Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (111)

Search Parameters:
Keywords = PROSAIL

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 25203 KiB  
Article
Integrating Physical-Based Models and Structure-from-Motion Photogrammetry to Retrieve Fire Severity by Ecosystem Strata from Very High Resolution UAV Imagery
by José Manuel Fernández-Guisuraga, Leonor Calvo, Luis Alfonso Pérez-Rodríguez and Susana Suárez-Seoane
Fire 2024, 7(9), 304; https://doi.org/10.3390/fire7090304 - 27 Aug 2024
Viewed by 468
Abstract
We propose a novel mono-temporal framework with a physical basis and ecological consistency to retrieve fire severity at very high spatial resolution. First, we sampled the Composite Burn Index (CBI) in 108 field plots that were subsequently surveyed through unmanned aerial vehicle (UAV) [...] Read more.
We propose a novel mono-temporal framework with a physical basis and ecological consistency to retrieve fire severity at very high spatial resolution. First, we sampled the Composite Burn Index (CBI) in 108 field plots that were subsequently surveyed through unmanned aerial vehicle (UAV) flights. Then, we mimicked the field methodology for CBI assessment in the remote sensing framework. CBI strata were identified through individual tree segmentation and geographic object-based image analysis (GEOBIA). In each stratum, wildfire ecological effects were estimated through the following methods: (i) the vertical structural complexity of vegetation legacies was computed from 3D-point clouds, as a proxy for biomass consumption; and (ii) the vegetation biophysical variables were retrieved from multispectral data by the inversion of the PROSAIL radiative transfer model, with a direct physical link with the vegetation legacies remaining after canopy scorch and torch. The CBI scores predicted from UAV ecologically related metrics at the strata level featured high fit with respect to the field-measured CBI scores (R2 > 0.81 and RMSE < 0.26). Conversely, the conventional retrieval of fire effects using a battery of UAV structural and spectral predictors (point height distribution metrics and spectral indices) computed at the plot level provided a much worse performance (R2 = 0.677 and RMSE = 0.349). Full article
(This article belongs to the Special Issue Drone Applications Supporting Fire Management)
Show Figures

Figure 1

20 pages, 6898 KiB  
Article
Estimation of Maize Biomass at Multi-Growing Stage Using Stem and Leaf Separation Strategies with 3D Radiative Transfer Model and CNN Transfer Learning
by Dan Zhao, Hao Yang, Guijun Yang, Fenghua Yu, Chengjian Zhang, Riqiang Chen, Aohua Tang, Wenjie Zhang, Chen Yang and Tongyu Xu
Remote Sens. 2024, 16(16), 3000; https://doi.org/10.3390/rs16163000 - 15 Aug 2024
Viewed by 556
Abstract
The precise estimation of above-ground biomass (AGB) is imperative for the advancement of breeding programs. Optical variables, such as vegetation indices (VI), have been extensively employed in monitoring AGB. However, the limited robustness of inversion models remains a significant impediment to the widespread [...] Read more.
The precise estimation of above-ground biomass (AGB) is imperative for the advancement of breeding programs. Optical variables, such as vegetation indices (VI), have been extensively employed in monitoring AGB. However, the limited robustness of inversion models remains a significant impediment to the widespread application of UAV-based multispectral remote sensing in AGB inversion. In this study, a novel stem–leaf separation strategy for AGB estimation is delineated. Convolutional neural network (CNN) and transfer learning (TL) methodologies are integrated to estimate leaf biomass (LGB) across multiple growth stages, followed by the development of an allometric growth model for estimating stem biomass (SGB). To enhance the precision of LGB inversion, the large-scale remote sensing data and image simulation framework over heterogeneous scenes (LESS) model, which is a three-dimensional (3D) radiative transfer model (RTM), was utilized to simulate a more extensive canopy spectral dataset, characterized by a broad distribution of canopy spectra. The CNN model was pre-trained in order to gain prior knowledge, and this knowledge was transferred to a re-trained model with a subset of field-observed samples. Finally, the allometric growth model was utilized to estimate SGB across various growth stages. To further validate the generalizability, transferability, and predictive capability of the proposed method, field samples from 2022 and 2023 were employed as target tasks. The results demonstrated that the 3D RTM + CNN + TL method outperformed best in LGB estimation, achieving an R² of 0.73 and an RMSE of 72.5 g/m² for the 2022 dataset, and an R² of 0.84 and an RMSE of 56.4 g/m² for the 2023 dataset. In contrast, the PROSAIL method yielded an R² of 0.45 and an RMSE of 134.55 g/m² for the 2022 dataset, and an R² of 0.74 and an RMSE of 61.84 g/m² for the 2023 dataset. The accuracy of LGB inversion was poor when using only field-measured samples to train a CNN model without simulated data, with R² values of 0.30 and 0.74. Overall, learning prior knowledge from the simulated dataset and transferring it to a new model significantly enhanced LGB estimation accuracy and model generalization. Additionally, the allometric growth model’s estimation of SGB resulted in an accuracy of 0.87 and 120.87 g/m² for the 2022 dataset, and 0.74 and 86.87 g/m² for the 2023 dataset, exhibiting satisfactory results. Separate estimation of both LGB and SGB based on stem and leaf separation strategies yielded promising results. This method can be extended to the monitor and inversion of other critical variables. Full article
Show Figures

Figure 1

22 pages, 9510 KiB  
Article
Retrieval of Crop Canopy Chlorophyll: Machine Learning vs. Radiative Transfer Model
by Mir Md Tasnim Alam, Anita Simic Milas, Mateo Gašparović and Henry Poku Osei
Remote Sens. 2024, 16(12), 2058; https://doi.org/10.3390/rs16122058 - 7 Jun 2024
Viewed by 1392
Abstract
In recent years, the utilization of machine learning algorithms and advancements in unmanned aerial vehicle (UAV) technology have caused significant shifts in remote sensing practices. In particular, the integration of machine learning with physical models and their application in UAV–satellite data fusion have [...] Read more.
In recent years, the utilization of machine learning algorithms and advancements in unmanned aerial vehicle (UAV) technology have caused significant shifts in remote sensing practices. In particular, the integration of machine learning with physical models and their application in UAV–satellite data fusion have emerged as two prominent approaches for the estimation of vegetation biochemistry. This study evaluates the performance of five machine learning regression algorithms (MLRAs) for the mapping of crop canopy chlorophyll at the Kellogg Biological Station (KBS) in Michigan, USA, across three scenarios: (1) application to Landsat 7, RapidEye, and PlanetScope satellite images; (2) application to UAV–satellite data fusion; and (3) integration with the PROSAIL radiative transfer model (hybrid methods PROSAIL + MLRAs). The results indicate that the majority of the five MLRAs utilized in UAV–satellite data fusion perform better than the five PROSAIL + MLRAs. The general trend suggests that the integration of satellite data with UAV-derived information, including the normalized difference red-edge index (NDRE), canopy height model, and leaf area index (LAI), significantly enhances the performance of MLRAs. The UAV–RapidEye dataset exhibits the highest coefficient of determination (R2) and the lowest root mean square errors (RMSE) when employing kernel ridge regression (KRR) and Gaussian process regression (GPR) (R2 = 0.89 and 0.89 and RMSE = 8.99 µg/cm2 and 9.65 µg/cm2, respectively). Similar performance is observed for the UAV–Landsat and UAV–PlanetScope datasets (R2 = 0.86 and 0.87 for KRR, respectively). For the hybrid models, the maximum performance is attained with the Landsat data using KRR and GPR (R2 = 0.77 and 0.51 and RMSE = 33.10 µg/cm2 and 42.91 µg/cm2, respectively), followed by R2 = 0.75 and RMSE = 39.78 µg/cm2 for the PlanetScope data upon integrating partial least squares regression (PLSR) into the hybrid model. Across all hybrid models, the RapidEye data yield the most stable performance, with the R2 ranging from 0.45 to 0.71 and RMSE ranging from 19.16 µg/cm2 to 33.07 µg/cm2. The study highlights the importance of synergizing UAV and satellite data, which enables the effective monitoring of canopy chlorophyll in small agricultural lands. Full article
(This article belongs to the Special Issue Application of Satellite and UAV Data in Precision Agriculture)
Show Figures

Figure 1

21 pages, 8861 KiB  
Article
Coupling the PROSAIL Model and Machine Learning Approach for Canopy Parameter Estimation of Moso Bamboo Forests from UAV Hyperspectral Data
by Yongxia Zhou, Xuejian Li, Chao Chen, Lv Zhou, Yinyin Zhao, Jinjin Chen, Cheng Tan, Jiaqian Sun, Lingjun Zhang, Mengchen Hu and Huaqiang Du
Forests 2024, 15(6), 946; https://doi.org/10.3390/f15060946 - 30 May 2024
Viewed by 598
Abstract
Parameters such as the leaf area index (LAI), canopy chlorophyll content (CCH), and canopy carotenoid content (CCA) are important indicators for evaluating the ecological functions of forests. Currently, rapidly developing unmanned aerial vehicles (UAV) equipped with hyperspectral technology provide advanced technical means for [...] Read more.
Parameters such as the leaf area index (LAI), canopy chlorophyll content (CCH), and canopy carotenoid content (CCA) are important indicators for evaluating the ecological functions of forests. Currently, rapidly developing unmanned aerial vehicles (UAV) equipped with hyperspectral technology provide advanced technical means for the real-time dynamic acquisition of regional vegetation canopy parameters. In this study, a hyperspectral sensor mounted on a UAV was used to acquire the data in the study area, and the canopy parameter estimation model of moso bamboo forests (MBF) was developed by combining the PROSAIL radiative transfer model and the machine learning regression algorithm (MLRA), inverted the canopy parameters such as LAI, CCH, and CCA. The method first utilized the extended Fourier amplitude sensitivity test (EFAST) method to optimize the global sensitivity analysis and parameters of the PROSAIL model, and the successive projections algorithm (SPA) was used to screen the characteristic wavebands for the inversion of MBF canopy parameter inversion. Then, the optimized PROSAIL model was used to construct the ‘LAI-CCH-CCA-canopy reflectance’ simulation dataset for the MBF; multilayer perceptron regressor (MLPR), extra tree regressor (ETR), and extreme gradient boosting regressor (XGBR) employed used to construct PROSAIL_MLPR, PROSAIL_ETR, and PROSAIL_XGBR, respectively, as the three hybrid models. Finally, the best hybrid model was selected and used to invert the spatial distribution of the MBF canopy parameters. The following results were obtained: Waveband sensitivity analysis reveals 400–490 and 710–1000 nm as critical for LAI, 540–650 nm for chlorophyll, and 490–540 nm for carotenoids. SPA narrows down the feature bands to 43 for LAI, 19 for CCH, and 9 for CCA. The three constructed hybrid models were able to achieve high-precision inversion of the three parameters of the MBF, the model fitting accuracy of PROSAIL_MLRA reached more than 95%, with lower RMSE values, and the PROSAIL_XGBR model yielded the best fitting results. Our study provides a novel method for the inversion of forest canopy parameters based on UAV hyperspectral data. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

25 pages, 10052 KiB  
Article
A Machine-Learning-Assisted Classification Algorithm for the Detection of Archaeological Proxies (Cropmarks) Based on Reflectance Signatures
by Athos Agapiou and Elias Gravanis
Remote Sens. 2024, 16(10), 1705; https://doi.org/10.3390/rs16101705 - 11 May 2024
Viewed by 916
Abstract
The detection of subsurface archaeological remains using a range of remote sensing methods poses several challenges. Recent studies regarding the detection of archaeological proxies like those of cropmarks highlight the complexity of the phenomenon. In this work, we present three different methods, and [...] Read more.
The detection of subsurface archaeological remains using a range of remote sensing methods poses several challenges. Recent studies regarding the detection of archaeological proxies like those of cropmarks highlight the complexity of the phenomenon. In this work, we present three different methods, and associated indices, for identifying stressed reflectance signatures indicating buried archaeological remains, based on a dataset of measured ground spectroradiometric reflectance. Several spectral profiles between the visible and near-infrared parts of the spectrum were taken in a controlled environment in Cyprus during 2011–2012 and are re-used in this study. The first two (spectral) methods are based on a suitable analysis of the spectral signatures in (1) the visible part of the spectrum, in particular in the neighborhood of 570 nm, and (2) the red edge part of the spectrum, in the neighborhood of 730 nm. Machine learning (decision trees) allows for the deduction of suitable wavelengths to focus on in order to formulate the proposed indices and the associated classification criteria (decision boundaries) that can enhance the detection probability of stressed vegetation. Noise in the signal is taken into account by simulating reflectance signatures perturbed by white noise. Applying decision tree classification on the ensemble of simulations and basic statistical analysis, we refine the formulation of the indices and criteria for the noisy signatures. The success rate of the proposed methods is over 90%. The third method rests on the estimation of vegetation/canopy reflectance parameters through inversion of the physical-based PROSAIL reflectance model and the associated classification through machine learning methods. The obtained results provide further insights into the formation of stress vegetation that occurred due to the presence of shallow buried archaeological remains, which are well aligned with physical-based models and existing empirical knowledge. To the best of the authors’ knowledge, this is the first study demonstrating the usefulness of radiative transfer models such as PROSAIL for understanding the formation of cropmarks. Similar studies can support future research directions towards the development of regional remote sensing methods and algorithms if systematic observations are adequately dispersed in space and time. Full article
Show Figures

Graphical abstract

18 pages, 5834 KiB  
Article
Estimation of Forest Canopy Fuel Moisture Content in Dali Prefecture by Combining Vegetation Indices and Canopy Radiative Transfer Models from MODIS Data
by Kun Yang, Bo-Hui Tang, Wei Fu, Wei Zhou, Zhitao Fu and Dong Fan
Forests 2024, 15(4), 614; https://doi.org/10.3390/f15040614 - 28 Mar 2024
Viewed by 919
Abstract
Forest canopy fuel moisture content (FMC) is a critical factor in assessing the vulnerability of a specific area to forest fires. The conventional FMC estimation method, which relies on look-up tables and loss functions, cannot to elucidate the relationship between FMC and simulated [...] Read more.
Forest canopy fuel moisture content (FMC) is a critical factor in assessing the vulnerability of a specific area to forest fires. The conventional FMC estimation method, which relies on look-up tables and loss functions, cannot to elucidate the relationship between FMC and simulated data from look-up tables. This study proposes a novel approach for estimating FMC by combining enhanced vegetation index (EVI) and normalized difference moisture index (NDMI). The method employs the PROSAIL + PROGeoSAIL two-layer coupled radiation transfer model to simulate the vegetation index, the water index, and the FMC value, targeting the prevalent double-layer structure in the study area’s vegetation distribution. Additionally, a look-up table is constructed through numerical analysis to investigate the relationships among vegetation indices, water indices, and FMC. The results reveal that the polynomial equations incorporating vegetation and water indices as independent variables exhibit a strong correlation with FMC. Utilizing the EVI–NDMI joint FMC estimation method enables the direct estimation of FMC. The collected samples from Dali were compared with the estimated values, revealing that the proposed method exhibits superior accuracy (R2 = 0.79) in comparison with conventional FMC estimation methods. In addition, we applied this method to estimate the FMC in the Chongqing region one week before the 2022 forest fire event, revealing a significant decreasing trend in regional FMC leading up to the fire outbreak, highlighting its effectiveness in facilitating pre-disaster warnings. Full article
Show Figures

Figure 1

16 pages, 4286 KiB  
Article
Integrating the PROSAIL and SVR Models to Facilitate the Inversion of Grassland Aboveground Biomass: A Case Study of Zoigê Plateau, China
by Zhifei Wang, Li He, Zhengwei He, Xueman Wang, Linlong Li, Guichuan Kang, Wenqian Bai, Xin Chen, Yang Zhao and Yixian Xiao
Remote Sens. 2024, 16(7), 1117; https://doi.org/10.3390/rs16071117 - 22 Mar 2024
Viewed by 1219
Abstract
Grasslands play a vital role in the global ecosystem. Efficient and reproducible methods for estimating the grassland aboveground biomass (AGB) are crucial for understanding grassland growth, promoting sustainable development, and assessing the carbon cycle. Currently, the available methods are limited by their computational [...] Read more.
Grasslands play a vital role in the global ecosystem. Efficient and reproducible methods for estimating the grassland aboveground biomass (AGB) are crucial for understanding grassland growth, promoting sustainable development, and assessing the carbon cycle. Currently, the available methods are limited by their computational inefficiency, model transfer, and sampling scale. Therefore, in this study, the estimation of grassland AGB over a large area was achieved by coupling the PROSAIL model with the support vector machine regression (SVR) method. The ill-posed inverse problem of the PROSAIL model was mitigated through kernel-based regularization using the SVR model. The Zoigê Plateau was used as the case study area, and the results demonstrated that the estimated biomass accurately reproduced the reference AGB map generated by zooming in on on-site measurements (R2 = 0.64, RMSE = 43.52 g/m2, RRMSE = 15.13%). The estimated AGB map also maintained a high fitting accuracy with field sampling data (R2 = 0.69, RMSE = 44.07 g/m2, RRMSE = 14.21%). Further, the generated time-series profiles of grass AGB for 2022 were consistent with the trends in local grass growth dynamics. The proposed method combines the advantages of the PROSAIL model and the regression algorithm, reduces the dependence on field sampling data, improves the universality and repeatability of grassland AGB estimation, and provides an efficient approach for grassland ecosystem construction and planning. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

19 pages, 11073 KiB  
Article
Optimal Integration of Optical and SAR Data for Improving Alfalfa Yield and Quality Traits Prediction: New Insights into Satellite-Based Forage Crop Monitoring
by Jiang Chen, Tong Yu, Jerome H. Cherney and Zhou Zhang
Remote Sens. 2024, 16(5), 734; https://doi.org/10.3390/rs16050734 - 20 Feb 2024
Cited by 4 | Viewed by 1597
Abstract
Global food security and nutrition is suffering from unprecedented challenges. To reach a world without hunger and malnutrition by implementing precision agriculture, satellite remote sensing plays an increasingly important role in field crop monitoring and management. Alfalfa, a global widely distributed forage crop, [...] Read more.
Global food security and nutrition is suffering from unprecedented challenges. To reach a world without hunger and malnutrition by implementing precision agriculture, satellite remote sensing plays an increasingly important role in field crop monitoring and management. Alfalfa, a global widely distributed forage crop, requires more attention to predict its yield and quality traits from satellite data since it supports the livestock industry. Meanwhile, there are some key issues that remain unknown regarding alfalfa remote sensing from optical and synthetic aperture radar (SAR) data. Using Sentinel-1 and Sentinel-2 satellite data, this study developed, compared, and further integrated new optical- and SAR-based satellite models for improving alfalfa yield and quality traits prediction, i.e., crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), and neutral detergent fiber digestibility (NDFD). Meanwhile, to better understand the physical mechanism of alfalfa optical remote sensing, a unified hybrid leaf area index (LAI) retrieval scheme was developed by coupling the PROSAIL radiative transfer model, spectral response function of the desired optical satellite, and a random forest (RF) model, denoted as a scalable optical satellite-based LAI retrieval framework. Compared to optical vegetation indices (VIs) that only capture canopy information, the results indicate that LAI had the highest correlation (r = 0.701) with alfalfa yield due to its capacity in delivering the vegetation structure characteristics. For alfalfa quality traits, optical chlorophyll VIs presented higher correlations than LAI. On the other hand, LAI did not provide a significant additional contribution for predicting alfalfa parameters in the RF developed optical prediction model using VIs as inputs. In addition, the optical-based model outperformed the SAR-based model for predicting alfalfa yield, CP, and NDFD, while the SAR-based model showed better performance for predicting ADF and NDF. The integration of optical and SAR data contributed to higher accuracy than either optical or SAR data separately. Compared to a traditional embedded integration approach, the combination of multisource heterogeneous optical and SAR satellites was optimized by multiple linear regression (yield: R2 = 0.846 and RMSE = 0.0354 kg/m2; CP: R2 = 0.636 and RMSE = 1.57%; ADF: R2 = 0.559 and RMSE = 1.926%; NDF: R2 = 0.58 and RMSE = 2.097%; NDFD: R2 = 0.679 and RMSE = 2.426%). Overall, this study provides new insights into forage crop yield prediction for large-scale fields using multisource heterogeneous satellites. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Figure 1

15 pages, 2645 KiB  
Article
Synchronous Retrieval of Wheat Cab and LAI from UAV Remote Sensing: Application of the Optimized Estimation Inversion Framework
by Jiangtao Ji, Xiaofei Wang, Hao Ma, Fengxun Zheng, Yi Shi, Hongwei Cui and Shaoshuai Zhao
Agronomy 2024, 14(2), 359; https://doi.org/10.3390/agronomy14020359 - 10 Feb 2024
Cited by 1 | Viewed by 896
Abstract
Chlorophyll a and b content (Cab) and leaf area index (LAI) are two key parameters of crops, and their quantitative inversions are important for growth monitoring and the field management of wheat. However, due to the close correlation between the spectral signals of [...] Read more.
Chlorophyll a and b content (Cab) and leaf area index (LAI) are two key parameters of crops, and their quantitative inversions are important for growth monitoring and the field management of wheat. However, due to the close correlation between the spectral signals of these two parameters and the effects of soil and atmospheric conditions, as well as modeling errors, synchronous retrieval of LAI and Cab from remote sensing data is still a challenging task. In a previous study, we introduced the optimal estimation theory and established the inversion framework by coupling the PROSAIL (PROSPECT + SAIL) model with the unified linearized vector radiative transfer model (UNL-VRTM). The framework fully utilizes the simulated radiance spectra for synchronous retrieval of Cab and LAI at the UAV observation scale and has good convergence and self-consistency. In this study, based on this inversion framework, synchronized retrieval of Cab and LAI was carried out by real wheat UAV observation data and validated with the ground-measured data. By comparing with the empirical statistical model constructed by the PROSAIL model and coupled model, least squares support vector machine (LSSVM), and random forest (RF), the proposed method has the highest accuracy of Cab and LAI estimated from UAV multispectral data (for Cab, R2 = 0.835, RMSE = 14.357; for LAI, R2 = 0.892, RMSE = 0.564). Our proposed method enables the fast and efficient estimation of Cab and LAI in multispectral data without prior measurements and training. Full article
(This article belongs to the Topic Advances in Crop Simulation Modelling)
Show Figures

Figure 1

29 pages, 5841 KiB  
Review
A Systematic Review of Radiative Transfer Models for Crop Yield Prediction and Crop Traits Retrieval
by Rana Ahmad Faraz Ishaq, Guanhua Zhou, Chen Tian, Yumin Tan, Guifei Jing, Hongzhi Jiang and Obaid-ur-Rehman
Remote Sens. 2024, 16(1), 121; https://doi.org/10.3390/rs16010121 - 27 Dec 2023
Cited by 1 | Viewed by 1672
Abstract
Radiative transfer models (RTMs) provide reliable information about crop yield and traits with high resource efficiency. In this study, we have conducted a systematic literature review (SLR) to fill the gaps in the overall insight of RTM-based crop yield prediction (CYP) and crop [...] Read more.
Radiative transfer models (RTMs) provide reliable information about crop yield and traits with high resource efficiency. In this study, we have conducted a systematic literature review (SLR) to fill the gaps in the overall insight of RTM-based crop yield prediction (CYP) and crop traits retrieval. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, 76 articles were found to be relevant to crop traits retrieval and 15 for CYP. China had the highest number of RTM applications (33), followed by the USA (13). Crop-wise, cereals, and traits-wise, leaf area index (LAI) and chlorophyll, had a high number of research studies. Among RTMs, the PROSAIL model had the highest number of articles (62), followed by SCOPE (6) with PROSAIL accuracy for CYP (median R2 = 0.62) and crop traits (median R2 = 0.80). The same was true for crop traits retrieval with LAI (CYP median R2 = 0.62 and traits median R2 = 0.85), followed by chlorophyll (crop traits median R2 = 0.70). Document co-citation analysis also found the relevancy of selected articles within the theme of this SLR. This SLR not only focuses on information about the accuracy and reliability of RTMs but also provides comprehensive insight towards understanding RTM applications for crop yield and traits, further exploring possibilities of new endeavors in agriculture, particularly crop yield modeling. Full article
Show Figures

Figure 1

21 pages, 15312 KiB  
Article
Enhancing Leaf Area Index Estimation with MODIS BRDF Data by Optimizing Directional Observations and Integrating PROSAIL and Ross–Li Models
by Hu Zhang, Xiaoning Zhang, Lei Cui, Yadong Dong, Yan Liu, Qianrui Xi, Hongtao Cao, Lei Chen and Yi Lian
Remote Sens. 2023, 15(23), 5609; https://doi.org/10.3390/rs15235609 - 2 Dec 2023
Cited by 2 | Viewed by 2334
Abstract
The Leaf Area Index (LAI) is a crucial vegetation parameter for climate and ecological models. Reflectance anisotropy contains valuable supplementary information for the retrieval of properties of an observed target surface. Previous studies have utilized multi-angular reflectance data and physically based Bidirectional Reflectance [...] Read more.
The Leaf Area Index (LAI) is a crucial vegetation parameter for climate and ecological models. Reflectance anisotropy contains valuable supplementary information for the retrieval of properties of an observed target surface. Previous studies have utilized multi-angular reflectance data and physically based Bidirectional Reflectance Distribution Function (BRDF) models with detailed vegetation structure descriptions for LAI estimation. However, the optimal selection of viewing angles for improved inversion results has received limited attention. By optimizing directional observations and integrating the PROSAIL and Ross–Li models, this study aims to enhance LAI estimation from MODIS BRDF data. A dataset of 20,000 vegetation parameter combinations was utilized to identify the directions in which the PROSAIL model exhibits higher sensitivity to LAI changes and better consistency with the Ross–Li BRDF models. The results reveal significant variations in the sensitivity of the PROSAIL model to LAI changes and its consistency with the Ross–Li model over the viewing hemisphere. In the red band, directions with high sensitivity to LAI changes and strong model consistency are mainly found at smaller solar and viewing zenith angles. In the near-infrared band, these directions are distributed at positions with larger solar and viewing zenith angles. Validation using field measurements and LAI maps demonstrates that the proposed method achieves comparable accuracy to an algorithm utilizing 397 viewing angles by utilizing reflectance data from only 30 directions. Moreover, there is a significant improvement in computational efficiency. The accuracy of LAI estimation obtained from simulated multi-angle data is relatively high for LAI values below 3.5 when compared with the MODIS LAI product from two tiles. Additionally, there is also a slight improvement in the results when the LAI exceeds 4.5. Overall, our results highlight the potential of utilizing multi-angular reflectance in specific directions for vegetation parameter inversion, showcasing the promise of this method for large-scale LAI estimation. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

18 pages, 5362 KiB  
Technical Note
Optimizing the Retrieval of Wheat Crop Traits from UAV-Borne Hyperspectral Image with Radiative Transfer Modelling Using Gaussian Process Regression
by Rabi N. Sahoo, Shalini Gakhar, Rajan G. Rejith, Jochem Verrelst, Rajeev Ranjan, Tarun Kondraju, Mahesh C. Meena, Joydeep Mukherjee, Anchal Daas, Sudhir Kumar, Mahesh Kumar, Raju Dhandapani and Viswanathan Chinnusamy
Remote Sens. 2023, 15(23), 5496; https://doi.org/10.3390/rs15235496 - 25 Nov 2023
Cited by 3 | Viewed by 1644
Abstract
The advent of high-spatial-resolution hyperspectral imagery from unmanned aerial vehicles (UAVs) made a breakthrough in the detailed retrieval of crop traits for precision crop-growth monitoring systems. Here, a hybrid approach of radiative transfer modelling combined with a machine learning (ML) algorithm is proposed [...] Read more.
The advent of high-spatial-resolution hyperspectral imagery from unmanned aerial vehicles (UAVs) made a breakthrough in the detailed retrieval of crop traits for precision crop-growth monitoring systems. Here, a hybrid approach of radiative transfer modelling combined with a machine learning (ML) algorithm is proposed for the retrieval of the leaf area index (LAI) and canopy chlorophyll content (CCC) of wheat cropland at the experimental farms of ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India. A hyperspectral image captured from a UAV platform with spatial resolution of 4 cm and 269 spectral bands ranging from 400 to 1000 nm was processed for the retrieval of the LAI and CCC of wheat cropland. The radiative transfer model PROSAIL was used for simulating spectral data, and eight machine learning algorithms were evaluated for hybrid model development. The ML Gaussian process regression (GPR) algorithm was selected for the retrieval of crop traits due to its superior accuracy and lower associated uncertainty. Simulated spectra were sampled for training GPR models for LAI and CCC retrieval using dimensionality reduction and active learning techniques. LAI and CCC biophysical maps were generated from pre-processed hyperspectral data using trained GPR models and validated against in situ measurements, yielding R2 values of 0.889 and 0.656, suggesting high retrieval accuracy. The normalised root mean square error (NRMSE) values reported for LAI and CCC retrieval are 8.579% and 14.842%, respectively. The study concludes with the development of optimized GPR models tailored for UAV-borne hyperspectral data for the near-real-time retrieval of wheat traits. This workflow can be upscaled to farmers’ fields, facilitating efficient crop monitoring and management. Full article
Show Figures

Figure 1

20 pages, 8325 KiB  
Article
Evaluation of the Monitoring Capability of 20 Vegetation Indices and 5 Mainstream Satellite Band Settings for Drought in Spring Wheat Using a Simulation Method
by Chang Xiao, Yinan Wu and Xiufang Zhu
Remote Sens. 2023, 15(19), 4838; https://doi.org/10.3390/rs15194838 - 6 Oct 2023
Viewed by 1169
Abstract
This study simulated the canopy reflectance of spring wheat at five distinct growth stages (jointing, booting, heading, flowering, and pustulation) and under four drought scenarios (no drought, mild drought, moderate drought, and severe drought) using the PROSAIL radiative transfer model, and it identified [...] Read more.
This study simulated the canopy reflectance of spring wheat at five distinct growth stages (jointing, booting, heading, flowering, and pustulation) and under four drought scenarios (no drought, mild drought, moderate drought, and severe drought) using the PROSAIL radiative transfer model, and it identified the wavelength range most sensitive to drought. Additionally, the efficacy of 5 mainstream satellites (Sentinel-2, Landsat 8, Worldview-2, MODIS, and GF-2) and 20 commonly utilized remote sensing vegetation indicators (NDVI, SAVI, EVI, ARVI, GVMI, LSWI, VSDI, NDGI, SWIRR, NDWI, PRI, NDII, MSI, WI, SRWI, DSWI, NDREI1, NDREI2, ZMI, and MTCI) in drought monitoring was evaluated. The results indicated that the spectral response characteristics of spring wheat canopy reflectance vary significantly across the growth stages. Notably, the wavelength ranges of 1405–1505 nm and 2140–2190 nm were identified as optimal for drought monitoring throughout the growth period. Considering only the spectral bands, MODIS band 7 was determined to be the most suitable satellite band for monitoring drought in spring wheat at different growth stages. Among the 20 indices examined, WI, MSI, and SRWI, followed by LSWI and GVMI calculated using MODIS bands 2 and 6 as well as bands 8 and 11 of Sentinel-2, demonstrated superior capabilities in differentiating drought scenarios. These conclusions have important implications because they provide valuable guidance for selecting remote sensing drought monitoring data and vegetation indices, and they present insights for future research on the design of new remote sensing indices for assisting drought monitoring and the configuration of remote sensing satellite sensors. Full article
(This article belongs to the Section Biogeosciences Remote Sensing)
Show Figures

Figure 1

20 pages, 16424 KiB  
Article
Estimating Maize Maturity by Using UAV Multi-Spectral Images Combined with a CCC-Based Model
by Zhao Liu, Huapeng Li, Xiaohui Ding, Xinyuan Cao, Hui Chen and Shuqing Zhang
Drones 2023, 7(9), 586; https://doi.org/10.3390/drones7090586 - 19 Sep 2023
Cited by 2 | Viewed by 1674
Abstract
Measuring maize grain moisture content (GMC) variability at maturity provides an essential piece of information for the formulation of maize harvesting sequences and the applications of precision agriculture. Canopy chlorophyll content (CCC) is an important parameter that describes crop growth, photosynthetic rate, health, [...] Read more.
Measuring maize grain moisture content (GMC) variability at maturity provides an essential piece of information for the formulation of maize harvesting sequences and the applications of precision agriculture. Canopy chlorophyll content (CCC) is an important parameter that describes crop growth, photosynthetic rate, health, and senescence. The main goal of this study was to estimate maize GMC at maturity through CCC retrieved from multi-spectral UAV images using a PROSAIL model inversion and compare its performance with GMC estimation through simple vegetation indices (VIs) approaches. This study was conducted in two separate maize fields of 50.3 and 56 ha located in Hailun County, Heilongjiang Province, China. Each of the fields was cultivated with two maize varieties. One field was used as reference data for constructing the model, and the other field was applied to validate. The leaf chlorophyll content (LCC) and leaf area index (LAI) of maize were collected at three critical stages of crop growth, and meanwhile, the GMC of maize at maturity was also obtained. During the collection of field data, a UAV flight campaign was performed to obtain multi-spectral images from two fields at three main crop growth stages. In order to calibrate and evaluate the PROSAIL model for obtaining maize CCC, crop canopy spectral reflectance was simulated using crop-specific parameters. In addition, various VIs were computed from multi-spectral images to estimate maize GMC at maturity and compare the results with CCC estimations. When the CCC-retrieved results were compared to measured data, the R2 value was 0.704, the RMSE was 34.58 μg/cm2, and the MAE was 26.27 μg/cm2. The estimation accuracy of the maize GMC based on the normalized red edge index (NDRE) was demonstrated to be the greatest among the selected VIs in both fields, with R2 values of 0.6 and 0.619, respectively. Although the VIs of UAV inversion GMC accuracy are lower than those of CCC, their rapid acquisition, high spatial and temporal resolution, suitability for empirical models, and capture of growth differences within the field are still helpful techniques for field-scale crop monitoring. We found that maize varieties are the main reason for the maturity variation of maize under the same geographical and environmental conditions. The method described in this article enables precision agriculture based on UAV remote sensing by giving growers a spatial reference for crop maturity at the field scale. Full article
(This article belongs to the Special Issue Advances of UAV in Precision Agriculture)
Show Figures

Figure 1

22 pages, 5684 KiB  
Article
Identification of Robust Hybrid Inversion Models on the Crop Fraction of Absorbed Photosynthetically Active Radiation Using PROSAIL Model Simulated and Field Multispectral Data
by Jiying Kong, Zhenhai Luo, Chao Zhang, Min Tang, Rui Liu, Ziang Xie and Shaoyuan Feng
Agronomy 2023, 13(8), 2147; https://doi.org/10.3390/agronomy13082147 - 16 Aug 2023
Cited by 3 | Viewed by 1272
Abstract
The fraction of absorbed photosynthetically active radiation (FPAR), which represents the capability of vegetation-absorbed solar radiation to accumulate organic matter, is a crucial indicator of photosynthesis and vegetation growth status. Although a simplified semi-empirical FPAR estimation model was easily obtained using vegetation indices [...] Read more.
The fraction of absorbed photosynthetically active radiation (FPAR), which represents the capability of vegetation-absorbed solar radiation to accumulate organic matter, is a crucial indicator of photosynthesis and vegetation growth status. Although a simplified semi-empirical FPAR estimation model was easily obtained using vegetation indices (VIs), the sensitivity and robustness of VIs and the optimal inversion method need to be further evaluated and developed for canola FPAR retrieval. The objective of this study was to identify the robust hybrid inversion model for estimating the winter canola FPAR. A field experiment with different sow dates and densities was conducted over two growing seasons to obtain canola FPARs. Moreover, 29 VIs, two machine learning algorithms and the PROSAIL model were incorporated to establish the FPAR inversion model. The results indicate that the OSAVI, WDRVI and mSR had better capability for revealing the variations of the FPAR. Three parameters of leaf area index (LAI), solar zenith angle (SZA) and average leaf inclination angle (ALA) accounted for over 95% of the total variance in the FPARs and OSAVI exhibited a greater resistance to changes in the leaf and canopy parameters of interest. The hybrid inversion model with an artificial neural network (ANN-VIs) performed the best for both datasets. The optimal hybrid inversion model of ANN-OSAVI achieved the highest performance for canola FPAR retrieval, with R2 and RMSE values of 0.65 and 0.051, respectively. Finally, the work highlights the usefulness of the radiation transfer model (RTM) in quantifying the crop canopy FPAR and demonstrates the potential of hybrid model methods for retrieving the canola FPAR at each growth stage. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop