Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = Pauli exclusion principle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 926 KiB  
Article
Testing the Pauli Exclusion Principle across the Periodic Table with the VIP-3 Experiment
by Simone Manti, Massimiliano Bazzi, Nicola Bortolotti, Cesidio Capoccia, Michael Cargnelli, Alberto Clozza, Luca De Paolis, Carlo Fiorini, Carlo Guaraldo, Mihail Iliescu, Matthias Laubenstein, Johann Marton, Fabrizio Napolitano, Kristian Piscicchia, Alessio Porcelli, Alessandro Scordo, Francesco Sgaramella, Diana Laura Sirghi, Florin Sirghi, Oton Vazquez Doce, Johann Zmeskal and Catalina Curceanuadd Show full author list remove Hide full author list
Entropy 2024, 26(9), 752; https://doi.org/10.3390/e26090752 - 2 Sep 2024
Viewed by 1016
Abstract
The Pauli exclusion principle (PEP), a cornerstone of quantum mechanics and whole science, states that in a system, two fermions can not simultaneously occupy the same quantum state. Several experimental tests have been performed to place increasingly stringent bounds on the validity of [...] Read more.
The Pauli exclusion principle (PEP), a cornerstone of quantum mechanics and whole science, states that in a system, two fermions can not simultaneously occupy the same quantum state. Several experimental tests have been performed to place increasingly stringent bounds on the validity of PEP. Among these, the series of VIP experiments, performed at the Gran Sasso Underground National Laboratory of INFN, is searching for PEP-violating atomic X-ray transitions in copper. In this paper, the upgraded VIP-3 setup is described, designed to extend these investigations to higher-Z elements such as zirconium, silver, palladium, and tin. We detail the enhanced design of this setup, including the implementation of cutting-edge, 1 mm thick, silicon drift detectors, which significantly improve the measurement sensitivity at higher energies. Additionally, we present calculations of expected PEP-violating energy shifts in the characteristic lines of these elements, performed using the multi-configurational Dirac–Fock method from first principles. The VIP-3 realization will contribute to ongoing research into PEP violation for different elements, offering new insights and directions for future studies. Full article
Show Figures

Figure 1

14 pages, 370 KiB  
Article
Leibniz’s Principle, (Non-)Entanglement, and Pauli Exclusion
by Cord Friebe
Philosophies 2024, 9(2), 45; https://doi.org/10.3390/philosophies9020045 - 29 Mar 2024
Viewed by 1104
Abstract
Both bosons and fermions satisfy a strong version of Leibniz’s Principle of the Identity of Indiscernibles (PII), and so are ontologically on a par with respect to the PII. This holds for non-entangled, non-product states and for physically entangled states—as it has been [...] Read more.
Both bosons and fermions satisfy a strong version of Leibniz’s Principle of the Identity of Indiscernibles (PII), and so are ontologically on a par with respect to the PII. This holds for non-entangled, non-product states and for physically entangled states—as it has been established in previous work. In this paper, the Leibniz strategy is completed by including the (bosonic) symmetric product states. A new understanding of Pauli’s Exclusion Principle is provided, which distinguishes bosons from fermions in a peculiar ontological way. Finally, the program as a whole is defended against substantial objections. Full article
(This article belongs to the Special Issue Philosophy and Quantum Mechanics)
Show Figures

Figure 1

17 pages, 342 KiB  
Article
SO(3)-Irreducible Geometry in Complex Dimension Five and Ternary Generalization of Pauli Exclusion Principle
by Viktor Abramov and Olga Liivapuu
Universe 2024, 10(1), 2; https://doi.org/10.3390/universe10010002 - 21 Dec 2023
Cited by 1 | Viewed by 1173
Abstract
Motivated by a ternary generalization of the Pauli exclusion principle proposed by R. Kerner, we propose a notion of a Z3-skew-symmetric covariant SO(3)-tensor of the third order, consider it as a 3-dimensional matrix, and study the geometry [...] Read more.
Motivated by a ternary generalization of the Pauli exclusion principle proposed by R. Kerner, we propose a notion of a Z3-skew-symmetric covariant SO(3)-tensor of the third order, consider it as a 3-dimensional matrix, and study the geometry of the 10-dimensional complex space of these tensors. We split this 10-dimensional space into a direct sum of two 5-dimensional subspaces by means of a primitive third-order root of unity q, and in each subspace, there is an irreducible representation of the rotation group SO(3)SU(5). We find two SO(3)-invariants of Z3-skew-symmetric tensors: one is the canonical Hermitian metric in five-dimensional complex vector space and the other is a quadratic form denoted by K(z,z). We study the invariant properties of K(z,z) and find its stabilizer. Making use of these invariant properties, we define an SO(3)-irreducible geometric structure on a five-dimensional complex Hermitian manifold. We study a connection on a five-dimensional complex Hermitian manifold with an SO(3)-irreducible geometric structure and find its curvature and torsion. Full article
Show Figures

Figure 1

17 pages, 956 KiB  
Article
What Is Psychological Spin? A Thermodynamic Framework for Emotions and Social Behavior
by Eva K. Deli
Psych 2023, 5(4), 1224-1240; https://doi.org/10.3390/psych5040081 - 30 Nov 2023
Cited by 2 | Viewed by 2152
Abstract
One of the most puzzling questions in neuroscience is the nature of emotions and their role in consciousness. The brain’s significant energy investment in maintaining the resting state indicates its essential role as the ground state of consciousness, the source of the sense [...] Read more.
One of the most puzzling questions in neuroscience is the nature of emotions and their role in consciousness. The brain’s significant energy investment in maintaining the resting state indicates its essential role as the ground state of consciousness, the source of the sense of self. Emotions, the brain’s homeostatic master regulators, continuously measure and motivate the recovery of the psychological equilibrium. Moreover, perception’s information-energy exchange with the environment gives rise to a closed thermodynamic cycle, the reversible Carnot engine. The Carnot cycle forms an exothermic process; low entropy and reversible resting state turn the focus to the past, causing regret and remorse. The endothermic reversed Carnot cycle creates a high entropy resting state with irreversible activations generating novelty and intellect. We propose that the cycle’s direction represents psychological spin, where the endothermic cycle’s energy accumulation forms up-spin, and the energy-wasting exothermic cycle represents down-spin. Psychological spin corresponds to attitude, the determining factor in cognitive function and social life. By applying the Pauli exclusion principle for consciousness, we can explain the need for personal space and the formation of hierarchical social structures and animals’ territorial needs. Improving intuition about the brain’s intelligent computations may allow new treatments for mental diseases and novel applications in robotics and artificial intelligence. Full article
(This article belongs to the Section Neuropsychology, Mental Health and Brain Disorders)
Show Figures

Graphical abstract

10 pages, 359 KiB  
Article
First Experimental Survey of a Whole Class of Non-Commutative Quantum Gravity Models in the VIP-2 Lead Underground Experiment
by Kristian Piscicchia, Antonino Marcianò, Andrea Addazi, Diana Laura Sirghi, Massimiliano Bazzi, Nicola Bortolotti, Mario Bragadireanu, Michael Cargnelli, Alberto Clozza, Luca De Paolis, Raffaele Del Grande, Carlo Guaraldo, Mihail Iliescu, Matthias Laubenstein, Simone Manti, Johann Marton, Marco Miliucci, Fabrizio Napolitano, Federico Nola, Alessio Porcelli, Alessandro Scordo, Francesco Sgaramella, Florin Sirghi, Oton Vazquez Doce, Johann Zmeskal and Catalina Curceanuadd Show full author list remove Hide full author list
Universe 2023, 9(7), 321; https://doi.org/10.3390/universe9070321 - 4 Jul 2023
Cited by 1 | Viewed by 1262
Abstract
This study is aimed to set severe constraints on a whole class of non-commutative space-times scenarios as a class of universality for several quantum gravity models. To this end, slight violations of the Pauli exclusion principle—predicted by these models—are investigated by searching for [...] Read more.
This study is aimed to set severe constraints on a whole class of non-commutative space-times scenarios as a class of universality for several quantum gravity models. To this end, slight violations of the Pauli exclusion principle—predicted by these models—are investigated by searching for Pauli forbidden Kα and Kβ transitions in lead. The selection of a high atomic number target material allows to test the energy scale of the space-time non-commutativity emergence at high atomic transition energies. As a consequence, the measurement is very sensitive to high orders in the power series expansion of the Pauli violation probability, which allows to set the first constraint to the “triply special relativity” model proposed by Kowalski-Glikman and Smolin. The characteristic energy scale of the model is bound to Λ>5.6·109 Planck scales. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2023—Gravitation)
Show Figures

Figure 1

18 pages, 379 KiB  
Article
The Power of Symmetries in Nuclear Structure and Some of Its Problems
by Peter O. Hess
Symmetry 2023, 15(6), 1197; https://doi.org/10.3390/sym15061197 - 2 Jun 2023
Cited by 2 | Viewed by 1367
Abstract
A review of several classical, algebraic models in nuclear structure physics, which use symmetries as an important tool, are presented. After a conceptual introduction to group theory, a selection of models is chosen to illustrate the methods and the power of the usage [...] Read more.
A review of several classical, algebraic models in nuclear structure physics, which use symmetries as an important tool, are presented. After a conceptual introduction to group theory, a selection of models is chosen to illustrate the methods and the power of the usage of symmetries. This enables us to describe very involved systems in a greatly simplified manner. Some problems are also discussed, when ignoring basic principles of nature, such as the Pauli exclusion principle. We also show that occasionally one can rescue these omissions. In a couple of representative models, applications of symmetries are explicitly applied in order to illustrate how extremely complicated systems can be treated. This contribution is meant as a review of the use of algebraic models in nuclear physics, leading to a better understanding of the articles in the same special volume. Full article
(This article belongs to the Special Issue Role of Symmetries in Nuclear Physics)
Show Figures

Figure 1

26 pages, 4554 KiB  
Review
Symmetry of Identical Particles, Modern Achievements in the Pauli Exclusion Principle, in Superconductivity and in Some Other Phenomena
by Ronald Columbié-Leyva, Alberto López-Vivas, Jacques Soullard, Ulises Miranda and Ilya G. Kaplan
Symmetry 2023, 15(3), 701; https://doi.org/10.3390/sym15030701 - 11 Mar 2023
Viewed by 2154
Abstract
In this review, the modern achievements in studies of the Pauli exclusion principle (PEP) and the properties of the identical particle systems when PEP is not fulfilled are discussed. The validity of conception of the spin in the framework of density functional theory [...] Read more.
In this review, the modern achievements in studies of the Pauli exclusion principle (PEP) and the properties of the identical particle systems when PEP is not fulfilled are discussed. The validity of conception of the spin in the framework of density functional theory (DFT) approaches is analyzed. The modern state of the recently discovered Fe-based superconductors is discussed in detail. These materials belong to the paramagnetic semimetal family and become superconductors upon doping. Recently, in 2020, room-temperature superconductivity was realized. However, from the following discussion in the SC community, it was not evident that the results of room-temperature superconductivity have been repeated by other laboratories. Thus, the question “is room temperature really achieved?” is still open. In the concluding remarks, we present the explanation of why the PEP limitations on the symmetry of identical particles system exist in nature, and following from it, some important consequences. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Figure 1

14 pages, 763 KiB  
Article
Pauli Exclusion Classical Potential for Intermediate-Energy Heavy-Ion Collisions
by Claudio O. Dorso, Guillermo Frank and Jorge A. López
Universe 2023, 9(3), 119; https://doi.org/10.3390/universe9030119 - 25 Feb 2023
Viewed by 1066
Abstract
This article presents a classical potential used to describe nucleon–nucleon interactions at intermediate energies. The potential depends on the relative momentum of the colliding nucleons and can be used to describe interactions at low momentum transfer mimicking the Pauli exclusion principle. We use [...] Read more.
This article presents a classical potential used to describe nucleon–nucleon interactions at intermediate energies. The potential depends on the relative momentum of the colliding nucleons and can be used to describe interactions at low momentum transfer mimicking the Pauli exclusion principle. We use the potential with molecular dynamics to study finite nuclei, their binding energy, radii, symmetry energy, and a case study of collisions. Full article
Show Figures

Figure 1

7 pages, 657 KiB  
Proceeding Paper
Entanglement—A Higher Order Symmetry
by Paul O’Hara
Phys. Sci. Forum 2023, 7(1), 4; https://doi.org/10.3390/ECU2023-14011 - 15 Feb 2023
Cited by 1 | Viewed by 1343
Abstract
Can we accurately model the spin state of a quantum particle? If so, we should be able to make identical copies of such a state and also obtain its mirror image. In quantum mechanics, many subatomic particles can form entangled pairs that are [...] Read more.
Can we accurately model the spin state of a quantum particle? If so, we should be able to make identical copies of such a state and also obtain its mirror image. In quantum mechanics, many subatomic particles can form entangled pairs that are mirror images of each other, although the state of an individual particle cannot be duplicated or cloned as experimentally demonstrated by Aspect, Clauser and Zeilinger, the winners of the Nobel Prize in Physics 2022. We show that there is a higher-order symmetry associated with the SL(2,C) group that underlies the singlet state, which means that the singlet pairing preserves Lorentz transformations independently of the metric used. The Pauli exclusion principle can be derived from this symmetry. Full article
(This article belongs to the Proceedings of The 2nd Electronic Conference on Universe)
Show Figures

Figure 1

12 pages, 1801 KiB  
Article
Underground Tests of Quantum Mechanics by the VIP Collaboration at Gran Sasso
by Fabrizio Napolitano, Andrea Addazi, Angelo Bassi, Massimiliano Bazzi, Mario Bragadireanu, Michael Cargnelli, Alberto Clozza, Luca De Paolis, Raffaele Del Grande, Maaneli Derakhshani, Sandro Donadi, Carlo Fiorini, Carlo Guaraldo, Mihail Iliescu, Matthias Laubenstein, Simone Manti, Antonino Marcianò, Johann Marton, Marco Miliucci, Edoardo Milotti, Kristian Piscicchia, Alessio Porcelli, Alessandro Scordo, Francesco Sgaramella, Diana Laura Sirghi, Florin Sirghi, Oton Vazquez Doce, Johann Zmeskal and Catalina Curceanuadd Show full author list remove Hide full author list
Symmetry 2023, 15(2), 480; https://doi.org/10.3390/sym15020480 - 11 Feb 2023
Cited by 2 | Viewed by 2132
Abstract
Modern physics lays its foundations on the pillars of Quantum Mechanics (QM), which has been proven successful to describe the microscopic world of atoms and particles, leading to the construction of the Standard Model. Despite the big success, the old open questions at [...] Read more.
Modern physics lays its foundations on the pillars of Quantum Mechanics (QM), which has been proven successful to describe the microscopic world of atoms and particles, leading to the construction of the Standard Model. Despite the big success, the old open questions at its very heart, such as the measurement problem and the wave function collapse, are still open. Various theories consider scenarios which could encompass a departure from the predictions of the standard QM, such as extra-dimensions or deformations of the Lorentz/Poincaré symmetries. At the Italian National Gran Sasso underground Laboratory LNGS, we search for evidence of new physics proceeding from models beyond standard QM, using radiation detectors. Collapse models addressing the foundations of QM, such as the gravity-related Diósi–Penrose (DP) and Continuous Spontaneous Localization (CSL) models, predict the emission of spontaneous radiation, which allows experimental tests. Using a high-purity Germanium detector, we could exclude the natural parameterless version of the DP model and put strict bounds on the CSL one. In addition, forbidden atomic transitions could prove a possible violation of the Pauli Exclusion Principle (PEP) in open and closed systems. The VIP-2 experiment is currently in operation, aiming at detecting PEP-violating signals in Copper with electrons; the VIP-3 experiment upgrade is foreseen to become operative in the next few years. We discuss the VIP-Lead experiment on closed systems, and the strong bounds it sets on classes of non-commutative quantum gravity theories, such as the θ–Poincaré theory. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Figure 1

14 pages, 516 KiB  
Article
On the Thermodynamics of Particles Obeying Monotone Statistics
by Fabio Ciolli, Francesco Fidaleo and Chiara Marullo
Entropy 2023, 25(2), 216; https://doi.org/10.3390/e25020216 - 22 Jan 2023
Cited by 1 | Viewed by 1263
Abstract
The aim of the present paper is to provide a preliminary investigation of the thermodynamics of particles obeying monotone statistics. To render the potential physical applications realistic, we propose a modified scheme called block-monotone, based on a partial order arising from the [...] Read more.
The aim of the present paper is to provide a preliminary investigation of the thermodynamics of particles obeying monotone statistics. To render the potential physical applications realistic, we propose a modified scheme called block-monotone, based on a partial order arising from the natural one on the spectrum of a positive Hamiltonian with compact resolvent. The block-monotone scheme is never comparable with the weak monotone one and is reduced to the usual monotone scheme whenever all the eigenvalues of the involved Hamiltonian are non-degenerate. Through a detailed analysis of a model based on the quantum harmonic oscillator, we can see that: (a) the computation of the grand-partition function does not require the Gibbs correction factor n! (connected with the indistinguishability of particles) in the various terms of its expansion with respect to the activity; and (b) the decimation of terms contributing to the grand-partition function leads to a kind of “exclusion principle” analogous to the Pauli exclusion principle enjoined by Fermi particles, which is more relevant in the high-density regime and becomes negligible in the low-density regime, as expected. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure A1

12 pages, 676 KiB  
Article
Particle Production in Strong Electromagnetic Fields and Local Approximations
by Ivan A. Aleksandrov, Denis G. Sevostyanov and Vladimir M. Shabaev
Symmetry 2022, 14(11), 2444; https://doi.org/10.3390/sym14112444 - 18 Nov 2022
Cited by 6 | Viewed by 1607
Abstract
We investigate the phenomenon of electron–positron pair production in intense external backgrounds within the strong-field regime. We perform nonperturbative calculations by solving the quantum kinetic equations, and obtain the momentum distributions of particles created and the total number of pairs. In particular, we [...] Read more.
We investigate the phenomenon of electron–positron pair production in intense external backgrounds within the strong-field regime. We perform nonperturbative calculations by solving the quantum kinetic equations, and obtain the momentum distributions of particles created and the total number of pairs. In particular, we analyze the validity of the locally constant field approximation (LCFA), which represents a powerful method for treating inhomogeneous external backgrounds. We consider a combination of two consecutive time-dependent Sauter pulses and thoroughly examine the effects of quantum interference and the role of the Pauli exclusion principle. It is shown that the latter can be approximately incorporated within the LCFA when computing the momentum distributions, while the closed-form LCFA expression for the total particle yield completely disregards Pauli blocking. It is demonstrated that in the presence of multiple turning points of classical electron trajectories, one observes interference patterns in the particle spectra, and the LCFA may significantly overestimate the number of pairs. To further elaborate this issue, we perform the analogous calculations in the case of scalar QED. It is shown that the quantum statistics effects enhance the number of bosons produced. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

15 pages, 2375 KiB  
Article
The Black Hole Universe, Part II
by Enrique Gaztanaga
Symmetry 2022, 14(10), 1984; https://doi.org/10.3390/sym14101984 - 22 Sep 2022
Cited by 9 | Viewed by 1967
Abstract
In part I of this series, we showed that the observed Universe can be modeled as a local Black Hole of fixed mass M6×1022M, without Dark Energy: cosmic acceleration is caused by the Black Hole [...] Read more.
In part I of this series, we showed that the observed Universe can be modeled as a local Black Hole of fixed mass M6×1022M, without Dark Energy: cosmic acceleration is caused by the Black Hole event horizon rS = 2GM. Here, we propose that such Black Hole Universe (together with smaller primordial Black Holes) could form from the hierarchical free-fall collapse of regular matter. We argue that the singularity could be avoided with a Big Bounce explosion, which results from neutron degeneracy pressure (Pauli exclusion principle). This happens at GeV energies, like in core collapse supernova, well before the collapse reaches Planck energies (1019 GeV). If our Universe formed this way, there is no need for Cosmic Inflation or a singular start (the Big Bang). Nucleosynthesis and recombination follow a hot expansion, as in the standard model, but cosmological measurements (which are free parameters in the standard model) could in principle be predicted from first principles. Part or all of the Dark Matter could be made up of primordial compact objects (Black Holes and Neutron Stars), remnants of the collapse and bounce. This can provide a faster start for galaxy formation. We present a simple prediction to explain the observed value of M6×1022M or equivalently ΩΛ (the fraction of the critical energy density observed today in form of Dark Energy) and the coincidence problem ΩmΩΛ. Full article
(This article belongs to the Special Issue Nature and Origin of Dark Matter and Dark Energy)
Show Figures

Figure 1

10 pages, 697 KiB  
Article
Testing the Pauli Exclusion Principle with the VIP-2 Experiment
by Fabrizio Napolitano, Sergio Bartalucci, Sergio Bertolucci, Massimiliano Bazzi, Mario Bragadireanu, Cesidio Capoccia, Michael Cargnelli, Alberto Clozza, Luca De Paolis, Raffaele Del Grande, Carlo Fiorini, Carlo Guaraldo, Mihail Iliescu, Matthias Laubenstein, Johann Marton, Marco Miliucci, Edoardo Milotti, Federico Nola, Kristian Piscicchia, Alessio Porcelli, Alessandro Scordo, Francesco Sgaramella, Hexi Shi, Diana Laura Sirghi, Florin Sirghi, Oton Vazquez Doce, Johann Zmeskal and Catalina Curceanuadd Show full author list remove Hide full author list
Symmetry 2022, 14(5), 893; https://doi.org/10.3390/sym14050893 - 27 Apr 2022
Cited by 14 | Viewed by 2900
Abstract
Violations of the Pauli Exclusion Principle (PEP), albeit small, could be motivated by physics beyond the Standard Model, ranging from violation of Lorentz invariance to extra space dimensions. This scenario can be experimentally constrained through dedicated, state-of-the-art X-ray spectroscopy, searching for a forbidden [...] Read more.
Violations of the Pauli Exclusion Principle (PEP), albeit small, could be motivated by physics beyond the Standard Model, ranging from violation of Lorentz invariance to extra space dimensions. This scenario can be experimentally constrained through dedicated, state-of-the-art X-ray spectroscopy, searching for a forbidden atomic transition from the L shell to the K shell already occupied by two electrons. The VIP-2 Experiment located at the underground Gran Sasso National Laboratories of INFN (Italy) tests PEP violations by introducing new electrons via a direct current in a copper conductor, measuring the X-ray energies through a silicon drift detector. Bayesian and frequentist analyses of approximately six months of data taken with the fully operational setup is presented, setting the strongest limit to date on the PEP violation shown by the VIP collaboration. The upper bound on PEP violation are placed at 90% CL β2/26.8×1042 with the Bayesian approach, and β2/27.1×1042 with the frequentist CLs technique. Full article
(This article belongs to the Special Issue Symmetries and the Pauli Exclusion Principle)
Show Figures

Figure 1

15 pages, 702 KiB  
Article
Bound States of the Exchange—Correlation Excitons in the Uniform Electron Gas by the Monte Carlo Simulations
by Vladimir Filinov, Alexander Larkin and Pavel Levashov
Universe 2022, 8(2), 79; https://doi.org/10.3390/universe8020079 - 27 Jan 2022
Cited by 7 | Viewed by 1703
Abstract
The modified path integral representation of Wigner functions and the new Monte Carlo approach has been suggested to account for the impact of the interparticle interaction on the Pauli exclusion principle of fermions. This approach also allows to calculate the momentum distribution functions [...] Read more.
The modified path integral representation of Wigner functions and the new Monte Carlo approach has been suggested to account for the impact of the interparticle interaction on the Pauli exclusion principle of fermions. This approach also allows to calculate the momentum distribution functions and to reduce the “sign problem” that is inaccessible to the standard path integral Monte Carlo methods. The obtained pair electron–electron distribution functions for the “uniform electron gas” demonstrate the short-range quantum ordering of electrons associated with exchange-correlation excitons. The exchange-correlation exciton is caused by the interaction of electrons with positively charged exchange holes and the excluded volume effect. The developed approach allows one to study the density–temperature range of the exciton arising, existence, and decay. Using the potential of the mean force and semiclassical Bohr–Sommerfeld quantization condition, we have demonstrated the existence of bound states disturbing the Maxwellian distribution and estimated their average energy levels. The exchange-correlation excitons have not been observed earlier in the standard path integral Monte Carlo simulations. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

Back to TopTop