Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (345)

Search Parameters:
Keywords = NOx and NH3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4438 KiB  
Article
Significant Effects of Adding Mode on Low-Temperature De-NOx Performance and SO2 Resistance of a MnCeTiOx Catalyst Prepared by the Co-Precipitation Method
by Xi Yang, Hongyan Xue, Lei Wang, Jun Yu, Lupeng Han and Dongsen Mao
Catalysts 2024, 14(10), 690; https://doi.org/10.3390/catal14100690 - 4 Oct 2024
Viewed by 206
Abstract
Three MnCeTiOx catalysts with the same composition were prepared by conventional co-precipitation (MCT-C), reverse co-precipitation (MCT-R), and parallel co-precipitation (MCT-P), respectively, and their low-temperature SCR performance for de-NOx was evaluated. The textural and structural properties, surface acidity, redox capacity, and reaction [...] Read more.
Three MnCeTiOx catalysts with the same composition were prepared by conventional co-precipitation (MCT-C), reverse co-precipitation (MCT-R), and parallel co-precipitation (MCT-P), respectively, and their low-temperature SCR performance for de-NOx was evaluated. The textural and structural properties, surface acidity, redox capacity, and reaction mechanism of the catalysts were investigated by a series of characterizations including N2 adsorption and desorption, XRD, SEM, XPS, H2-TPR, NH3-TPD, NO-TPD, and in situ DRIFTs. The results revealed that the most excellent catalytic performance was achieved on MCT-R, and more than 90% NOx conversion can be obtained at 100–300 °C under a high GHSV of 80,000 mL/(gcat·H). Furthermore, MCT-R possessed optimal tolerance to H2O and SO2 poisoning. The excellent catalytic performance of MCT-R can be attributed to its larger BET specific surface area; higher contents of Mn4+, Ce3+, and adsorbed oxygen species; and more adsorption capacity for NH3 and NO. Moreover, in situ DRIFTs results indicated that the NH3-SCR reaction follows simultaneously the Langmuir–Hinshelwood and Eley–Rideal mechanisms at 100 °C. By adjusting the adding mode during the co-precipitation process, excellent low-temperature de-NOx activity of MCT-R can be obtained simply and conveniently, which is of great practical value for the preparation of a MnCeTiOx catalyst for denitrification. Full article
Show Figures

Figure 1

53 pages, 3040 KiB  
Review
Recent Progress on Low-Temperature Selective Catalytic Reduction of NOx with Ammonia
by Eun Duck Park
Molecules 2024, 29(18), 4506; https://doi.org/10.3390/molecules29184506 - 23 Sep 2024
Viewed by 768
Abstract
Selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3-SCR) has been implemented in response to the regulation of NOx emissions from stationary and mobile sources above 300 °C. However, the development of NH3-SCR catalysts active [...] Read more.
Selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3-SCR) has been implemented in response to the regulation of NOx emissions from stationary and mobile sources above 300 °C. However, the development of NH3-SCR catalysts active at low temperatures below 200 °C is still needed to improve the energy efficiency and to cope with various fuels. In this review article, recent reports on low-temperature NH3-SCR catalysts are systematically summarized. The redox property as well as the surface acidity are two main factors that affect the catalytic activity. The strong redox property is beneficial for the low-temperature NH3-SCR activity but is responsible for N2O formation. The multiple electron transfer system is more plausible for controlling redox properties. H2O and SOx, which are often found with NOx in flue gas, have a detrimental effect on NH3-SCR activity, especially at low temperatures. The competitive adsorption of H2O can be minimized by enhancing the hydrophobic property of the catalyst. Various strategies to improve the resistance to SOx poisoning are also discussed. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Figure 1

20 pages, 10872 KiB  
Article
Effect of Tourmaline Addition on the Anti-Poisoning Performance of MnCeOx@TiO2 Catalyst for Low-Temperature Selective Catalytic Reduction of NOx
by Zhenzhen Zhao, Liyin Wang, Xiangqing Lin, Gang Xue, Hui Hu, Haibin Ma, Ziyu Wang, Xiaofang Su and Yanan Gao
Molecules 2024, 29(17), 4079; https://doi.org/10.3390/molecules29174079 - 28 Aug 2024
Viewed by 644
Abstract
In view of the flue gas characteristics of cement kilns in China, the development of low-temperature denitrification catalysts with excellent anti-poisoning performance has important theoretical and practical significance. In this work, a series of MnCeOx@TiO2 and tourmaline-containing MnCeOx@TiO [...] Read more.
In view of the flue gas characteristics of cement kilns in China, the development of low-temperature denitrification catalysts with excellent anti-poisoning performance has important theoretical and practical significance. In this work, a series of MnCeOx@TiO2 and tourmaline-containing MnCeOx@TiO2-T catalysts was prepared using a chemical pre-deposition method. It was found that the MnCeOx@TiO2-T2 catalyst (containing 2% tourmaline) exhibited the best low-temperature NH3-selective catalytic reduction (NH3-SCR) performance, yielding 100% NOx conversion at 110 °C and above. When 100–300 ppm SO2 and 10 vol.% H2O were introduced to the reaction, the NOx conversion of the MnCeOx@TiO2-T2 catalyst was still higher than 90% at 170 °C, indicating good anti-poisoning performance. The addition of appropriate amounts of tourmaline can not only preferably expose the active {001} facets of TiO2 but also introduce the acidic SiO2 and Al2O3 components and increase the content of Mn4+ and Oα on the surface of the catalyst, all of which contribute to the enhancement of reaction activity of NH3-SCR and anti-poisoning performance. However, excess amounts of tourmaline led to the formation of dense surface of catalysts that suppressed the exposure of catalytic active sites, giving rise to the decrease in catalytic activity and anti-poisoning capability. Through an in situ DRIFTS study, it was found that the addition of appropriate amounts of tourmaline increased the number of Brønsted acid sites on the catalyst surface, which suppressed the adsorption of SO2 and thus inhibited the deposition of NH4HSO4 and (NH4)2HSO4 on the surface of the catalyst, thereby improving the NH3-SCR performance and anti-poisoning ability of the catalyst. Full article
Show Figures

Figure 1

13 pages, 2635 KiB  
Review
TiO2-Supported Catalysts in Low-Temperature Selective Reduction of NOx with NH3: A Review of Recent Progress
by Xue Bian, Jing Wang, Yuting Bai, Yanping Li, Wenyuan Wu and Yuming Yang
Catalysts 2024, 14(9), 558; https://doi.org/10.3390/catal14090558 - 25 Aug 2024
Viewed by 559
Abstract
Selective catalytic reduction (SCR) stands out as a pivotal method for curbing NOx emissions from flue gas. The support, crucially, for SCR efficacy, loads and interacts with the active components within the catalyst. The catalysts could be amplified by the denitration performance [...] Read more.
Selective catalytic reduction (SCR) stands out as a pivotal method for curbing NOx emissions from flue gas. The support, crucially, for SCR efficacy, loads and interacts with the active components within the catalyst. The catalysts could be amplified by the denitration performance of the catalyst by enhancements in support pore structure, acidity, and mechanical robustness. These improvements ensure efficient interaction between the support and active materials, thereby optimizing the structure and property of the catalysts. TiO2 is the most commonly used support of the NH3-SCR catalyst. The catalyst with TiO2 support has poor thermal stability and a narrow temperature range, which can be improved. This paper reviews the research progress on the effects of various aspects of TiO2 support on the NH3-SCR catalyst’s performance, focusing on the TiO2 crystal type, TiO2 crystal surface, different TiO2 structures, TiO2 support preparation methods, and the effects of TiO2-X composite support on the NH3-SCR catalyst’s performance. The reaction mechanism, denitrification performance, and anti-SO2/H2O poisoning performance and mechanism of TiO2 support with different characteristics were described. At the same time, the development trend of the NH3-SCR catalyst using TiO2 as the support is prospected. It is hoped that this work can provide optimization ideas for SCR catalyst research. Full article
Show Figures

Graphical abstract

21 pages, 6118 KiB  
Article
Study on Soot and NOx Formation Characteristics in Ammonia/Ethylene Laminar Co-Flow Diffusion Flame
by Shuanglong Li, Qianqian Liu, Feng Zhang, Jingyun Sun, Yang Wang and Mingyan Gu
Molecules 2024, 29(17), 4003; https://doi.org/10.3390/molecules29174003 - 24 Aug 2024
Viewed by 492
Abstract
The formation of soot and NOx in ammonia/ethylene flames with varying ammonia ratios was investigated through experimental and numerical analysis. The spatial distribution of the soot volume fraction and NOx concentrations along the flame central line were measured, and the mechanism of soot [...] Read more.
The formation of soot and NOx in ammonia/ethylene flames with varying ammonia ratios was investigated through experimental and numerical analysis. The spatial distribution of the soot volume fraction and NOx concentrations along the flame central line were measured, and the mechanism of soot and NOx formation during ammonia/ethylene co-combustion was analyzed using CHEMKIN 17.0. The experimental results indicated that the soot volume fraction decreases with an increase in ammonia ratio, with the soot peak concentration occurring in the upper region of the flame. The distribution of NOx is complex. In the initial part of the flame, a higher concentration of NOx is generated, and the lower the ammonia ratio, the higher the concentration of NOx. As the combustion process progresses, the concentration of NOx initially decreases and then subsequently increases rapidly, with higher ammonia ratios leading to higher concentrations of NOx. The addition of ammonia results in a decrease in CH3, C2H2, and C3H3, and an increase in CN concentration. This leads to a transformation of carbon atoms within the combustion system, reducing the available carbon for soot formation and suppressing its generation. A higher ammonia ratio increases the likelihood that NH3 will be oxidized to N2, as well as increasing the probability that any generated NO will undergo reduction to N2 through the action of the free radicals NH2 and NH. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Graphical abstract

15 pages, 1786 KiB  
Article
Elucidating Decade-Long Trends and Diurnal Patterns in Aerosol Acidity in Shanghai
by Zhixiao Lv, Xingnan Ye, Weijie Huang, Yinghui Yao and Yusen Duan
Atmosphere 2024, 15(8), 1004; https://doi.org/10.3390/atmos15081004 - 20 Aug 2024
Viewed by 450
Abstract
Aerosol acidity is a critical factor affecting atmospheric chemistry. Here, we present a study on annual, monthly, and daily variations in PM2.5 pH in Shanghai during 2010–2020. With the effective control of SO2 emissions, the NO2/SO2 ratio increased [...] Read more.
Aerosol acidity is a critical factor affecting atmospheric chemistry. Here, we present a study on annual, monthly, and daily variations in PM2.5 pH in Shanghai during 2010–2020. With the effective control of SO2 emissions, the NO2/SO2 ratio increased from 1.26 in 2010 to 5.07 in 2020 and the NO3/SO42− ratio increased from 0.68 to 1.49. Aerosol pH decreased from 3.27 in 2010 to 2.93 in 2020, regardless of great achievement in reducing industrial SO2 and NOx emissions. These findings suggest that aerosol acidity might not be significantly reduced in response to the control of SO2 and NOx emissions. The monthly variation in pH values exhibited a V-shape trend, mainly attributable to aerosol compositions and temperature. Atmospheric NH3 plays the decisive role in buffering particle acidity, whereas Ca2+ and K+ are important acidity buffers, and the distinct pH decline during 2010–2016 was associated with the reduction of Ca2+ and K+ while both temperature and SO42− were important drivers in winter. Sensitivity tests show that pH increases with the increasing relative humidity in summer while it is not sensitive to relative humidity in winter due to proportional increases in Hair+ and aerosol liquid water content (ALWC). Our results suggest that reducing NOx emissions in Shanghai will not significantly affect PM2.5 acidity in winter. Full article
Show Figures

Figure 1

17 pages, 3113 KiB  
Article
Compositional and Fabrication Cycle Optimization of Ceria-Zirconia-Supported Mo-Based Catalysts for NH3-SCR NOx Reduction
by Luca Spiridigliozzi, Viviana Monfreda, Serena Esposito, Olimpia Tammaro, Nicola Blangetti, Fabio Alessandro Deorsola and Gianfranco Dell’Agli
Inorganics 2024, 12(8), 217; https://doi.org/10.3390/inorganics12080217 - 10 Aug 2024
Viewed by 459
Abstract
The reduction of nitrogen oxides (NOx), critical pollutants from stationary to mobile sources, mainly relies on the selective catalytic reduction (NH3-SCR) method, employing ammonia to reduce NOx into nitrogen and water. However, conventional catalysts, while effective, pose both [...] Read more.
The reduction of nitrogen oxides (NOx), critical pollutants from stationary to mobile sources, mainly relies on the selective catalytic reduction (NH3-SCR) method, employing ammonia to reduce NOx into nitrogen and water. However, conventional catalysts, while effective, pose both environmental and operational challenges. This study investigates ceria-zirconia-supported molybdenum-based catalysts, exploring the effects of zirconium doping and different catalyst synthesis techniques, i.e., co-precipitation and impregnation. The catalytic performance of the differently prepared samples was significantly influenced by the molybdenum incorporation method and the zirconium content within the ceria-zirconia support. Co-precipitation at higher temperatures resulted in catalysts with better structural attributes but slightly lower catalytic activity compared to those prepared via impregnation. Optimal NOx reduction (close to 100%) was observed at a 15 mol% zirconium doping level when using the impregnation method. Full article
(This article belongs to the Special Issue Metal Catalyst Discovery, Design and Synthesis)
Show Figures

Graphical abstract

23 pages, 6442 KiB  
Article
Numerical Study on Optimization of Combustion Cycle Parameters and Exhaust Gas Emissions in Marine Dual-Fuel Engines by Adjusting Ammonia Injection Phases
by Martynas Drazdauskas and Sergejus Lebedevas
J. Mar. Sci. Eng. 2024, 12(8), 1340; https://doi.org/10.3390/jmse12081340 - 7 Aug 2024
Viewed by 912
Abstract
Decarbonizing maritime transport hinges on transitioning oil-fueled ships (98.4% of the fleet) to renewable and low-carbon fuel types. This shift is crucial for meeting the greenhouse gas (GHG) reduction targets set by the IMO and the EU, with the aim of achieving climate [...] Read more.
Decarbonizing maritime transport hinges on transitioning oil-fueled ships (98.4% of the fleet) to renewable and low-carbon fuel types. This shift is crucial for meeting the greenhouse gas (GHG) reduction targets set by the IMO and the EU, with the aim of achieving climate neutrality by 2050. Ammonia, which does not contain carbon atoms that generate CO2, is considered one of the effective solutions for decarbonization in the medium and long term. However, the concurrent increase in nitrogen oxide (NOx) emissions during the ammonia combustion cycle, subject to strict regulation by the MARPOL 73/78 convention, necessitates implementing solutions to reduce them through optimizing the combustion cycle. This publication presents a numerical study on the optimization of diesel and ammonia injection phases in a ship’s medium-speed engine, Wartsila 6L46. The study investigates the exhaust gas emissions and combustion cycle parameters through a high-pressure injection strategy. At an identified 7° CAD injection phase distance between diesel and ammonia, along with an optimal dual-fuel start of injection 10° CAD before TDC, a reduction of 47% in greenhouse gas emissions (GHG = CO2 + CH4 + N2O) was achieved compared to the diesel combustion cycle. This result aligns with the GHG reduction target set by both the IMO and the EU for 2030. Additionally, during the investigation of the thermodynamic combustion characteristics of the cycle, a comparative reduction in NOx of 4.6% was realized. This reduction is linked to the DeNOx process, where the decrease in NOx is offset by an increase in N2O. However, the optimized ammonia combustion cycle results in significant emissions of unburnt NH3, reaching 1.5 g/kWh. In summary, optimizing the combustion cycle of dual ammonia and diesel fuel is essential for achieving efficient and reliable engine performance. Balancing combustion efficiency with emission levels of greenhouse gases, unburned NH3, and NOx is crucial. For the Wartsila 6L46 marine diesel engine, the recommended injection phasing is A710/D717, with a 7° CAD between injection phases. Full article
Show Figures

Figure 1

23 pages, 12365 KiB  
Article
Optimization Analysis of Various Parameters Based on Response Surface Methodology for Enhancing NOx Catalytic Reduction Performance of Urea Selective Catalytic Reduction on Cu-ZSM-13 Catalyst
by Weiqi Li, Jie Wu, Dongwei Yao, Feng Wu, Lei Wang, Hua Lou, Haibin He and Jingyi Hu
Processes 2024, 12(7), 1519; https://doi.org/10.3390/pr12071519 - 19 Jul 2024
Viewed by 454
Abstract
While selective catalytic reduction (SCR) has long been indispensable for nitrogen oxide (NOx) removal, optimizing its performance remains a significant challenge. This study investigates the combined effects of structural and intake parameters on SCR performance, an aspect often overlooked in previous [...] Read more.
While selective catalytic reduction (SCR) has long been indispensable for nitrogen oxide (NOx) removal, optimizing its performance remains a significant challenge. This study investigates the combined effects of structural and intake parameters on SCR performance, an aspect often overlooked in previous research. This paper innovatively developed a three-dimensional SCR channel model and employed response surface methodology to conduct an in-depth analysis of multiple key factors. This multidimensional, multi-method approach enables a more comprehensive understanding of SCR system mechanics. Through target optimization, we achieved a simultaneous improvement in three critical indicators: the NOx conversion rate, pressure drop, and ammonia slip. It is worth noting that the NOx conversion rate has been optimized from 17.07% to 98.25%, the pressure drop has been increased from 3454.62 Pa to 2558.74 Pa, and the NH3 slip has been transformed from 122.26 ppm to 17.49 ppm. These results not only advance the theoretical understanding of SCR technology but also provide valuable design insights for practical applications. Our findings pave the way for the development of more efficient and environmentally friendly SCR systems, potentially revolutionizing NOx control in various industries. Full article
(This article belongs to the Special Issue Clean Combustion and Emission in Vehicle Power System, 2nd Edition)
Show Figures

Figure 1

19 pages, 4209 KiB  
Article
Post-Synthetically Treated ERI and SSZ-13 Zeolites Modified with Copper as Catalysts for NH3-SCR-DeNOx
by Alejandro Mollá Robles, Gabriele Deplano, Kinga Góra-Marek, Marek Rotko, Anna Wach, Muhammad Fernadi Lukman, Marko Bertmer, Matteo Signorile, Silvia Bordiga, Andreas Pöppl, Roger Gläser and Magdalena Jabłońska
Catalysts 2024, 14(7), 457; https://doi.org/10.3390/catal14070457 - 16 Jul 2024
Cited by 1 | Viewed by 871
Abstract
ERI and SSZ-13 were subjected to post-synthetic treatments (depending on the zeolite topology) to create micro-/mesoporous materials. The results in terms of NH3-SCR-DeNOx show that the applied treatments improved the catalytic activity of the Cu-containing ERI-based materials; however, the NO [...] Read more.
ERI and SSZ-13 were subjected to post-synthetic treatments (depending on the zeolite topology) to create micro-/mesoporous materials. The results in terms of NH3-SCR-DeNOx show that the applied treatments improved the catalytic activity of the Cu-containing ERI-based materials; however, the NO conversion did not vary for the different materials treated with NaOH or NaOH/HNO3. For the micro-/mesoporous Cu-containing SSZ-13, a lower NO conversion in NH3-SCR-DeNOx was observed. Thus, our findings challenge the current paradigm of enhanced activity of micro-/mesoporous catalysts in NH3-SCR-DeNOx. The modification of the supports results in the presence of different amounts and kinds of copper species (especially isolated Cu2+ and aggregated Cu species) in the case of ERI- and SSZ-13-based samples. The present copper species further differentiate the formation of reactive reaction intermediates. Our studies show that besides the μ-η22-peroxo dicopper(II) complexes (verified by in situ DR UV-Vis spectroscopy), copper nitrates (evidenced by in situ FT-IR spectroscopy) also act as reactive intermediates in these catalytic systems. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

15 pages, 3174 KiB  
Article
Synergistic Catalytic Effects on Nitrogen Transformation during Biomass Pyrolysis: A Focus on Proline as a Model Compound
by Shan Cheng, Kehui Yao, Hong Tian, Ting Yang and Lianghui Chen
Molecules 2024, 29(13), 3118; https://doi.org/10.3390/molecules29133118 - 30 Jun 2024
Cited by 1 | Viewed by 618
Abstract
To investigate the control mechanisms of NOx precursors and the synergistic effects of composite catalysts during proline pyrolysis, a systematic series of experiments was conducted utilizing composite catalysts with varying Fe-Ca ratios. Product distribution analysis was employed to elucidate the catalysts’ mechanisms in [...] Read more.
To investigate the control mechanisms of NOx precursors and the synergistic effects of composite catalysts during proline pyrolysis, a systematic series of experiments was conducted utilizing composite catalysts with varying Fe-Ca ratios. Product distribution analysis was employed to elucidate the catalysts’ mechanisms in reducing NOx precursor emissions. The synergistic interactions between Fe and Ca were quantitatively assessed through comparative theoretical and experimental release calculations. The results indicate that an increase in the Fe content in the catalyst led to a rise in amine concentrations from 0.9% to 2.95%, implying that Fe facilitates the generation of amine-N through ring-opening and substitution reactions. When the Fe to Ca ratio was balanced at 1:1, nitrogen predominantly participated in the formation of purines via cyclization and substitution reactions. Additionally, all composite catalysts exhibited a suppressive effect on the release of NOx precursors, attributed to their significant enhancement of solid product retention. Fe-Ca composite catalyst synergistically inhibits the release of gaseous nitrogen. Notably, the strongest synergistic effect was observed with a 1:3 Fe to Ca ratio, which reduced the release of NH3 by 38.7% and HCN by 53.6% during proline pyrolysis. This study offers valuable insights into the control of NOx precursors and the optimization of nitrogen-rich biomass pyrolysis processes. Full article
Show Figures

Graphical abstract

35 pages, 2809 KiB  
Review
Advancements and Challenges of Ammonia as a Sustainable Fuel for the Maritime Industry
by Antonio Chavando, Valter Silva, João Cardoso and Daniela Eusebio
Energies 2024, 17(13), 3183; https://doi.org/10.3390/en17133183 - 28 Jun 2024
Viewed by 1981
Abstract
The maritime industry needs sustainable, low-emission fuels to reduce the environmental impact. Ammonia is one of the most promising alternative fuels because it can be produced from renewable energy, such as wind and solar. Furthermore, ammonia combustion does not emit carbon. This review [...] Read more.
The maritime industry needs sustainable, low-emission fuels to reduce the environmental impact. Ammonia is one of the most promising alternative fuels because it can be produced from renewable energy, such as wind and solar. Furthermore, ammonia combustion does not emit carbon. This review article covers the advantages and disadvantages of using ammonia as a sustainable marine fuel. We start by discussing the regulations and environmental concerns of the shipping sector, which is responsible for around 2% to 3% of global energy-related CO2 emissions. These emissions may increase as the maritime industry grows at a compound annual growth rate of 4.33%. Next, we analyze the use of ammonia as a fuel in detail, which presents several challenges. These challenges include the high price of ammonia compared to other fossil fuels, the low reactivity and high toxicity of ammonia, NOx, and N2O emissions resulting from incomplete combustion, an inefficient process, and NH3 slipping. However, we emphasize how to overcome these challenges. We discuss techniques to reduce NOx and N2O emissions, co-combustion to improve reactivity, waste heat recovery strategies, the regulatory framework, and safety conditions. Finally, we address the market trends and challenges of using ammonia as a sustainable marine fuel. Full article
(This article belongs to the Special Issue Renewable Fuels for Internal Combustion Engines: 2nd Edition)
Show Figures

Figure 1

14 pages, 3659 KiB  
Article
Study on Novel SCR Catalysts for Denitration of High Concentrated Nitrogen Oxides and Their Reaction Mechanisms
by Bo Yu, Xingyu Liu, Shufeng Wu, Heng Yang, Shuran Zhou, Li Yang and Fang Liu
Catalysts 2024, 14(7), 406; https://doi.org/10.3390/catal14070406 - 27 Jun 2024
Viewed by 601
Abstract
With the rapid development of industrialization, the emission of nitrogen oxides (NOx) has become a global environmental issue. Uranium is the primary fuel used in nuclear power generation. However, the production of uranium, typically based on the uranyl nitrate method, usually [...] Read more.
With the rapid development of industrialization, the emission of nitrogen oxides (NOx) has become a global environmental issue. Uranium is the primary fuel used in nuclear power generation. However, the production of uranium, typically based on the uranyl nitrate method, usually generates large amounts of nitrogen oxides, particularly NO2, with concentrations in the exhaust gas exceeding 10,000 ppm. High concentrations of nitrogen dioxide are also produced during silver electrolysis processing and the treatment of waste electrolyte solutions. Traditional V-W/TiO2 NH3-SCR catalysts typically exhibit high catalytic activity at temperatures ranging from 300 to 400 °C, under conditions of low NOx concentrations and high gas hourly space velocity. However, their performance is not satisfying when reducing high concentrations of NO2. This study aims to optimize the traditional V-W/TiO2 catalysts to enhance their catalytic activity under conditions of high NO2 concentrations (10,000 ppm) and a wide temperature range (200–400 °C). On the basis of 3 wt% Mo/TiO2, various loadings of V2O5 were selected, and their catalytic activities were tested. Subsequently, the optimal ratios of active component vanadium and additive molybdenum were explored. Simultaneously, doping with WO3 for modification was selected in the V-Mo/TiO2 catalyst, followed by activity testing under the same conditions. The results show that: the NOx conversion rates of all five catalysts increase with temperature at range of 200–400 °C. Excessive loading of MoO3 decreased the catalytic performance, with 5 wt% being the optimal loading. The addition of WO3 significantly enhanced the low-temperature activity of the catalysts. When the loadings of WO3 and MoO3 were both 3 wt%, the catalyst exhibited the best denitrification performance, achieving a NOx conversion rate of 98.8% at 250 °C. This catalyst demonstrates excellent catalytic activity in reducing very high concentration (10,000 ppm) NO2, at a wider temperature range, expanding the temperature range by 50% compared to conventional SCR catalysts. Characterization techniques including BET, XRD, XPS, H2-TPR, and NH3-TPD were employed to further study the evolution of the catalyst, and the promotional mechanisms are explored. The results revealed that the proportion of chemisorbed oxygen (Oα) increased in the WO3-modified catalyst, exhibiting lower V reduction temperatures, which are favorable for low-temperature denitrification activity. NH3-TPD experiments showed that compared to MoOx species, surface WOx species could provide more acidic sites, resulting in stronger surface acidity of the catalyst. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Graphical abstract

39 pages, 14819 KiB  
Review
Application of NH3 Fuel in Power Equipment and Its Impact on NOx Emissions
by Jinyi Hu, Yongbao Liu, Xing He, Jianfeng Zhao and Shaojun Xia
Energies 2024, 17(12), 3046; https://doi.org/10.3390/en17123046 - 20 Jun 2024
Viewed by 683
Abstract
Due to high greenhouse gas emissions, countries worldwide are stepping up their emission reduction efforts, and the global demand for new, carbon-free fuels is growing. Ammonia (NH3) fuels are popular due to their high production volume, high energy efficiency, ease of [...] Read more.
Due to high greenhouse gas emissions, countries worldwide are stepping up their emission reduction efforts, and the global demand for new, carbon-free fuels is growing. Ammonia (NH3) fuels are popular due to their high production volume, high energy efficiency, ease of storage and transportation, and increased application in power equipment. However, their physical characteristics (e.g., unstable combustion, slow flame speed, and difficult ignition) limit their use in power equipment. Based on the structural properties of the power equipment, NH3 fuel application and emissions characteristics were analyzed in detail. Combustion of NH3 fuels and reduction measures for NOx emissions (spark plug ignition, compression ignition, and gas turbines) were analyzed from various aspects of operating conditions (e.g., mixed fuel, fuel-to-exhaust ratio, and equivalence ratio), structure and strategy (e.g., number of spark plugs, compression ratio (CR), fuel injection, and ignition mode), and auxiliary combustion techniques (e.g., preheating, humidification, exhaust gas recirculation, and secondary air supply). The performance of various NH3 fuel cell (FC) types was analyzed, with a focus on the maximum power achievable for different electrolyte systems. Additionally, the application and NOx emissions of indirect NH3 FCs were evaluated under flame and catalytic combustion conditions. The system efficiency of providing heat sources by burning pure NH3, anode tail gas, and NH3 decomposition gas was also compared. Based on a comprehensive literature review, the key factors influencing the performance and emissions of NH3-powered equipment were identified. The challenges and limitations of NH3-powered equipment were summarized, and potential strategies for improving efficiency and reducing emissions were proposed. These findings provide valuable insights for the future development and application of NH3 FCs. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

18 pages, 8308 KiB  
Article
Mechanisms for deNOx and deN2O Processes on FAU Zeolite with a Bimetallic Cu-Fe Dimer in the Presence of a Hydroxyl Group—DFT Theoretical Calculations
by Izabela Kurzydym and Izabela Czekaj
Molecules 2024, 29(10), 2329; https://doi.org/10.3390/molecules29102329 - 15 May 2024
Cited by 1 | Viewed by 647
Abstract
In this paper, a detailed mechanism is discussed for two processes: deNOx and deN2O. An FAU catalyst was used for the reaction with Cu-Fe bimetallic adsorbates represented by a dimer with bridged oxygen. Partial hydration of the metal centres in the [...] Read more.
In this paper, a detailed mechanism is discussed for two processes: deNOx and deN2O. An FAU catalyst was used for the reaction with Cu-Fe bimetallic adsorbates represented by a dimer with bridged oxygen. Partial hydration of the metal centres in the dimer was considered. Ab initio calculations based on the density functional theory were used. The electron parameters of the structures obtained were also analysed. Visualisation of the orbitals of selected structures and their interpretations are presented. The presented research allowed a closer look at the mechanisms of processes that are very common in the automotive and chemical industries. Based on theoretical modelling, it was possible to propose the most efficient catalyst that could find potential application in industry–this is the FAU catalyst with a Cu-O-Fe bimetallic dimer with a hydrated copper centre. The essential result of our research is the improvement in the energetics of the reaction mechanism by the presence of an OH group, which will influence the way NO and NH3 molecules react with each other in the deNOx process depending on the industrial conditions of the process. Our theoretical results suggest also how to proceed with the dosage of NO and N2O during the industrial process to increase the desired reaction effect. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Graphical abstract

Back to TopTop