Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (320)

Search Parameters:
Keywords = PLA-X

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3829 KiB  
Article
Development and Optimization of a Bromothymol Blue-Based PLA2 Assay Involving POPC-Based Self-Assemblies
by Shibbir Ahmed Khan and Marc A. Ilies
Int. J. Mol. Sci. 2024, 25(17), 9517; https://doi.org/10.3390/ijms25179517 - 1 Sep 2024
Viewed by 279
Abstract
Phospholipase A2 (PLA2) is a superfamily of phospholipase enzymes that dock at the water/oil interface of phospholipid assemblies, hydrolyzing the ester bond at the sn-2 position. The enzymatic activity of these enzymes differs based on the nature of the substrate, its supramolecular assemblies [...] Read more.
Phospholipase A2 (PLA2) is a superfamily of phospholipase enzymes that dock at the water/oil interface of phospholipid assemblies, hydrolyzing the ester bond at the sn-2 position. The enzymatic activity of these enzymes differs based on the nature of the substrate, its supramolecular assemblies (micelle, liposomes), and their composition, reflecting the interfacial nature of the PLA2s and requiring assays able to directly quantify this interaction of the enzyme(s) with these supramolecular assemblies. We developed and optimized a simple, universal assay method employing the pH-sensitive indicator dye bromothymol blue (BTB), in which different POPC (3-palmitoyl-2-oleoyl-sn-glycero-1-phosphocholine) self-assemblies (liposomes or mixed micelles with Triton X-100 at different molar ratios) were used to assess the enzymatic activity. We used this assay to perform a comparative analysis of PLA2 kinetics on these supramolecular assemblies and to determine the kinetic parameters of PLA2 isozymes IB and IIA for each supramolecular POPC assembly. This assay is suitable for assessing the inhibition of PLA2s with great accuracy using UV-VIS spectrophotometry, being thus amenable for screening of PLA2 enzymes and their substrates and inhibitors in conditions very similar to physiologic ones. Full article
Show Figures

Figure 1

14 pages, 4458 KiB  
Article
Mechanical Properties and Crystallinity of Specific PLA/Cellulose Composites by Surface Modification of Nanofibrillated Cellulose
by Hongzhe Chu, Zeyan Chen, Yongli Chen, Deling Wei, Yang Liu and Hui Zhao
Polymers 2024, 16(17), 2474; https://doi.org/10.3390/polym16172474 - 30 Aug 2024
Viewed by 324
Abstract
Polylactic acid (PLA) has inherent drawbacks, such as its amorphous structure, which affect its mechanical and barrier properties. The use of nanofibrillated cellulose (NFC) mixed with PLA for the production of composites has been chosen as a solution to the above problems. A [...] Read more.
Polylactic acid (PLA) has inherent drawbacks, such as its amorphous structure, which affect its mechanical and barrier properties. The use of nanofibrillated cellulose (NFC) mixed with PLA for the production of composites has been chosen as a solution to the above problems. A PLA/NFC composite was produced by solution casting. Before use, the cellulose was modified using a silane coupling agent. The composite films were investigated via X-ray diffraction, as well as by mechanical, physical, thermal analyses and by differential scanning calorimeter. The crystallinity was four times that of pure PLA and the water vapor transmission rate decreased by 76.9% with the incorporation of 10 wt% of NFC. The tensile strength of PLA/NFC blend films increased by 98.8% with the incorporation of 5 wt% of NFC. The study demonstrates that the addition of NFC improved the properties of PLA. This provides a solid foundation for the enhancement of the performance of PLA products. Full article
Show Figures

Figure 1

19 pages, 5359 KiB  
Article
Cellulose Nanofibrils Dewatered with Poly(Lactic Acid) for Improved Bio-Polymer Nanocomposite Processing
by Alexander Collins and Mehdi Tajvidi
Nanomaterials 2024, 14(17), 1419; https://doi.org/10.3390/nano14171419 - 30 Aug 2024
Viewed by 527
Abstract
Cellulose nanofibrils (CNFs) have theoretically ideal properties for bio-based composite applications; however, the incorporation of these materials into polymers is made challenging by the strong binding of water to CNFs and the irreversible agglomeration of CNFs during drying. Previous methods used “contact dewatering”, [...] Read more.
Cellulose nanofibrils (CNFs) have theoretically ideal properties for bio-based composite applications; however, the incorporation of these materials into polymers is made challenging by the strong binding of water to CNFs and the irreversible agglomeration of CNFs during drying. Previous methods used “contact dewatering”, wherein the addition of wood flour (WF) to CNFs facilitated the mechanical removal of water from the system via cold pressing, which showed potential in producing dried CNF fibrils attached to wood fibers for biocomposite applications. In this work, the viability of contact dewatering with poly(lactic) acid (PLA) powder for PLA/CNF composites was evaluated. The energy efficiency of dewatering, preservation of nanoscale CNF morphology, and mechanical properties were examined by mixing wet CNFs with pulverized PLA at various loading levels, pressing water out of the system, and compression molding and shear mixing composites for testing. The most impressive results from this dewatering method were the preservation of micron-to-nanoscale fibers with high aspect ratios in PLA-CNF composites; increased strength and modulus of 1.7% and 4.2%, respectively, compared to neat PLA; equivalent or better properties than spray-dried nanocellulose at similar loading levels; and an 11-194x reduction in drying energy compared to spray-drying CNFs. Full article
Show Figures

Figure 1

10 pages, 2215 KiB  
Article
Assessment of an Artificial Intelligence Tool for Estimating Left Ventricular Ejection Fraction in Echocardiograms from Apical and Parasternal Long-Axis Views
by Roberto Vega, Cherise Kwok, Abhilash Rakkunedeth Hareendranathan, Arun Nagdev and Jacob L. Jaremko
Diagnostics 2024, 14(16), 1719; https://doi.org/10.3390/diagnostics14161719 - 8 Aug 2024
Viewed by 628
Abstract
This work aims to evaluate the performance of a new artificial intelligence tool (ExoAI) to compute the left ventricular ejection fraction (LVEF) in echocardiograms of the apical and parasternal long axis (PLAX) views. We retrospectively gathered echocardiograms from 441 individual patients (70% male, [...] Read more.
This work aims to evaluate the performance of a new artificial intelligence tool (ExoAI) to compute the left ventricular ejection fraction (LVEF) in echocardiograms of the apical and parasternal long axis (PLAX) views. We retrospectively gathered echocardiograms from 441 individual patients (70% male, age: 67.3 ± 15.3, weight: 87.7 ± 25.4, BMI: 29.5 ± 7.4) and computed the ejection fraction in each echocardiogram using the ExoAI algorithm. We compared its performance against the ejection fraction from the clinical report. ExoAI achieved a root mean squared error of 7.58% in A2C, 7.45% in A4C, and 7.29% in PLAX, and correlations of 0.79, 0.75, and 0.89, respectively. As for the detection of low EF values (EF < 50%), ExoAI achieved an accuracy of 83% in A2C, 80% in A4C, and 91% in PLAX. Our results suggest that ExoAI effectively estimates the LVEF and it is an effective tool for estimating abnormal ejection fraction values (EF < 50%). Importantly, the PLAX view allows for the estimation of the ejection fraction when it is not feasible to acquire apical views (e.g., in ICU settings where it is not possible to move the patient to obtain an apical scan). Full article
(This article belongs to the Special Issue The Role of AI in Ultrasound)
Show Figures

Figure 1

22 pages, 3434 KiB  
Article
Antinociceptive and Anti-Inflammatory Activities of Acetonic Extract from Bougainvillea x buttiana (var. Rose)
by Gabriela Castañeda-Corral, Mayra Cedillo-Cortezano, Magdalena Aviles-Flores, Misael López-Castillo, Juan José Acevedo-Fernández and Vera L. Petricevich
Pharmaceuticals 2024, 17(8), 1037; https://doi.org/10.3390/ph17081037 - 6 Aug 2024
Viewed by 635
Abstract
Background:Bougainvillea x buttiana is an ornamental plant with antioxidant, anti-inflammatory, and cytotoxic activities, which has been traditionally used to treat respiratory diseases. This study aimed to investigate whether the acetonic extract of Bougainvillea x buttiana var. Rose (BxbRAE-100%) has analgesic and anti-inflammatory [...] Read more.
Background:Bougainvillea x buttiana is an ornamental plant with antioxidant, anti-inflammatory, and cytotoxic activities, which has been traditionally used to treat respiratory diseases. This study aimed to investigate whether the acetonic extract of Bougainvillea x buttiana var. Rose (BxbRAE-100%) has analgesic and anti-inflammatory properties and its potential action mechanisms. Methods: Analgesic and anti-inflammatory activities were evaluated using three murine pain models and two acute inflammation models. In vitro, the ability of the extract to inhibit proteolytic activity and the activities of the enzymes phospholipase A2 (PLA2) and cyclooxygenase (COX) were evaluated. In silico analysis was performed to predict the physicochemical and Absorption, distribution, metabolism, and excretion (ADME) profiles of the compounds previously identified in BxbRAE-100%. Results: In vivo BxbRAE-100% decreased the nociceptive behaviors in the writhing model, the tail immersion, and the formalin test, suggesting that the extract has the potential to relieve pain at peripheral and central levels. Additionally, topical or oral BxbRAE-100% treatment reduced dose-dependent 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation and carrageenan-induced paw edema, respectively. In vitro, BxbRAE-100% significantly inhibited proteolytic activity and PLA2, COX-1 and COX-2 activities. In silico, the compounds previously identified in BxbRAE-100% met Lipinski’s rule of five and showed adequate ADME properties. Conclusions: These results support the use of B. x buttiana in Traditional Mexican Medicine and highlight its potential for the development of new treatments for pain and inflammation. Full article
(This article belongs to the Special Issue Bioactive Compounds Derived from Plants and Their Medicinal Potential)
Show Figures

Graphical abstract

20 pages, 8416 KiB  
Article
In Vitro Biocompatibility Assessment of Bioengineered PLA-Hydrogel Core–Shell Scaffolds with Mesenchymal Stromal Cells for Bone Regeneration
by Federica Re, Luciana Sartore, Chiara Pasini, Matteo Ferroni, Elisa Borsani, Stefano Pandini, Andrea Bianchetti, Camillo Almici, Lorena Giugno, Roberto Bresciani, Silvia Mutti, Federica Trenta, Simona Bernardi, Mirko Farina and Domenico Russo
J. Funct. Biomater. 2024, 15(8), 217; https://doi.org/10.3390/jfb15080217 - 31 Jul 2024
Viewed by 1233
Abstract
Human mesenchymal stromal cells (hMSCs), whether used alone or together with three-dimensional scaffolds, are the best-studied postnatal stem cells in regenerative medicine. In this study, innovative composite scaffolds consisting of a core–shell architecture were seeded with bone-marrow-derived hMSCs (BM-hMSCs) and tested for their [...] Read more.
Human mesenchymal stromal cells (hMSCs), whether used alone or together with three-dimensional scaffolds, are the best-studied postnatal stem cells in regenerative medicine. In this study, innovative composite scaffolds consisting of a core–shell architecture were seeded with bone-marrow-derived hMSCs (BM-hMSCs) and tested for their biocompatibility and remarkable capacity to promote and support bone regeneration and mineralization. The scaffolds were prepared by grafting three different amounts of gelatin–chitosan (CH) hydrogel into a 3D-printed polylactic acid (PLA) core (PLA-CH), and the mechanical and degradation properties were analyzed. The BM-hMSCs were cultured in the scaffolds with the presence of growth medium (GM) or osteogenic medium (OM) with differentiation stimuli in combination with fetal bovine serum (FBS) or human platelet lysate (hPL). The primary objective was to determine the viability, proliferation, morphology, and spreading capacity of BM-hMSCs within the scaffolds, thereby confirming their biocompatibility. Secondly, the BM-hMSCs were shown to differentiate into osteoblasts and to facilitate scaffold mineralization. This was evinced by a positive Von Kossa result, the modulation of differentiation markers (osteocalcin and osteopontin), an expression of a marker of extracellular matrix remodeling (bone morphogenetic protein-2), and collagen I. The results of the energy-dispersive X-ray analysis (EDS) clearly demonstrate the presence of calcium and phosphorus in the samples that were incubated in OM, in the presence of FBS and hPL, but not in GM. The chemical distribution maps of calcium and phosphorus indicate that these elements are co-localized in the same areas of the sections, demonstrating the formation of hydroxyapatite. In conclusion, our findings show that the combination of BM-hMSCs and PLA-CH, regardless of the amount of hydrogel content, in the presence of differentiation stimuli, can provide a construct with enhanced osteogenicity for clinically relevant bone regeneration. Full article
(This article belongs to the Special Issue Feature Papers in Bone Biomaterials)
Show Figures

Figure 1

16 pages, 6182 KiB  
Article
Development of PLA–Waste Paper Biocomposites with High Cellulose Content
by Concepción Delgado-Orti, Francisco J. Navas-Martos, Jose A. Rodríguez-Liébana, M. Dolores La Rubia and Sofía Jurado-Contreras
Polymers 2024, 16(14), 2000; https://doi.org/10.3390/polym16142000 - 12 Jul 2024
Cited by 1 | Viewed by 632
Abstract
In this study, the integration of paper industry waste with high cellulose content into biocomposites of polylactic acid (PLA), a widely used biobased polymer material, was investigated. The PLA/waste biocomposite samples (0–25 wt.%) were manufactured using the extrusion and injection moulding techniques. The [...] Read more.
In this study, the integration of paper industry waste with high cellulose content into biocomposites of polylactic acid (PLA), a widely used biobased polymer material, was investigated. The PLA/waste biocomposite samples (0–25 wt.%) were manufactured using the extrusion and injection moulding techniques. The mechanical test results showed improvements in terms of tensile properties and a decrease in impact strength as the percentage of residue increased. The melting temperature decreased, and the crystallinity increased in all biocomposites according to the Differential Scanning Calorimetry (DSC) analysis. Water absorption increased proportionally with the percentage of residue, attributed to the higher cellulose content in the biocomposites, determined by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques. The scanning electron microscopy (SEM) fracture analysis demonstrated effective reinforcement–matrix cohesion, supporting the previously observed behaviour of the analysed materials. This work highlights the potential of using waste from the paper industry as reinforcement in PLA matrices, opening new perspectives for sustainable applications in the framework of the manufacture of composite materials. Full article
(This article belongs to the Special Issue Natural Polymer Materials: Cellulose, Lignin and Chitosan)
Show Figures

Figure 1

21 pages, 7872 KiB  
Article
Thermomechanical Material Characterization of Polyethylene Terephthalate Glycol with 30% Carbon Fiber for Large-Format Additive Manufacturing of Polymer Structures
by Katie A. Martin, Guillermo A. Riveros, Travis L. Thornell, Zackery B. McClelland, Elton L. Freeman and James T. Stinson
Polymers 2024, 16(13), 1913; https://doi.org/10.3390/polym16131913 - 4 Jul 2024
Cited by 1 | Viewed by 1061
Abstract
Large-format additive manufacturing (LFAM) is used to print large-scale polymer structures. Understanding the thermal and mechanical properties of polymers suitable for large-scale extrusion is needed for design and production capabilities. An in-house-built LFAM printer was used to print polyethylene terephthalate glycol with 30% [...] Read more.
Large-format additive manufacturing (LFAM) is used to print large-scale polymer structures. Understanding the thermal and mechanical properties of polymers suitable for large-scale extrusion is needed for design and production capabilities. An in-house-built LFAM printer was used to print polyethylene terephthalate glycol with 30% carbon fiber (PETG CF30%) samples for thermomechanical characterization. Thermogravimetric analysis (TGA) shows that the samples were 30% carbon fiber by weight. X-ray microscopy (XRM) and porosity studies find 25% voids/volume for undried material and 1.63% voids/volume for dry material. Differential scanning calorimetry (DSC) shows a glass transition temperature (Tg) of 66 °C, while dynamic mechanical analysis (DMA) found Tg as 82 °C. The rheology indicated that PETG CF30% is a good printing material at 220–250 °C. Bending experiments show an average of 48.5 MPa for flexure strength, while tensile experiments found an average tensile strength of 25.0 MPa at room temperature. Comparison with 3D-printed PLA and PETG from the literature demonstrated that LFAM-printed PETG CF30% had a comparative high Young’s modulus and had similar tensile strength. For design purposes, prints from LFAM should consider both material choice and print parameters, especially when considering large layer heights. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

17 pages, 5910 KiB  
Article
Mechanical Properties of Additively Manufactured Polymeric Materials—PLA and PETG—For Biomechanical Applications
by Rui F. Martins, Ricardo Branco, Miguel Martins, Wojciech Macek, Zbigniew Marciniak, Rui Silva, Daniela Trindade, Carla Moura, Margarida Franco and Cândida Malça
Polymers 2024, 16(13), 1868; https://doi.org/10.3390/polym16131868 - 29 Jun 2024
Viewed by 1049
Abstract
The study presented herein concerns the mechanical properties of two common polymers for potential biomedical applications, PLA and PETG, processed through fused filament fabrication (FFF)—Material Extrusion (ME). For the uniaxial tension tests carried out, two printing orientations—XY (Horizontal, H) and YZ (Vertical, V)—were [...] Read more.
The study presented herein concerns the mechanical properties of two common polymers for potential biomedical applications, PLA and PETG, processed through fused filament fabrication (FFF)—Material Extrusion (ME). For the uniaxial tension tests carried out, two printing orientations—XY (Horizontal, H) and YZ (Vertical, V)—were considered according to the general principles for part positioning, coordinates, and orientation typically used in additive manufacturing (AM). In addition, six specimens were tested for each printing orientation and material, providing insights into mechanical properties such as Tensile Strength, Young’s Modulus, and Ultimate Strain, suggesting the materials’ potential for biomedical applications. The experimental results were then compared with correspondent mechanical properties obtained from the literature for other polymers like ASA, PC, PP, ULTEM 9085, Copolyester, and Nylon. Thereafter, fatigue resistance curves (S-N curves) for PLA and PETG, printed along 45°, were determined at room temperature for a load ratio, R, of 0.2. Scanning electron microscope observations revealed fibre arrangements, compression/adhesion between layers, and fracture zones, shedding light on the failure mechanisms involved in the fatigue crack propagation of such materials and giving design reference values for future applications. In addition, fractographic analyses of the fatigue fracture surfaces were carried out, as well as X-ray Computed Tomography (XCT) and Thermogravimetric (TGA)/Differential Scanning Calorimetric (DSC) tests. Full article
(This article belongs to the Special Issue Medical Application of Polymer-Based Composites IV)
Show Figures

Figure 1

25 pages, 3938 KiB  
Article
Shelf Life of Minced Pork in Vacuum-Adsorbed Carvacrol@Natural Zeolite Nanohybrids and Poly-Lactic Acid/Triethyl Citrate/Carvacrol@Natural Zeolite Self-Healable Active Packaging Films
by Vassilios K. Karabagias, Aris E. Giannakas, Nikolaos D. Andritsos, Areti A. Leontiou, Dimitrios Moschovas, Andreas Karydis-Messinis, Apostolos Avgeropoulos, Nikolaos E. Zafeiropoulos, Charalampos Proestos and Constantinos E. Salmas
Antioxidants 2024, 13(7), 776; https://doi.org/10.3390/antiox13070776 - 27 Jun 2024
Viewed by 873
Abstract
Enhancing food preservation and safety using environmentally friendly techniques is urgently needed. The aim of this study was to develop food packaging films using biodegradable poly-L-lactic acid (PLA) as biopolymer and carvacrol (CV) essential oil as an antioxidant/antibacterial agent for the replacement of [...] Read more.
Enhancing food preservation and safety using environmentally friendly techniques is urgently needed. The aim of this study was to develop food packaging films using biodegradable poly-L-lactic acid (PLA) as biopolymer and carvacrol (CV) essential oil as an antioxidant/antibacterial agent for the replacement of chemical additives. CV was adsorbed onto natural zeolite (NZ) via a new vacuum adsorption method. The novel nanohybrid CV@NZ with a high CV content contained 61.7%wt. CV. Pure NZ and the CV@NZ nanohybrid were successfully dispersed in a PLA/triethyl citrate (TEC) matrix via a melt extrusion process to obtain PLA/TEC/xCV@NZ and PLA/TEC/xNZ nanocomposite films with 5, 10, and 15%wt CV@NZ or pure NZ content. The optimum resulting film PLA/TEC/10CV@NZ contained 10%wt. CV@NZ and exhibited self-healable properties, 22% higher tensile strength, 40% higher elongation at break, 45% higher water barrier, and 40% higher oxygen barrier than the pure PLA/TEC matrix. This film also had a high CV release content, high CV control release rate as well as 2.15 mg/L half maximal effective concentration (EC50) and 0.27 mm and 0.16 mm inhibition zones against Staphylococcus aureus and Salmonella enterica ssp. enterica serovar Typhimurium, respectively. This film not only succeeded in extending the shelf life of fresh minced pork, as shown by the total viable count measurements in four days but also prevented the lipid oxidation of fresh minced pork and provided higher nutritional values of the minced meat, as revealed by the heme iron content determination. It also had much better and acceptable sensory characteristics than the commercial packaging paper. Full article
Show Figures

Figure 1

17 pages, 10296 KiB  
Article
Low Magnetic Field Induced Extrinsic Strains in Multifunctional Particulate Composites: An Interrupted Mechanical Strengthening in 3D-Printed Nanocomposites
by Andiol Mucolli, Alden Midmer, Marinos Manolesos, Salem Aldosari, Cristian Lira and Hamed Yazdani Nezhad
J. Compos. Sci. 2024, 8(6), 231; https://doi.org/10.3390/jcs8060231 - 20 Jun 2024
Viewed by 1238
Abstract
The current paper reports on the quantification of the effect of magnetic fields on the mechanical performance of ferromagnetic nanocomposites in situ during basic standard tensile testing. The research investigates altering the basic mechanical properties (modulus and strength) via the application of a [...] Read more.
The current paper reports on the quantification of the effect of magnetic fields on the mechanical performance of ferromagnetic nanocomposites in situ during basic standard tensile testing. The research investigates altering the basic mechanical properties (modulus and strength) via the application of a contact-less magnetic field as a primary attempt for a future composites strengthening mechanism. The nanocomposite specimens were fabricated using filament-based 3D printing and were comprised of ferromagnetic nanoparticle-embedded thermoplastic polymers. The nanoparticles were iron particles dispersed at 21 wt.% (10.2 Vol.%) inside a polylactic acid (PLA) polymer, characterised utilising optical microscopy and 3D X-ray computed tomography. The magnetic field was stationary and produced using permanent neodymium round-shaped magnets available at two field strengths below 1 Tesla. The 3D printing was a MakerBot Replicator machine operating based upon a fused deposition method, which utilised 1.75 mm-diameter filaments made of iron particle-based PLA composites. The magnetic field-equipped tensile tests were accompanied by a real-time digital image correlation technique for localized strain measurements across the specimens at a 10-micron pixel resolution. It was observed that the lateral magnetic field induces a slight Poisson effect on the development of extrinsic strain across the length of the tensile specimens. However, the effect reasonably interferes with the evolution of strain fields via the introduction of localised compressive strains attributed to accumulated magnetic polarisation at the magnetic particles on an extrinsic scale. The theory overestimated the moduli by a factor of approximately 3.1. To enhance the accuracy of its solutions for 3D-printed specimens, it is necessary to incorporate pore considerations into the theoretical derivations. Additionally, a modest 10% increase in ultimate tensile strength was observed during tensile loading. This finding suggests that field-assisted strengthening can be effective for as-received 3D-printed magnetic composites in their solidified state, provided that the material and field are optimally designed and implemented. This approach could propose a viable method for remote field tailoring to strengthen the material by mitigating defects induced during the 3D printing process. Full article
(This article belongs to the Special Issue 3D Printing Composites)
Show Figures

Figure 1

22 pages, 94356 KiB  
Article
Propolis Reduces Inflammation and Dyslipidemia Caused by High-Cholesterol Diet in Mice by Lowering ADAM10/17 Activities
by Ertugrul Yigit, Orhan Deger, Katip Korkmaz, Merve Huner Yigit, Huseyin Avni Uydu, Tolga Mercantepe and Selim Demir
Nutrients 2024, 16(12), 1861; https://doi.org/10.3390/nu16121861 - 13 Jun 2024
Cited by 1 | Viewed by 939
Abstract
Atherosclerosis is one of the most important causes of cardiovascular diseases. A disintegrin and metalloprotease (ADAM)10 and ADAM17 have been identified as important regulators of inflammation in recent years. Our study investigated the effect of inhibiting these enzymes with selective inhibitor and propolis [...] Read more.
Atherosclerosis is one of the most important causes of cardiovascular diseases. A disintegrin and metalloprotease (ADAM)10 and ADAM17 have been identified as important regulators of inflammation in recent years. Our study investigated the effect of inhibiting these enzymes with selective inhibitor and propolis on atherosclerosis. In our study, C57BL/6J mice (n = 16) were used in the control and sham groups. In contrast, ApoE-/- mice (n = 48) were used in the case, water extract of propolis (WEP), ethanolic extract of propolis (EEP), GW280264X (GW-synthetic inhibitor), and solvent (DMSO and ethanol) groups. The control group was fed a control diet, and all other groups were fed a high-cholesterol diet for 16 weeks. WEP (400 mg/kg/day), EEP (200 mg/kg/day), and GW (100 µg/kg/day) were administered intraperitoneally for the last four weeks. Animals were sacrificed, and blood, liver, aortic arch, and aortic root tissues were collected. In serum, total cholesterol (TC), triglycerides (TGs), and glucose (Glu) were measured by enzymatic colorimetric method, while interleukin-1β (IL-1β), paraoxonase-1 (PON-1), and lipoprotein-associated phospholipase-A2 (Lp-PLA2) were measured by ELISA. Tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), myeloperoxidase (MPO), interleukin-6 (IL-6), interleukin-10 (IL-10), and interleukin-12 (IL-12) levels were measured in aortic arch by ELISA and ADAM10/17 activities were measured fluorometrically. In addition, aortic root and liver tissues were examined histopathologically and immunohistochemically (ADAM10 and sortilin primary antibody). In the WEP, EEP, and GW groups compared to the case group, TC, TG, TNF-α, IL-1β, IL-6, IL-12, PLA2, MPO, ADAM10/17 activities, plaque burden, lipid accumulation, ADAM10, and sortilin levels decreased, while IL-10 and PON-1 levels increased (p < 0.003). Our study results show that propolis can effectively reduce atherosclerosis-related inflammation and dyslipidemia through ADAM10/17 inhibition. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Graphical abstract

12 pages, 3346 KiB  
Article
Production of Composite Zinc Oxide–Polylactic Acid Radiopaque Filaments for Fused Deposition Modeling: First Stage of a Feasibility Study
by Francesca Cherubini, Nicole Riberti, Anna Maria Schiavone, Fabrizio Davì, Michele Furlani, Alessandra Giuliani, Gianni Barucca, Maria Cristina Cassani, Daniele Rinaldi and Luigi Montalto
Materials 2024, 17(12), 2892; https://doi.org/10.3390/ma17122892 - 13 Jun 2024
Viewed by 770
Abstract
Three-dimensional printing technologies are becoming increasingly attractive for their versatility; the geometrical customizability and manageability of the final product properties are the key points. This work aims to assess the feasibility of producing radiopaque filaments for fused deposition modeling (FDM), a 3D printing [...] Read more.
Three-dimensional printing technologies are becoming increasingly attractive for their versatility; the geometrical customizability and manageability of the final product properties are the key points. This work aims to assess the feasibility of producing radiopaque filaments for fused deposition modeling (FDM), a 3D printing technology, starting with zinc oxide (ZnO) and polylactic acid (PLA) as the raw materials. Indeed, ZnO and PLA are promising materials due to their non-toxic and biocompatible nature. Pellets of PLA and ZnO in the form of nanoparticles were mixed together using ethanol; this homogenous mixture was processed by a commercial extruder, optimizing the process parameters for obtaining mechanically stable samples. Scanning electron microscopy analyses were used to assess, in the extruded samples, the homogenous distribution of the ZnO in the PLA matrix. Moreover, X-ray microtomography revealed a certain homogenous radiopacity; this imaging technique also confirmed the correct distribution of the ZnO in the PLA matrix. Thus, our tests showed that mechanically stable radiopaque filaments, ready for FDM systems, were obtained by homogenously loading the PLA with a maximum ZnO content of 6.5% wt. (nominal). This study produced multiple outcomes. We demonstrated the feasibility of producing radiopaque filaments for additive manufacturing using safe materials. Moreover, each phase of the process is cost-effective and green-oriented; in fact, the homogenous mixture of PLA and ZnO requires only a small amount of ethanol, which evaporates in minutes without any temperature adjustment. Finally, both the extruding and the FDM technologies are the most accessible systems for the additive manufacturing commercial apparatuses. Full article
(This article belongs to the Special Issue Design and Application of Additive Manufacturing: Volume II)
Show Figures

Figure 1

16 pages, 1728 KiB  
Article
Biocomposite Films of Amylose Reinforced with Polylactic Acid by Solvent Casting Method Using a Pickering Emulsion Approach
by Marwa Faisal, Jacob Judas Kain Kirkensgaard, Bodil Jørgensen, Peter Ulvskov, Max Rée, Sue Kang, Nikolai Andersson, Mikkel Jørgensen, Jonas Simonsen, Kim H. Hebelstrup and Andreas Blennow
Colloids Interfaces 2024, 8(3), 37; https://doi.org/10.3390/colloids8030037 - 9 Jun 2024
Viewed by 1094
Abstract
Binary and ternary blends of amylose (AM), polylactic acid (PLA), and glycerol were prepared using a Pickering emulsion approach. Various formulations of AM/PLA with low PLA contents ranging from 3% to 12% were mixed with AM matrix and reinforced with 25% cellulose nanofibers [...] Read more.
Binary and ternary blends of amylose (AM), polylactic acid (PLA), and glycerol were prepared using a Pickering emulsion approach. Various formulations of AM/PLA with low PLA contents ranging from 3% to 12% were mixed with AM matrix and reinforced with 25% cellulose nanofibers (CNF), and PLA-grafted cellulose nanofibers (g-CNF), the latter to enhance miscibility. Polymeric films were fabricated through solvent casting and characterized using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Wide-Angle X-ray Scattering (WAXS), and the evaluations of physical, mechanical properties, and wettability were performed using contact angle measurements. The binary blends of AM and PLA produced films suitable for packaging, pharmaceutical, or biomedical applications with excellent water barrier properties. The ternary blends of AM/CNF/PLA and AM/g-CNF/PLA nanocomposite films demonstrated enhanced tensile strength and reduced water permeability compared to AM/PLA films. Adding g-CNF resulted in better homogeneity and increased relative crystallinity from 33% to 35% compared to unmodified CNF. The application of Pickering emulsion in creating AM-based CNF/ PLA composites resulted in a notable enhancement in tensile strength by 47%. This study presents an effective approach for producing biodegradable and reinforced PLA-based nanocomposite films, which show promise as bio-nanocomposite materials for food packaging applications. Full article
Show Figures

Graphical abstract

15 pages, 7443 KiB  
Article
The Process of Digital Data Flow in RE/CAD/RP/CAI Systems Concerning Planning Surgical Procedures in the Craniofacial Area
by Paweł Turek, Ewelina Dudek, Mateusz Grzywa and Kacper Więcek
Knowledge 2024, 4(2), 265-279; https://doi.org/10.3390/knowledge4020014 - 15 May 2024
Viewed by 494
Abstract
This paper presents the process of digital data flow in RE/CAD/RP/CAI systems to develop models for planning surgical procedures in the craniofacial area. At the first RE modeling stage, digital data processing, segmentation, and the reconstruction of the geometry of the anatomical structures [...] Read more.
This paper presents the process of digital data flow in RE/CAD/RP/CAI systems to develop models for planning surgical procedures in the craniofacial area. At the first RE modeling stage, digital data processing, segmentation, and the reconstruction of the geometry of the anatomical structures were performed. During the CAD modeling stage, three different concepts were utilized. The first concept was used to create a tool that could mold the geometry of the cranial vault. The second concept was created to prepare a prototype implant that would complement the anterior part of the mandibular geometry. And finally, the third concept was used to design a customized prototype surgical plate that would match the mandibular geometry accurately. Physical models were made using a rapid prototyping technique. A Bambu Lab X1 3D printer was used for this purpose. The process of geometric accuracy evaluation was carried out on manufactured prototypes of surgical plates made of ABS+, CPE, PLA+, and PETG material. In the geometric accuracy evaluation process, the smallest deviation values were obtained for the ABS plus material, within a tolerance of ±0.1 mm, and the largest were obtained for CPE (±0.2 mm) and PLA plus (±0.18 mm). In terms of the surface roughness evaluation, the highest value of the Sa parameter was obtained for the PLA plus material, which was 4.15 µm, and the lowest was obtained for the CPE material, equal to 3.62 µm. The knowledge of the flow of digital data and the identification of factors determining the accuracy of mapping the geometry of anatomical structures allowed for the development of a procedure that improves the modeling and manufacturing of anatomical structures within the craniofacial region. Full article
Show Figures

Figure 1

Back to TopTop