Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (440)

Search Parameters:
Keywords = PolSAR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 15148 KiB  
Article
Analyzing Temporal Characteristics of Winter Catch Crops Using Sentinel-1 Time Series
by Shanmugapriya Selvaraj, Damian Bargiel, Abdelaziz Htitiou and Heike Gerighausen
Remote Sens. 2024, 16(19), 3737; https://doi.org/10.3390/rs16193737 (registering DOI) - 8 Oct 2024
Abstract
Catch crops are intermediate crops sown between two main crop cycles. Their adoption into the cropping system has increased considerably in the last years due to its numerous benefits, in particular its potential in carbon fixation and preventing nitrogen leaching during winter. The [...] Read more.
Catch crops are intermediate crops sown between two main crop cycles. Their adoption into the cropping system has increased considerably in the last years due to its numerous benefits, in particular its potential in carbon fixation and preventing nitrogen leaching during winter. The growth period of catch crops in Germany is often marked by dense cloud cover, which limits land surface monitoring through optical remote sensing. In such conditions, synthetic aperture radar (SAR) emerges as a viable option. Despite the known advantages of SAR, the understanding of temporal behavior of radar parameters in relation to catch crops remains largely unexplored. Hence, in this study, we exploited the dense time series of Sentinel-1 data within the Copernicus Space Component to study the temporal characteristics of catch crops over a test site in the center of Germany. Radar parameters such as VV, VH, VH/VV backscatter, dpRVI (dual-pol Radar Vegetation Index) and VV coherence were extracted, and temporal profiles were interpreted for catch crops and preceding main crops along with in situ, temperature, and precipitation data. Additionally, we examined the temporal profiles of winter main crops (winter oilseed rape and winter cereals), that are grown parallel to the catch crop growing cycle. Based on the analyzed temporal patterns, we defined 22 descriptive features from VV, VH, VH/VV and dpRVI, which are specific to catch crop identification. Then, we conducted a Kruskal–Wallis test on the extracted parameters, both crop-wise and group-wise, to assess the significance of statistical differences among different catch crop groups. Our results reveal that there exists a unique temporal pattern for catch crops compared to main crops, and each of these extracted parameters possess a different sensitivity to catch crops. Parameters VV and VH are sensitive to phenological stages and crop structure. On the other hand, VH/VV and dpRVI were found to be highly sensitive to crop biomass. Coherence can be used to detect the sowing and harvest events. The preceding main crop analysis reveals that winter wheat and winter barley are the two dominant main crops grown before catch crops. Moreover, winter main crops (winter oilseed rape, winter cereals) cultivated during the catch crop cycle can be distinguished by exploiting the observed sowing window differences. The extracted descriptive features provide information about sowing, harvest, vigor, biomass, and early/late die-off nature specific to catch crop types. In the Kruskal–Wallis test, the observed high H-statistic and low p-value in several predictors indicates significant variability at 0.001 level. Furthermore, Dunn’s post hoc test among catch crop group pairs highlights the substantial differences between cold-sensitive and legume groups (p < 0.001). Full article
21 pages, 13186 KiB  
Article
Ship Contour Extraction from Polarimetric SAR Images Based on Polarization Modulation
by Guoqing Wu, Shengbin Luo Wang, Yibin Liu, Ping Wang and Yongzhen Li
Remote Sens. 2024, 16(19), 3669; https://doi.org/10.3390/rs16193669 - 1 Oct 2024
Viewed by 441
Abstract
Ship contour extraction is vital for extracting the geometric features of ships, providing comprehensive information essential for ship recognition. The main factors affecting the contour extraction performance are speckle noise and amplitude inhomogeneity, which can lead to over-segmentation and missed detection of ship [...] Read more.
Ship contour extraction is vital for extracting the geometric features of ships, providing comprehensive information essential for ship recognition. The main factors affecting the contour extraction performance are speckle noise and amplitude inhomogeneity, which can lead to over-segmentation and missed detection of ship edges. Polarimetric synthetic aperture radar (PolSAR) images contain rich target scattering information. Under different transmitting and receiving polarization, the amplitude and phase of pixels can be different, which provides the potential to meet the uniform requirement. This paper proposes a novel ship contour extraction framework from PolSAR images based on polarization modulation. Firstly, the image is partitioned into the foreground and background using a super-pixel unsupervised clustering approach. Subsequently, an optimization criterion for target amplitude modulation to achieve uniformity is designed. Finally, the ship’s contour is extracted from the optimized image using an edge-detection operator and an adaptive edge extraction algorithm. Based on the contour, the geometric features of ships are extracted. Moreover, a PolSAR ship contour extraction dataset is established using Gaofen-3 PolSAR images, combined with expert knowledge and automatic identification system (AIS) data. With this dataset, we compare the accuracy of contour extraction and geometric features with state-of-the-art methods. The average errors of extracted length and width are reduced to 20.09 m and 8.96 m. The results demonstrate that the proposed method performs well in both accuracy and precision. Full article
(This article belongs to the Special Issue SAR Images Processing and Analysis (2nd Edition))
Show Figures

Figure 1

16 pages, 5920 KiB  
Article
Pixel-Level Decision Fusion for Land Cover Classification Using PolSAR Data and Local Pattern Differences
by Spiros Papadopoulos, Vassilis Anastassopoulos and Georgia Koukiou
Electronics 2024, 13(19), 3846; https://doi.org/10.3390/electronics13193846 - 28 Sep 2024
Viewed by 303
Abstract
Combining various viewpoints to produce coherent and cohesive results requires decision fusion. These methodologies are essential for synthesizing data from multiple sensors in remote sensing classification in order to make conclusive decisions. Using fully polarimetric Synthetic Aperture Radar (PolSAR) imagery, our study combines [...] Read more.
Combining various viewpoints to produce coherent and cohesive results requires decision fusion. These methodologies are essential for synthesizing data from multiple sensors in remote sensing classification in order to make conclusive decisions. Using fully polarimetric Synthetic Aperture Radar (PolSAR) imagery, our study combines the benefits of both approaches for detection by extracting Pauli’s and Krogager’s decomposition components. The Local Pattern Differences (LPD) method was employed on every decomposition component for pixel-level texture feature extraction. These extracted features were utilized to train three independent classifiers. Ultimately, these findings were handled as independent decisions for each land cover type and were fused together using a decision fusion rule to produce complete and enhanced classification results. As part of our approach, after a thorough examination, the most appropriate classifiers and decision rules were exploited, as well as the mathematical foundations required for effective decision fusion. Incorporating qualitative and quantitative information into the decision fusion process ensures robust and reliable classification results. The innovation of our approach lies in the dual use of decomposition methods and the application of a simple but effective decision fusion strategy. Full article
(This article belongs to the Special Issue Artificial Intelligence in Image Processing and Computer Vision)
Show Figures

Figure 1

24 pages, 1677 KiB  
Article
CPINet: Towards A Novel Cross-Polarimetric Interaction Network for Dual-Polarized SAR Ship Classification
by Jinglu He, Ruiting Sun, Yingying Kong, Wenlong Chang, Chenglu Sun, Gaige Chen, Yinghua Li, Zhe Meng and Fuping Wang
Remote Sens. 2024, 16(18), 3479; https://doi.org/10.3390/rs16183479 - 19 Sep 2024
Viewed by 535
Abstract
With the rapid development of the modern world, it is imperative to achieve effective and efficient monitoring for territories of interest, especially for the broad ocean area. For surveillance of ship targets at sea, a common and powerful approach is to take advantage [...] Read more.
With the rapid development of the modern world, it is imperative to achieve effective and efficient monitoring for territories of interest, especially for the broad ocean area. For surveillance of ship targets at sea, a common and powerful approach is to take advantage of satellite synthetic aperture radar (SAR) systems. Currently, using satellite SAR images for ship classification is a challenging issue due to complex sea situations and the imaging variances of ships. Fortunately, the emergence of advanced satellite SAR sensors has shed much light on the SAR ship automatic target recognition (ATR) task, e.g., utilizing dual-polarization (dual-pol) information to boost the performance of SAR ship classification. Therefore, in this paper we have developed a novel cross-polarimetric interaction network (CPINet) to explore the abundant polarization information of dual-pol SAR images with the help of deep learning strategies, leading to an effective solution for high-performance ship classification. First, we establish a novel multiscale deep feature extraction framework to fully mine the characteristics of dual-pol SAR images in a coarse-to-fine manner. Second, to further leverage the complementary information of dual-pol SAR images, we propose a mixed-order squeeze–excitation (MO-SE) attention mechanism, in which the first- and second-order statistics of the deep features from one single-polarized SAR image are extracted to guide the learning of another polarized one. Then, the intermediate multiscale fused and MO-SE augmented dual-polarized deep feature maps are respectively aggregated by the factorized bilinear coding (FBC) pooling method. Meanwhile, the last multiscale fused deep feature maps for each single-polarized SAR image are also individually aggregated by the FBC. Finally, four kinds of highly discriminative deep representations are obtained for loss computation and category prediction. For better network training, the gradient normalization (GradNorm) method for multitask networks is extended to adaptively balance the contribution of each loss component. Extensive experiments on the three- and five-category dual-pol SAR ship classification dataset collected from the open and free OpenSARShip database demonstrate the superiority and robustness of CPINet compared with state-of-the-art methods for the dual-polarized SAR ship classification task. Full article
(This article belongs to the Special Issue SAR in Big Data Era III)
Show Figures

Figure 1

15 pages, 6660 KiB  
Article
Forest Canopy Height Estimation Combining Dual-Polarization PolSAR and Spaceborne LiDAR Data
by Yao Tong, Zhiwei Liu, Haiqiang Fu, Jianjun Zhu, Rong Zhao, Yanzhou Xie, Huacan Hu, Nan Li and Shujuan Fu
Forests 2024, 15(9), 1654; https://doi.org/10.3390/f15091654 - 19 Sep 2024
Viewed by 596
Abstract
Forest canopy height data are fundamental parameters of forest structure and are critical for understanding terrestrial carbon stock, global carbon cycle dynamics and forest productivity. To address the limitations of retrieving forest canopy height using conventional PolInSAR-based methods, we proposed a method to [...] Read more.
Forest canopy height data are fundamental parameters of forest structure and are critical for understanding terrestrial carbon stock, global carbon cycle dynamics and forest productivity. To address the limitations of retrieving forest canopy height using conventional PolInSAR-based methods, we proposed a method to estimate forest height by combining single-temporal polarimetric synthetic aperture radar (PolSAR) images with sparse spaceborne LiDAR (forest height) measurements. The core idea of our method is that volume scattering energy variations which are linked to forest canopy height occur during radar acquisition. Specifically, our methodology begins by employing a semi-empirical inversion model directly derived from the random volume over ground (RVoG) formulation to establish the relationship between forest canopy height, volume scattering energy and wave extinction. Subsequently, PolSAR decomposition techniques are used to extract canopy volume scattering energy. Additionally, machine learning is employed to generate a spatially continuous extinction coefficient product, utilizing sparse LiDAR samples for assistance. Finally, with the derived inversion model and the resulting model parameters (i.e., volume scattering power and extinction coefficient), forest canopy height can be estimated. The performance of the proposed forest height inversion method is illustrated with L-band NASA/JPL UAVSAR from AfriSAR data conducted over the Gabon Lope National Park and airborne LiDAR data. Compared to high-accuracy airborne LiDAR data, the obtained forest canopy height from the proposed approach exhibited higher accuracy (R2 = 0.92, RMSE = 6.09 m). The results demonstrate the potential and merit of the synergistic combination of PolSAR (volume scattering power) and sparse LiDAR (forest height) measurements for forest height estimation. Additionally, our approach achieves good performance in forest height estimation, with accuracy comparable to that of the multi-baseline PolInSAR-based inversion method (RMSE = 5.80 m), surpassing traditional PolSAR-based methods with an accuracy of 10.86 m. Given the simplicity and efficiency of the proposed method, it has the potential for large-scale forest height estimation applications when only single-temporal dual-polarization acquisitions are available. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

30 pages, 11567 KiB  
Article
Gini Coefficient-Based Feature Learning for Unsupervised Cross-Domain Classification with Compact Polarimetric SAR Data
by Xianyu Guo, Junjun Yin, Kun Li and Jian Yang
Agriculture 2024, 14(9), 1511; https://doi.org/10.3390/agriculture14091511 - 3 Sep 2024
Viewed by 567
Abstract
Remote sensing image classification usually needs many labeled samples so that the target nature can be fully described. For synthetic aperture radar (SAR) images, variations of the target scattering always happen to some extent due to the imaging geometry, weather conditions, and system [...] Read more.
Remote sensing image classification usually needs many labeled samples so that the target nature can be fully described. For synthetic aperture radar (SAR) images, variations of the target scattering always happen to some extent due to the imaging geometry, weather conditions, and system parameters. Therefore, labeled samples in one image could not be suitable to represent the same target in other images. The domain distribution shift of different images reduces the reusability of the labeled samples. Thus, exploring cross-domain interpretation methods is of great potential for SAR images to improve the reuse rate of existing labels from historical images. In this study, an unsupervised cross-domain classification method is proposed that utilizes the Gini coefficient to rank the robust and stable polarimetric features in both the source and target domains (GRFST) such that an unsupervised domain adaptation (UDA) can be achieved. This method selects the optimal features from both the source and target domains to alleviate the domain distribution shift. Both fully polarimetric (FP) and compact polarimetric (CP) SAR features are explored for crop-domain terrain type classification. Specifically, the CP mode refers to the hybrid dual-pol mode with an arbitrary transmitting ellipse wave. This is the first attempt in the open literature to investigate the representing abilities of different CP modes for cross-domain terrain classification. Experiments are conducted from four aspects to demonstrate the performance of CP modes for cross-data, cross-scene, and cross-crop type classification. Results show that the GRFST-UDA method yields a classification accuracy of 2% to 12% higher than the traditional UDA methods. The degree of scene similarity has a certain impact on the accuracy of cross-domain crop classification. It was also found that when both the FP and circular CP SAR data are used, stable, promising results can be achieved. Full article
(This article belongs to the Special Issue Applications of Remote Sensing in Agricultural Soil and Crop Mapping)
Show Figures

Figure 1

21 pages, 5624 KiB  
Article
A Multi-Baseline Forest Height Estimation Method Combining Analytic and Geometric Expression of the RVoG Model
by Bing Zhang, Hongbo Zhu, Weidong Song, Jianjun Zhu, Jiguang Dai, Jichao Zhang and Chengjin Li
Forests 2024, 15(9), 1496; https://doi.org/10.3390/f15091496 - 27 Aug 2024
Viewed by 424
Abstract
As an important parameter of forest biomass, forest height is of great significance for the calculation of forest carbon stock and the study of the carbon cycle in large-scale regions. The main idea of the current forest height inversion methods using multi-baseline P-band [...] Read more.
As an important parameter of forest biomass, forest height is of great significance for the calculation of forest carbon stock and the study of the carbon cycle in large-scale regions. The main idea of the current forest height inversion methods using multi-baseline P-band polarimetric interferometric synthetic aperture radar (PolInSAR) data is to select the best baseline for forest height inversion. However, the approach of selecting the optimal baseline for forest height inversion results in the process of forest height inversion being unable to fully utilize the abundant observation data. In this paper, to solve the problem, we propose a multi-baseline forest height inversion method combining analytic and geometric expression of the random volume over ground (RVoG) model, which takes into account the advantages of the selection of the optimal observation baseline and the utilization of multi-baseline information. In this approach, for any related pixel, an optimal baseline is selected according to the geometric structure of the coherence region shape and the functional model for forest height inversion is established by the RVoG model’s analytic expression. In this way, the other baseline observations are transformed into a constraint condition according to the RVoG model’s geometric expression and are also involved in the forest height inversion. PolInSAR data were used to validate the proposed multi-baseline forest height inversion method. The results show that the accuracy of the forest height inversion with the algorithm proposed in this paper in a coniferous forest area and tropical rainforest area was improved by 17% and 39%, respectively. The method proposed in this paper provides a multi-baseline PolInSAR forest height inversion scheme for exploring regional high-precision forest height distribution. The scheme is an applicable method for large-scale, high-precision forest height inversion tasks. Full article
Show Figures

Figure 1

25 pages, 94594 KiB  
Article
Harbor Detection in Polarimetric SAR Images Based on Context Features and Reflection Symmetry
by Chun Liu, Jie Gao, Shichong Liu, Chao Li, Yongchao Cheng, Yi Luo and Jian Yang
Remote Sens. 2024, 16(16), 3079; https://doi.org/10.3390/rs16163079 - 21 Aug 2024
Viewed by 540
Abstract
The detection of harbors presents difficulties related to their diverse sizes, varying morphology and scattering, and complex backgrounds. To avoid the extraction of unstable geometric features, in this paper, we propose an unsupervised harbor detection method for polarimetric SAR images using context features [...] Read more.
The detection of harbors presents difficulties related to their diverse sizes, varying morphology and scattering, and complex backgrounds. To avoid the extraction of unstable geometric features, in this paper, we propose an unsupervised harbor detection method for polarimetric SAR images using context features and polarimetric reflection symmetry. First, the image is segmented into three region types, i.e., water low-scattering regions, strong-scattering urban regions, and other regions, based on a multi-region Markov random field (MRF) segmentation method. Second, by leveraging the fact that harbors are surrounded by water on one side and a large number of buildings on the other, the coastal narrow-band area is extracted from the low-scattering regions, and the harbor regions of interest (ROIs) are determined by extracting the strong-scattering regions from the narrow-band area. Finally, by using the scattering reflection asymmetry of harbor buildings, harbors are identified based on the global threshold segmentation of the horizontal, vertical, and circular co- and cross-polarization correlation powers of the extracted ROIs. The effectiveness of the proposed method was validated with experiments on RADARSAT-2 quad-polarization images of Zhanjiang, Fuzhou, Lingshui, and Dalian, China; San Francisco, USA; and Singapore. The proposed method had high detection rates and low false detection rates in the complex coastal environment scenarios studied, far outperforming the traditional spatial harbor detection method considered for comparison. Full article
Show Figures

Figure 1

23 pages, 2216 KiB  
Article
Complex-Valued 2D-3D Hybrid Convolutional Neural Network with Attention Mechanism for PolSAR Image Classification
by Wenmei Li, Hao Xia, Jiadong Zhang, Yu Wang, Yan Jia and Yuhong He
Remote Sens. 2024, 16(16), 2908; https://doi.org/10.3390/rs16162908 - 9 Aug 2024
Cited by 1 | Viewed by 894
Abstract
The recently introduced complex-valued convolutional neural network (CV-CNN) has shown considerable advancements for polarimetric synthetic aperture radar (PolSAR) image classification by effectively incorporating both magnitude and phase information. However, a solitary 2D or 3D CNN encounters challenges such as insufficiently extracting scattering channel [...] Read more.
The recently introduced complex-valued convolutional neural network (CV-CNN) has shown considerable advancements for polarimetric synthetic aperture radar (PolSAR) image classification by effectively incorporating both magnitude and phase information. However, a solitary 2D or 3D CNN encounters challenges such as insufficiently extracting scattering channel dimension features or excessive computational parameters. Moreover, these networks’ default is that all information is equally important, consuming vast resources for processing useless information. To address these issues, this study presents a new hybrid CV-CNN with the attention mechanism (CV-2D/3D-CNN-AM) to classify PolSAR ground objects, possessing both excellent computational efficiency and feature extraction capability. In the proposed framework, multi-level discriminative features are extracted from preprocessed data through hybrid networks in the complex domain, along with a special attention block to filter the feature importance from both spatial and channel dimensions. Experimental results performed on three PolSAR datasets demonstrate our present approach’s superiority over other existing ones. Furthermore, ablation experiments confirm the validity of each module, highlighting our model’s robustness and effectiveness. Full article
(This article belongs to the Special Issue Advances in Synthetic Aperture Radar Data Processing and Application)
Show Figures

Graphical abstract

25 pages, 8439 KiB  
Article
On Unsupervised Multiclass Change Detection Using Dual-Polarimetric SAR Data
by Minhwa Kim, Seung-Jae Lee and Sang-Eun Park
Remote Sens. 2024, 16(15), 2858; https://doi.org/10.3390/rs16152858 - 5 Aug 2024
Viewed by 638
Abstract
Change detection using SAR data has been an active topic in various applications. Because conventional change detection identifies signal changes in single-pol radar observations, they cannot separately detect different kinds of change associated with different ground parameters. In this study, we investigated the [...] Read more.
Change detection using SAR data has been an active topic in various applications. Because conventional change detection identifies signal changes in single-pol radar observations, they cannot separately detect different kinds of change associated with different ground parameters. In this study, we investigated the comprehensive use of dual-pol parameters and proposed a novel dual-pol-based change detection framework utilizing different dual-pol scatter-type indicators. To optimize the exploitation of dual-pol change information, we presented a two-step processing strategy that divides the multiclass change detection process into a binary detection step that identifies the presence of changes and the classification step that distinguishes the types of change. In the detection stage, each dual-pol parameter was considered as an independent information source. Assuming potential conflict between dual-pol parameters, a disjunctive combination of detection results from different dual-pol parameters was applied to obtain the final detection result. In the classification step, an unsupervised change classification strategy was proposed based on the change direction and magnitude of the dual-pol parameters within the change class. Experimental results exhibited significantly improved detectability across a wide change spectrum compared with previous dual-pol-based change detection approaches. They also demonstrated the possibility of distinguishing different semantic changes without in situ ground data. Full article
Show Figures

Figure 1

27 pages, 8943 KiB  
Article
How Phenology Shapes Crop-Specific Sentinel-1 PolSAR Features and InSAR Coherence across Multiple Years and Orbits
by Johannes Löw, Steven Hill, Insa Otte, Michael Thiel, Tobias Ullmann and Christopher Conrad
Remote Sens. 2024, 16(15), 2791; https://doi.org/10.3390/rs16152791 - 30 Jul 2024
Viewed by 692
Abstract
Spatial information about plant health and productivity are essential when assessing the progress towards Sustainable Development Goals such as life on land and zero hunger. Plant health and productivity are strongly linked to a plant’s phenological progress. Remote sensing, and since the launch [...] Read more.
Spatial information about plant health and productivity are essential when assessing the progress towards Sustainable Development Goals such as life on land and zero hunger. Plant health and productivity are strongly linked to a plant’s phenological progress. Remote sensing, and since the launch of Sentinel-1 (S1), specifically, radar-based frameworks have been studied for the purpose of monitoring phenological development. This study produces insights into how crop phenology shapes S1 signatures of PolSAR features and InSAR coherence of wheat, canola, sugar beet. and potato across multiple years and orbits. Hereby, differently smoothed time series and a base line of growing degree days are stacked to estimate the patterns of occurrence of extreme values and break points. These patterns are then linked to in situ observations of phenological developments. The comparison of patterns across multiple orbits and years reveals that a single optimized fit hampers the tracking capacities of an entire season monitoring framework, as does the sole reliance on extreme values. VV and VH backscatter intensities outperform all other features, but certain combinations of phenological stage and crop type are better covered by a complementary set of PolSAR features and coherence. With regard to PolSAR features, alpha and entropy can be replaced by the cross-polarization ratio for tracking certain stages. Moreover, a range of moderate incidence angles is better suited for monitoring crop phenology. Also, wheat and canola are favored by a late afternoon overpass. In sum, this study provides insights into phenological developments at the landscape level that can be of further use when investigating spatial and temporal variations within the landscape. Full article
(This article belongs to the Special Issue Cropland Phenology Monitoring Based on Cloud-Computing Platforms)
Show Figures

Figure 1

20 pages, 14550 KiB  
Article
Monitoring Cover Crop Biomass in Southern Brazil Using Combined PlanetScope and Sentinel-1 SAR Data
by Fábio Marcelo Breunig, Ricardo Dalagnol, Lênio Soares Galvão, Polyanna da Conceição Bispo, Qing Liu, Elias Fernando Berra, William Gaida, Veraldo Liesenberg and Tony Vinicius Moreira Sampaio
Remote Sens. 2024, 16(15), 2686; https://doi.org/10.3390/rs16152686 - 23 Jul 2024
Cited by 1 | Viewed by 854
Abstract
Precision agriculture integrates multiple sensors and data types to support farmers with informed decision-making tools throughout crop cycles. This study evaluated Aboveground Biomass (AGB) estimates of Rye using attributes derived from PlanetScope (PS) optical, Sentinel-1 Synthetic Aperture Radar (SAR), and hybrid (optical plus [...] Read more.
Precision agriculture integrates multiple sensors and data types to support farmers with informed decision-making tools throughout crop cycles. This study evaluated Aboveground Biomass (AGB) estimates of Rye using attributes derived from PlanetScope (PS) optical, Sentinel-1 Synthetic Aperture Radar (SAR), and hybrid (optical plus SAR) datasets. Optical attributes encompassed surface reflectance from PS’s blue, green, red, and near-infrared (NIR) bands, alongside the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). Sentinel-1 SAR attributes included the C-band Synthetic Aperture Radar Ground Range Detected, VV and HH polarizations, and both Ratio and Polarization (Pol) indices. Ground reference AGB data for Rye (Secale cereal L.) were collected from 50 samples and four dates at a farm located in southern Brazil, aligning with image acquisition dates. Multiple linear regression models were trained and validated. AGB was estimated based on individual (optical PS or Sentinel-1 SAR) and combined datasets (optical plus SAR). This process was repeated 100 times, and variable importance was extracted. Results revealed improved Rye AGB estimates with integrated optical and SAR data. Optical vegetation indices displayed higher correlation coefficients (r) for AGB estimation (r = +0.67 for both EVI and NDVI) compared to SAR attributes like VV, Ratio, and polarization (r ranging from −0.52 to −0.58). However, the hybrid regression model enhanced AGB estimation (R2 = 0.62, p < 0.01), reducing RMSE to 579 kg·ha−1. Using only optical or SAR data yielded R2 values of 0.51 and 0.42, respectively (p < 0.01). In the hybrid model, the most important predictors were VV, NIR, blue, and EVI. Spatial distribution analysis of predicted Rye AGB unveiled agricultural zones associated with varying biomass throughout the cover crop development. Our findings underscored the complementarity of optical with SAR data to enhance AGB estimates of cover crops, offering valuable insights for agricultural zoning to support soil and cash crop management. Full article
(This article belongs to the Special Issue Advancements in Remote Sensing for Sustainable Agriculture)
Show Figures

Figure 1

26 pages, 6691 KiB  
Article
Calibration of SAR Polarimetric Images by Covariance Matching Estimation Technique with Initial Search
by Jingke Liu, Lin Liu and Xiaojie Zhou
Remote Sens. 2024, 16(13), 2400; https://doi.org/10.3390/rs16132400 - 29 Jun 2024
Viewed by 759
Abstract
To date, various methods have been proposed for calibrating polarimetric synthetic aperture radar (SAR) using distributed targets. Some studies have utilized the covariance matching estimation technique (Comet) for SAR data calibration. However, practical applications have revealed issues stemming from ill-conditioned problems due to [...] Read more.
To date, various methods have been proposed for calibrating polarimetric synthetic aperture radar (SAR) using distributed targets. Some studies have utilized the covariance matching estimation technique (Comet) for SAR data calibration. However, practical applications have revealed issues stemming from ill-conditioned problems due to the analytical solution in the iterative process. To tackle this challenge, an improved method called Comet IS is introduced. Firstly, we introduce an outlier detection mechanism which is based on the Quegan algorithm’s results. Next, we incorporate an initial search approach which is based on the interior point method for recalibration. With the outlier detection mechanism in place, the algorithm can recalibrate iteratively until the results are correct. Simulation experiments reveal that the improved algorithm outperforms the original one. Furthermore, we compare the improved method with Quegan and Ainsworth algorithms, demonstrating its superior performance in calibration. Furthermore, we validate our method’s advancement using real data and corner reflectors. Compared with the other two algorithms, the improved performance in crosstalk isolation and channel imbalance is significant. This research provides a more reliable and effective approach for polarimetric SAR calibration, which is significant for enhancing SAR imaging quality. Full article
Show Figures

Figure 1

18 pages, 31707 KiB  
Article
IceGCN: An Interactive Sea Ice Classification Pipeline for SAR Imagery Based on Graph Convolutional Network
by Mingzhe Jiang, Xinwei Chen, Linlin Xu and David A. Clausi
Remote Sens. 2024, 16(13), 2301; https://doi.org/10.3390/rs16132301 - 24 Jun 2024
Cited by 1 | Viewed by 723
Abstract
Monitoring sea ice in the Arctic region is crucial for polar maritime activities. The Canadian Ice Service (CIS) wants to augment its manual interpretation with machine learning-based approaches due to the increasing data volume received from newly launched synthetic aperture radar (SAR) satellites. [...] Read more.
Monitoring sea ice in the Arctic region is crucial for polar maritime activities. The Canadian Ice Service (CIS) wants to augment its manual interpretation with machine learning-based approaches due to the increasing data volume received from newly launched synthetic aperture radar (SAR) satellites. However, fully supervised machine learning models require large training datasets, which are usually limited in the sea ice classification field. To address this issue, we propose a semi-supervised interactive system to classify sea ice in dual-pol RADARSAT-2 imagery using limited training samples. First, the SAR image is oversegmented into homogeneous regions. Then, a graph is constructed based on the segmentation results, and the feature set of each node is characterized by a convolutional neural network. Finally, a graph convolutional network (GCN) is employed to classify the whole graph using limited labeled nodes automatically. The proposed method is evaluated on a published dataset. Compared with referenced algorithms, this new method outperforms in both qualitative and quantitative aspects. Full article
(This article belongs to the Special Issue Recent Advances in Sea Ice Research Using Satellite Data)
Show Figures

Figure 1

30 pages, 12064 KiB  
Article
Inversion of Forest Aboveground Biomass in Regions with Complex Terrain Based on PolSAR Data and a Machine Learning Model: Radiometric Terrain Correction Assessment
by Yonghui Nie, Rula Sa, Sergey Chumachenko, Yifan Hu, Youzhu Wang and Wenyi Fan
Remote Sens. 2024, 16(12), 2229; https://doi.org/10.3390/rs16122229 - 19 Jun 2024
Viewed by 623
Abstract
The accurate estimation of forest aboveground biomass (AGB) in areas with complex terrain is very important for quantifying the carbon sequestration capacity of forest ecosystems and studying the regional or global carbon cycle. In our previous research, we proposed the radiometric terrain correction [...] Read more.
The accurate estimation of forest aboveground biomass (AGB) in areas with complex terrain is very important for quantifying the carbon sequestration capacity of forest ecosystems and studying the regional or global carbon cycle. In our previous research, we proposed the radiometric terrain correction (RTC) process for introducing normalized correction factors, which has strong effectiveness and robustness in terms of the backscattering coefficient of polarimetric synthetic aperture radar (PolSAR) data and the monadic model. However, the impact of RTC on the correctness of feature extraction and the performance of regression models requires further exploration in the retrieval of forest AGB based on a machine learning multiple regression model. In this study, based on PolSAR data provided by ALOS-2, 117 feature variables were accurately extracted using the RTC process, and then Boruta and recursive feature elimination with cross-validation (RFECV) algorithms were used to perform multi-step feature selection. Finally, 10 machine learning regression models and the Optuna algorithm were used to evaluate the effectiveness and robustness of RTC in improving the quality of the PolSAR feature set and the performance of the regression models. The results revealed that, compared with the situation without RTC treatment, RTC can effectively and robustly improve the accuracy of PolSAR features (the Pearson correlation R between the PolSAR features and measured forest AGB increased by 0.26 on average) and the performance of regression models (the coefficient of determination R2 increased by 0.14 on average, and the rRMSE decreased by 4.20% on average), but there is a certain degree of overcorrection in the RTC process. In addition, in situations where the data exhibit linear relationships, linear models remain a powerful and practical choice due to their efficient and stable characteristics. For example, the optimal regression model in this study is the Bayesian Ridge linear regression model (R2 = 0.82, rRMSE = 18.06%). Full article
(This article belongs to the Special Issue SAR for Forest Mapping III)
Show Figures

Graphical abstract

Back to TopTop