diffusion (2nd Fick’s law) and elastic–plastic behavior of the material. The verification of the modeling results was carried out using in situ experiments employing the following: optical and scanning microscopy; and mechanical and X-ray methods of residual stress determination. Formtracer SV-C4500 profilograph profilometer was used in the study for simultaneous measurement of shape deviations and surface roughness. Surface topography was assessed using a Walter UHL VMM 150 V instrumental microscope. The microhardness of the hardened surface layer of the parts was evaluated on a Wolpert Group 402MVD. Results and discussion. The original methodology of structural and kinematic analysis for pre-design studies of hybrid metalworking equipment is presented. Methodological recommendations for the modernization of multi-purpose metal-cutting machine tool are developed, the implementation of which will make it possible to implement high-energy heating with high-frequency currents (HEH HFC) on a standard machine tool system and provide the formation of knowledge-intensive technological equipment with extended functionality. The innovative moment of this work is the development of hybrid metalworking equipment with numerical control and writing a unique postprocessor to it, which allows to realize all functional possibilities of this machine system and the technology of combined processing as a whole. Special tooling and tools providing all the necessary requirements for the process of surface hardening of HEH HFC were designed and manufactured. The conducted complex of works and approbation of the technology of integrated processing in real conditions in comparison with traditional methods of construction of technological process of parts manufacturing allowed to obtain the following results: increase in the productivity of processing by 1.9 times; exclusion of possibility of scrap occurrence at finishing grinding; reduction in auxiliary and preparatory-tasking time; and reduction in inter-operational parts backlogs. Full article
Show Figures

Figure 1

18 pages, 15854 KiB  
Article
IRBEVF-Q: Optimization of Image–Radar Fusion Algorithm Based on Bird’s Eye View Features
by Ganlin Cai, Feng Chen and Ente Guo
Sensors 2024, 24(14), 4602; https://doi.org/10.3390/s24144602 - 16 Jul 2024
Viewed by 1059
Abstract
In autonomous driving, the fusion of multiple sensors is considered essential to improve the accuracy and safety of 3D object detection. Currently, a fusion scheme combining low-cost cameras with highly robust radars can counteract the performance degradation caused by harsh environments. In this [...] Read more.
In autonomous driving, the fusion of multiple sensors is considered essential to improve the accuracy and safety of 3D object detection. Currently, a fusion scheme combining low-cost cameras with highly robust radars can counteract the performance degradation caused by harsh environments. In this paper, we propose the IRBEVF-Q model, which mainly consists of BEV (Bird’s Eye View) fusion coding module and an object decoder module.The BEV fusion coding module solves the problem of unified representation of different modal information by fusing the image and radar features through 3D spatial reference points as a medium. The query in the object decoder, as a core component, plays an important role in detection. In this paper, Heat Map-Guided Query Initialization (HGQI) and Dynamic Position Encoding (DPE) are proposed in query construction to increase the a priori information of the query. The Auxiliary Noise Query (ANQ) then helps to stabilize the matching. The experimental results demonstrate that the proposed fusion model IRBEVF-Q achieves an NDS of 0.575 and a mAP of 0.476 on the nuScenes test set. Compared to recent state-of-the-art methods, our model shows significant advantages, thus indicating that our approach contributes to improving detection accuracy. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

23 pages, 1730 KiB  
Article
Teaching K–3 Multi-Digit Arithmetic Computation to Students with Slow Language Processing
by Richard M. Oldrieve
Computation 2024, 12(6), 128; https://doi.org/10.3390/computation12060128 - 19 Jun 2024
Cited by 1 | Viewed by 1076 | Correction
Abstract
The purpose of this article is to present three related studies that build on each other to demonstrate first the need and then the efficacy of the Blended Arithmetic Curriculum (BAC) to help students overcome both slow language processing and the environmental effects [...] Read more.
The purpose of this article is to present three related studies that build on each other to demonstrate first the need and then the efficacy of the Blended Arithmetic Curriculum (BAC) to help students overcome both slow language processing and the environmental effects of being a student in an urban school district. The author’s underlying theory is that K–3 students with slow language processing may be good at complex reasoning, but still struggle with retrieving basic computational facts. Nonetheless, if they did not learn their facts, these students would struggle with K–3 multi-digit arithmetic computation, and ultimately struggle with their hypothesized strength: seeing numeric patterns as would be needed in university level computation. To teach arithmetic facts conceptually, the author developed a paper and pencil curriculum that first teaches complex multi-digit addition with regrouping using a limited number of facts such as 5 + 5, 9 + 1, 1 + 9; 7 + 7, 7 + 8, 8 + 7, and 8 + 8 in problems such as 197 + 108 = 305 so that fact retrieval and computation are fast and accurate. At the end of 2nd grade, urban students with learning disabilities solved 42 two-digit by two-digit problems with 92 percent accuracy in an average of 7 min. The results matched those of suburban students and were significantly faster and more accurate than general education students in the same urban school. Full article
(This article belongs to the Special Issue Computations in Mathematics, Mathematical Education, and Science)
Show Figures

Figure 1

14 pages, 5719 KiB  
Article
Molecular and Cytological Identification of Wheat-Thinopyrum intermedium Partial Amphiploid Line 92048 with Resistance to Stripe Rust and Fusarium Head Blight
by Xiaoqin Luo, Yuanjiang He, Xianli Feng, Min Huang, Kebing Huang, Xin Li, Suizhuang Yang and Yong Ren
Plants 2024, 13(9), 1198; https://doi.org/10.3390/plants13091198 - 25 Apr 2024
Viewed by 1328
Abstract
Thinopyrum intermedium (2n = 6x = 42, EeEeEbEbStSt or JJJsJsStSt) contains a large number of genes that are highly adaptable to the environment and immune to a variety of wheat diseases, [...] Read more.
Thinopyrum intermedium (2n = 6x = 42, EeEeEbEbStSt or JJJsJsStSt) contains a large number of genes that are highly adaptable to the environment and immune to a variety of wheat diseases, such as powdery mildew, rust, and yellow dwarf, making it an important gene source for the genetic improvement of common wheat. Currently, an important issue plaguing wheat production and breeding is the spread of pests and illnesses. Breeding disease-resistant wheat varieties using disease-resistant genes is currently the most effective measure to solve this problem. Moreover, alien resistance genes often have a stronger disease-resistant effect than the resistance genes found in common wheat. In this study, the wheat-Th. intermedium partial amphiploid line 92048 was developed through hybridization between Th. intermedium and common wheat. The chromosome structure and composition of 92048 were analyzed using ND-FISH and molecular marker analysis. The results showed that the chromosome composition of 92048 (Octoploid Trititrigia) was 56 = 42W + 6J + 4Js + 4St. In addition, we found that 92048 was highly resistant to a mixture of stripe rust races (CYR32, CYR33, and CYR34) during the seedling stage and fusarium head blight (FHB) in the field during the adult plant stage, suggesting that the alien or wheat chromosomes in 92048 had disease-resistant gene(s) to stripe rust and FHB. There is a high probability that the gene(s) for resistance to stripe rust and FHB are from the alien chromosomes. Therefore, 92048 shows promise as a bridge material for transferring superior genes from Th. intermedium to common wheat and improving disease resistance in common wheat. Full article
(This article belongs to the Special Issue Broad-Spectrum Disease Resistance in Plants)
Show Figures

Figure 1

38 pages, 8233 KiB  
Review
Powders of Diamond Nanoparticles as a Promising Material for Reflectors of Very Cold and Cold Neutrons
by Egor Lychagin, Marc Dubois and Valery Nesvizhevsky
Nanomaterials 2024, 14(4), 387; https://doi.org/10.3390/nano14040387 - 19 Feb 2024
Cited by 2 | Viewed by 1894
Abstract
More than 15 years ago, the study of nanodiamond (ND) powders as a material for designing reflectors of very cold neutrons (VCNs) and cold neutrons (CNs) began. Such reflectors can significantly increase the efficiency of using such neutrons and expand the scope of [...] Read more.
More than 15 years ago, the study of nanodiamond (ND) powders as a material for designing reflectors of very cold neutrons (VCNs) and cold neutrons (CNs) began. Such reflectors can significantly increase the efficiency of using such neutrons and expand the scope of their application for solving applied and fundamental problems. This review considers the principle of operation of VCN and CN reflectors based on ND powders and their advantages. Information is presented on the performed experimental and theoretical studies of the effect of the size, structure, and composition of NDs on the efficiency of reflectors. Methods of chemical and mechanical treatments of powders in order to modify their chemical composition and structure are discussed. The aim is to avoid, or at least to decrease, the neutron inelastic scatterers and absorbers (mainly hydrogen atoms but also metallic impurities and nitrogen) as well as to enhance coherent elastic scattering (to destroy ND clusters and sp2 carbon shells on the ND surface that result from the preparation of NDs). Issues requiring further study are identified. They include deeper purification of NDs from impurities that can be activated in high radiation fluxes, the stability of NDs in high radiation fluxes, and upscaling methods for producing larger quantities of ND powders. Possible ways of solving these problems are proposed. Full article
Show Figures

Figure 1

10 pages, 3494 KiB  
Article
The Growth and Spectroscopic Properties of Er, Nd: YSGG Single Crystal Fibers
by Baiyi Wu, Tao Wang, Meng Wang, Jian Zhang, Ning Jia, Zhitai Jia and Zefeng Wang
Crystals 2023, 13(12), 1646; https://doi.org/10.3390/cryst13121646 - 29 Nov 2023
Viewed by 1260
Abstract
Single crystal fiber (SCF) is a novel solid gain medium and technique which combines the advantages of glass fiber and single crystal, showing great potential in the field of high-power lasers. In this paper, Er, Nd: YSGG single crystals with diameters of 2 [...] Read more.
Single crystal fiber (SCF) is a novel solid gain medium and technique which combines the advantages of glass fiber and single crystal, showing great potential in the field of high-power lasers. In this paper, Er, Nd: YSGG single crystals with diameters of 2 mm and lengths of 80 mm were successfully grown using the micro-pulling-down method for the first time. Then, the measurements of Laue spots and Er3+ distribution indicated that the as-grown crystals were of a high quality. The effect of co-doped Nd3+ on the Er: YSGG was systematically discussed, which demonstrated that Nd3+ can decrease the fluorescence lifetime of Er: 4I13/2 that solve the self-termination bottleneck accordingly. These results demonstrate that Er, Nd: YSGG SCFs are promising materials for the further 3 μm laser generations. Full article
(This article belongs to the Special Issue Rare Earths-Doped Materials (3rd Edition))
Show Figures

Figure 1

15 pages, 2215 KiB  
Article
Soft Measurement of Rare Earth Multi-Element Component Content Based on Multi-LightVGG Modeling
by Zhen Li, Jun Xiao, Qihan Zhang, Kunming Liu and Jinhui Li
Minerals 2023, 13(12), 1491; https://doi.org/10.3390/min13121491 - 28 Nov 2023
Viewed by 1083
Abstract
The current hardware equipment used to detect the content of each element component in the rare earth extraction process has a complex structure and high maintenance cost. A modeling method for the soft measurement of rare earth multi-element component content is proposed to [...] Read more.
The current hardware equipment used to detect the content of each element component in the rare earth extraction process has a complex structure and high maintenance cost. A modeling method for the soft measurement of rare earth multi-element component content is proposed to address this issue. This method uses the Multi-LightVGG multi-tasking learning model and the Multi Gradient Descent Algorithm based on Optimized Upper Bound (MGDA-OUB) to optimize the model for each prediction task and find the Pareto optimal solution. After conducting several experiments, the Multi-LightVGG model loaded with MGDA-OUB has lower MRE, RMSE for Pr, Nd prediction, and MAX(|error|) for Nd prediction than the Multi-LightVGG model without MGDA-OUB by 0.3778%, 0.5208%, 0.0015, 0.0015, and 0.1985%, respectively; and the MRE and RMSE of the Multi-LightVGG model for Pr and Nd prediction under the same optimization conditions are lower than those of Multi-ResNet18 by 0.3297%, 0.5423%, 0.0019, and 0.002, respectively, thus indicating that MGDA-OUB can effectively solve multiple task-specific Pareto solutions to avoid possible conflicts between specific tasks, while the Multi-LightVGG model, compared to the Multi-Resnet18 model, has a backbone network that can effectively capture the abstract representations in the images of the rare earth-extraction mixed solution, which in turn improves the prediction accuracy of the content of each elemental component. Full article
(This article belongs to the Special Issue Recent Advances in Extractive Metallurgy)
Show Figures

Figure 1

21 pages, 6443 KiB  
Article
Enhanced Non-Communication-Based Protection Coordination and Advanced Verification Method Using Fault Impedance in Networked Distribution Systems
by Juan Noh, Seungjun Gham, Myungseok Yoon, Wookyu Chae, Woohyun Kim and Sungyun Choi
Sustainability 2023, 15(21), 15593; https://doi.org/10.3390/su152115593 - 3 Nov 2023
Viewed by 935
Abstract
In recent years, the networked distribution system (NDS), which is normally connected to the distribution line (DL), was actively studied as the topology of the future distribution system for reasons such as improving supply reliability, improving line utilization, and increasing the capacity of [...] Read more.
In recent years, the networked distribution system (NDS), which is normally connected to the distribution line (DL), was actively studied as the topology of the future distribution system for reasons such as improving supply reliability, improving line utilization, and increasing the capacity of distribution generators (DGs). However, the NDS creates new issues in terms of protection coordination because of its bidirectional power flow and fault current flow. The issues associated with conventional protection schemes in the NDS include malfunction of protective devices due to bi-directional fault currents and failure of protection coordination due to communication failures between protective devices. When applying a conventional protection method in the NDS, the protection schemes become complicated, and there is a risk of protection coordination failure due to communication failure between protective devices. To solve this problem, this paper proposes an effective and innovative non-communication-based protection algorithm for protection coordination in the NDS. The proposed protection algorithm utilizes fault impedance characteristics, which allow not only determination of whether a fault occurred, but also the ability to identify the exact fault point. Therefore, the proposed method is expected to be sustainably utilized and contribute to developing protection schemes and devices in various system topologies and scenarios in the future. Additionally, this paper addresses the overall concept of hardware-in-the-loop simulation (HILS) and directly verifies the proposed protection algorithm using HILS. Therefore, this study establishes a sustainable foundation for future research on protection coordination using HILS. Full article
(This article belongs to the Special Issue Smart Grid and Power System Protection)
Show Figures

Figure 1

14 pages, 1952 KiB  
Article
Multiwave Matrix Polarization Lidar
by Sergei N. Volkov, Ilia D. Bryukhanov, Ignatii V. Samokhvalov, Duk-Hyeon Kim and Youngmin Noh
Atmosphere 2023, 14(11), 1621; https://doi.org/10.3390/atmos14111621 - 29 Oct 2023
Viewed by 1135
Abstract
Remote control of the state of the atmosphere is an urgent problem nowadays. The problem of remote monitoring of the optical parameters of the atmosphere is solved using a matrix polarization lidar (MPL). The scattering matrix obtained from polarization measurements contains complete information [...] Read more.
Remote control of the state of the atmosphere is an urgent problem nowadays. The problem of remote monitoring of the optical parameters of the atmosphere is solved using a matrix polarization lidar (MPL). The scattering matrix obtained from polarization measurements contains complete information on the scattering parameters in the atmosphere. The purpose of the present research is the derivation of the theory and description of methods for solving problems of practical implementation of the multiwave MPL (MMPL). The problem is considered within the framework of the concept of the unified methodological approach to polarization studies. The MMPL operation principle is based on simultaneous use for sensing of the first, second, and third harmonics of radiation of a widespread Nd:YAG laser. The basis for achieving this purpose is provided by new methods of optical selection of the polarization components of radiation received in the experiment, methods of conducting polarization studies, and new solutions in experimental data processing methods. It has been shown that this challenge can be solved within the framework of simple solutions. Thus, the proposed MMPL is structurally simple and compact and can be implemented in mobile polarization lidar systems. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

19 pages, 5020 KiB  
Article
A Study on a Communication-Based Algorithm to Improve Protection Coordination under High-Impedance Fault in Networked Distribution Systems
by Juan Noh, Seungjun Gham, Myungseok Yoon, Wookyu Chae, Woohyun Kim and Sungyun Choi
Sustainability 2023, 15(21), 15399; https://doi.org/10.3390/su152115399 - 28 Oct 2023
Viewed by 1306
Abstract
The rising demand for stable power supply in distribution systems has increased the importance of reliable supply. Thus, a networked distribution system (NDS) linked with individual lines is being adopted, gradually replacing the radial distribution system (RDS) currently applied to most distribution systems. [...] Read more.
The rising demand for stable power supply in distribution systems has increased the importance of reliable supply. Thus, a networked distribution system (NDS) linked with individual lines is being adopted, gradually replacing the radial distribution system (RDS) currently applied to most distribution systems. Implementing the NDS can lead to various improvements in factors such as line utilization rate, acceptance rates of distributed power, and terminal voltages, while mitigating line losses. However, compared with the RDS, the NDS can experience bidirectional fault currents owing to its interconnected lines, thereby hindering protection coordination, which must be addressed before the NDS can be implemented in real-world power systems. Due to the characteristics of NDS, the reverse fault current is relatively small. However, this phenomenon becomes more severe when the high impedance fault (HIF) occurs. In this paper, the malfunction of protective devices during the HIF is directly verified and analyzed in the NDS. As a result, when the HIF occurs, the issue of the reverse protective device malfunctioning worsens because of a reduction in fault current and a failure in direction detection. To solve this issue, this work proposes a communication-based protection algorithm. Through the comparative verification of the proposed algorithm and the conventional protection method, protection coordination can be secured in the case of an HIF without new devices. It must be highlighted that the proposed method does not affect the settings of the protective device and provides a cost-effective and efficient solution since this algorithm is added independently to the existing relay. Full article
(This article belongs to the Special Issue Smart Grid and Power System Protection)
Show Figures

Figure 1

19 pages, 6138 KiB  
Article
Comparative Numerical Analysis for the Error Estimation of the Fluid Flow over an Inclined Axisymmetric Cylinder with a Gyrotactic Microbe
by Fuad A. Awwad, Emad A. A. Ismail, Waris Khan, Taza Gul and Abdul Samad Khan
Symmetry 2023, 15(10), 1811; https://doi.org/10.3390/sym15101811 - 22 Sep 2023
Cited by 2 | Viewed by 1139
Abstract
The numerical investigation of bioconvective nanofluid (NF) flow, which involves gyrotactic microbes and heat and mass transmission analysis above an inclined extending axisymmetric cylinder, is presented in this study. The study aims to investigate the bioconvection flow of nanofluid under the influence of [...] Read more.
The numerical investigation of bioconvective nanofluid (NF) flow, which involves gyrotactic microbes and heat and mass transmission analysis above an inclined extending axisymmetric cylinder, is presented in this study. The study aims to investigate the bioconvection flow of nanofluid under the influence of heat sources/sinks. Through proper transformation, all partial differential equations are transformed into a non-linear ODE scheme. A new set of variables is presented in the directive to get the first-order convectional equations and then solved numerically using bvp4c MATLAB, embedded in the function. The proposed model is validated after calculating the error estimation and obtaining the residual error. The influence of various factors on the velocity, energy, concentration, and density of motile microorganisms is examined and studied. The analysis describes and addresses all physical measures of concentration such as Skin Friction (SF), Sherwood number, the density of motile microorganisms, and Nusselt number. To validate the present study, a comparison is conducted with previous studies, and excellent correspondence is found. In addition, the ND-Solve approach is utilized to confirm the bvp4c. The mathematical model is confirmed through error analysis. This study provides the platform for industrial applications such as cooling capacity polymers, heat exchange, and chemical production sectors. Full article
(This article belongs to the Special Issue Symmetry in Numerical Analysis and Computational Fluid Dynamics)
Show Figures

Figure 1

Back to TopTop