Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (156)

Search Parameters:
Keywords = QCM-D

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5252 KiB  
Article
Assessing the Quality of Solvent-Assisted Lipid Bilayers Formed at Different Phases and Aqueous Buffer Media: A QCM-D Study
by Marta Lavrič, Laure Bar, Martin E. Villanueva, Patricia Losada-Pérez, Aleš Iglič, Nikola Novak and George Cordoyiannis
Sensors 2024, 24(18), 6093; https://doi.org/10.3390/s24186093 - 20 Sep 2024
Abstract
Supported lipid bilayers (SLBs) are low-complexity biomimetic membranes, serving as popular experimental platforms to study membrane organization and lipid transfer, membrane uptake of nanoparticles and biomolecules, and many other processes. Quartz crystal microbalance with dissipation monitoring has been utilized to probe the influence [...] Read more.
Supported lipid bilayers (SLBs) are low-complexity biomimetic membranes, serving as popular experimental platforms to study membrane organization and lipid transfer, membrane uptake of nanoparticles and biomolecules, and many other processes. Quartz crystal microbalance with dissipation monitoring has been utilized to probe the influence of several parameters on the quality of SLBs formed on Au- and SiO2-coated sensors. The influence of the aqueous medium (i.e., buffer type) and the adsorption temperature, above and below the lipid melting point, is neatly explored for SLBs of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine formed by a solvent exchange. Below the lipid melting temperature, quality variations are observed upon the formation on Au and SiO2 surfaces, with the SLBs being more homogeneous for the latter. We further investigate how the buffer affects the detection of lipid melting in SLBs, a transition that necessitates high-sensitivity and time-consuming surface-sensitive techniques to be detected. Full article
Show Figures

Figure 1

22 pages, 6566 KiB  
Article
Preparation of Modified Polycarboxylate by Pyrrolidone for Using as a Dispersant in Cobalt Blue Nano-Pigment Slurry
by Qianqian Tang, Rong Yang, Jinnuo Li, Mingsong Zhou and Dongjie Yang
Molecules 2024, 29(16), 3940; https://doi.org/10.3390/molecules29163940 - 21 Aug 2024
Viewed by 346
Abstract
In this paper, N-vinylpyrrolidone was copolymerized with acrylic acid and itaconic acid by free radical polymerization, and a series of polyacrylic acid-co-itaconic acid-co-N-vinylpyrrolidone (PAIN) dispersants with different pyrrolidone ligand contents were synthesized and characterized. Then, the cobalt blue nano-pigment slurry (20 wt%) was [...] Read more.
In this paper, N-vinylpyrrolidone was copolymerized with acrylic acid and itaconic acid by free radical polymerization, and a series of polyacrylic acid-co-itaconic acid-co-N-vinylpyrrolidone (PAIN) dispersants with different pyrrolidone ligand contents were synthesized and characterized. Then, the cobalt blue nano-pigment slurry (20 wt%) was prepared through a water-based grinding method, and the optimum grinding technology was explored and determined as follows: PAIN2 as a dispersant, a dispersant dosage of 10 wt%, and a grinding time of 480 min. According to this optimum grinding technology, the prepared pigment slurry had a significantly decreased agglomeration, the D90 of which was 82 nm, and separately increased to 130 nm and 150 nm after heat storage for 3 and 7 days, exhibiting excellent heat storage stability. Additionally, its TSI value was also the lowest (1.9%), indicating good dispersion stability. The QCM and adorption capacity measuring results showed PAIN2 had a larger adsorption capacity, and the formed adsorption layer had a higher rigidity and was not easy to fall off. This was caused by both the interaction of carboxyl groups and the pyrrolidone ligand (strong coordination interaction) in PAIN2 with cobalt blue. The XPS and FT–IR measurements further proved the above-mentioned adsorption mechanism. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

23 pages, 3493 KiB  
Article
Dendrimer Platforms for Targeted Doxorubicin Delivery—Physicochemical Properties in Context of Biological Responses
by Magdalena Szota, Urszula Szwedowicz, Nina Rembialkowska, Anna Janicka-Klos, Daniel Doveiko, Yu Chen, Julita Kulbacka and Barbara Jachimska
Int. J. Mol. Sci. 2024, 25(13), 7201; https://doi.org/10.3390/ijms25137201 - 29 Jun 2024
Cited by 1 | Viewed by 854
Abstract
The unique structure of G4.0 PAMAM dendrimers allows a drug to be enclosed in internal spaces or immobilized on the surface. In the conducted research, the conditions for the formation of the active G4.0 PAMAM complex with doxorubicin hydrochloride (DOX) were optimized. The [...] Read more.
The unique structure of G4.0 PAMAM dendrimers allows a drug to be enclosed in internal spaces or immobilized on the surface. In the conducted research, the conditions for the formation of the active G4.0 PAMAM complex with doxorubicin hydrochloride (DOX) were optimized. The physicochemical properties of the system were monitored using dynamic light scattering (DLS), circular dichroism (CD), and fluorescence spectroscopy. The Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) method was chosen to determine the preferential conditions for the complex formation. The highest binding efficiency of the drug to the cationic dendrimer was observed under basic conditions when the DOX molecule was deprotonated. The decrease in the zeta potential of the complex confirms that DOX immobilizes through electrostatic interaction with the carrier’s surface amine groups. The binding constants were determined from the fluorescence quenching of the DOX molecule in the presence of G4.0 PAMAM. The two-fold way of binding doxorubicin in the structure of dendrimers was visible in the Isothermal calorimetry (ITC) isotherm. Fluorescence spectra and release curves identified the reversible binding of DOX to the nanocarrier. Among the selected cancer cells, the most promising anticancer activity of the G4.0-DOX complex was observed in A375 malignant melanoma cells. Moreover, the preferred intracellular location of the complexes concerning the free drug was found, which is essential from a therapeutic point of view. Full article
Show Figures

Figure 1

12 pages, 2422 KiB  
Article
Optimization of Electrospray Deposition Conditions of ZnO Thin Films for Ammonia Sensing
by Georgi Marinov, Gergana Alexieva, Katerina Lazarova, Rositsa Gergova, Petar Ivanov and Tsvetanka Babeva
Nanomaterials 2024, 14(12), 1008; https://doi.org/10.3390/nano14121008 - 11 Jun 2024
Viewed by 811
Abstract
This study focuses on the influence of electrospray deposition parameters on the morphology, topography, optical and sensing properties of ZnO films deposited on gold electrodes of quartz crystal resonators. The substrate temperature, precursor feed rate and emitter’s voltage were varied. Zinc acetate dehydrate [...] Read more.
This study focuses on the influence of electrospray deposition parameters on the morphology, topography, optical and sensing properties of ZnO films deposited on gold electrodes of quartz crystal resonators. The substrate temperature, precursor feed rate and emitter’s voltage were varied. Zinc acetate dehydrate dissolved in a mixture of deionized water, ethanol and acetic acid was used as a precursor. The surface morphology and average roughness of the films were studied by scanning electron microscopy (SEM) and 3D optical profilometry, respectively, while the optical properties were investigated by diffuse reflectance and photoluminescence measurements. The sensing response toward ammonia was tested and verified by the quartz crystal microbalance (QCM) method. The studies demonstrated that electrospray deposition parameters strongly influence the surface morphology, roughness and gas sensing properties of the films. The deposition parameters were optimized in order for the highest sensitivity toward ammonia to be achieved. The successful implementation of the electrospray method as a simple, versatile and low-cost method for deposition of ammonia-sensitive and selective ZnO films used as a sensing medium in QCM sensors was demonstrated and discussed. Full article
(This article belongs to the Special Issue Nanoscale Material-Based Gas Sensors)
Show Figures

Figure 1

14 pages, 4049 KiB  
Article
Bioinspired Dopamine and N-Oxide-Based Zwitterionic Polymer Brushes for Fouling Resistance Surfaces
by Zhen Zhou and Qinghong Shi
Polymers 2024, 16(12), 1634; https://doi.org/10.3390/polym16121634 - 9 Jun 2024
Viewed by 812
Abstract
Biofouling is a great challenge for engineering material in medical-, marine-, and pharmaceutical-related applications. In this study, a novel trimethylamine N-oxide (TMAO)–analog monomer, 3-(2-methylacrylamido)-N,N-dimethylpropylamine N-oxide (MADMPAO), was synthesized and applied for the grafting of poly(MADMPAO) (p [...] Read more.
Biofouling is a great challenge for engineering material in medical-, marine-, and pharmaceutical-related applications. In this study, a novel trimethylamine N-oxide (TMAO)–analog monomer, 3-(2-methylacrylamido)-N,N-dimethylpropylamine N-oxide (MADMPAO), was synthesized and applied for the grafting of poly(MADMPAO) (pMPAO) brushes on quartz crystal microbalance (QCM) chips by the combination of bio-inspired poly-dopamine (pDA) and surface-initiated atom transfer radical polymerization technology. The result of ion adsorption exhibited that a sequential pDA and pMPAO arrangement from the chip surface had different characteristics from a simple pDA layer. Ion adsorption on pMPAO-grafted chips was greatly inhibited at low salt concentrations of 1 and 10 mmol/L due to strong surface hydration in the presence of charged N+ and O of zwitterionic pMPAO brushes on the outer layer on the chip surface, well known as the “anti-polyelectrolyte” effect. During BSA adsorption, pMPAO grafting also led to a marked decrease in frequency shift, indicating great inhibition of protein adsorption. It was attributed to weaker BSA-pMPAO interaction. In this study, the Au@pDA-4-pMPAO chip with the highest coating concentration of DA kept stable dissipation in BSA adsorption, signifying that the chip had a good antifouling property. The research provided a novel monomer for zwitterionic polymer and demonstrated the potential of pMPAO brushes in the development and modification of antifouling materials. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

149 KiB  
Abstract
Design of a Multiplex Sensing Platform: AFM as a Nanolithographic Tool
by Silvia Maria Cristina Rotondi, Paolo Canepa, Maurizio Canepa and Ornella Cavalleri
Proceedings 2024, 104(1), 21; https://doi.org/10.3390/proceedings2024104021 - 28 May 2024
Viewed by 180
Abstract
Coupling spectroscopic ellipsometry (SE), quartz crystal microbalance with dissipation (QCM-D), X-ray photoemission spectroscopy (XPS), and atomic force microscopy (AFM), we developed a multi-technique approach to characterize the surface immobilization of probe DNA strands, as a tool for the design of a DNA-based biosensor [...] Read more.
Coupling spectroscopic ellipsometry (SE), quartz crystal microbalance with dissipation (QCM-D), X-ray photoemission spectroscopy (XPS), and atomic force microscopy (AFM), we developed a multi-technique approach to characterize the surface immobilization of probe DNA strands, as a tool for the design of a DNA-based biosensor for the detection of disease-related oligonucleotide strands [...] Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Biosensors)
138 KiB  
Abstract
Comparative Analysis of Bacterial Lipopolysaccharide Detection on Surfaces of Concanavalin A Using DNA Aptamers and QCM-D Method
by Marek Tatarko and Tibor Hianik
Proceedings 2024, 104(1), 12; https://doi.org/10.3390/proceedings2024104012 - 28 May 2024
Viewed by 192
Abstract
Bacterial lipopolysaccharides (LPSs) are important indicators of a bacteria presence in any samples. They can therefore be used for the detection of microbiological contamination in food and dairy products. We performed a comparative analysis of different bacterial models by the application of liposomes [...] Read more.
Bacterial lipopolysaccharides (LPSs) are important indicators of a bacteria presence in any samples. They can therefore be used for the detection of microbiological contamination in food and dairy products. We performed a comparative analysis of different bacterial models by the application of liposomes containing LPS from Salmonella enterica serotype typhimurium on the surface of an 11-mercaptoundecanoic acid (MUA) monolayer chemisorbed on the gold surface of quartz crystal. Using quartz crystal microbalance with dissipation monitoring (QCM-D), we were able to monitor the formation of the lectin, concanavalin A (ConA), layer on the MUA surface. We determined the optimal concentration of the ConA for the layer formation. ConA of 0.3 mg/mL was selected as the most suitable adsorption of liposomes containing LPS. Using the Sauerbrey equation, we calculated that approximately 1.13 × 1012 ConA molecules per cm2 was adsorbed on the MUA surface, which closely corresponds to the 1.19 × 1012 molecules per cm2 by theoretical models. Later, mixed LPS liposomes containing dipalmitoyl phosphatidyl choline (DPPC), dipalmitoyl phosphatidyl ethanolamine (DPPE) and cholesterol successfully interacted with the ConA layer, which resulted in a decrease in the resonant frequency and an increase in dissipation. We compared the adsorption of liposomes with different fractions of LPS and containing LPS from different bacteria. Lack of any LPS in liposomes caused weaker adsorption on the ConA layer. Liposomes containing 50% LPS caused the most prominent adsorption and were suitable for interaction with DNA aptamers specific to certain LPS. The addition of the aptamers to the surface of ConA covered by LPS-containing liposomes resulted in a decrease in resonant frequency and an increase in the dissipation. Using the Kelvin–Voigt viscoelastic model and multiharmonic response of acoustic sensors, we also determined changes in viscoelastic values of the molecular films during interaction with liposomes and the ConA layer. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Biosensors)
19 pages, 3664 KiB  
Article
Influence of Front-End Electronics on Metrological Performance of QCM Systems
by Ada Fort, Elia Landi, Riccardo Moretti, Marco Mugnaini, Consolatina Liguori, Vincenzo Paciello and Salvatore Dello Iacono
Sensors 2024, 24(11), 3401; https://doi.org/10.3390/s24113401 - 25 May 2024
Viewed by 558
Abstract
Quartz Crystal Microbalances (QCMs) are versatile sensors employed in various fields, from environmental monitoring to biomedical applications, owing mainly to their very high sensitivity. However, the assessment of their metrological performance, including the impact of conditioning circuits, digital processing algorithms, and working conditions, [...] Read more.
Quartz Crystal Microbalances (QCMs) are versatile sensors employed in various fields, from environmental monitoring to biomedical applications, owing mainly to their very high sensitivity. However, the assessment of their metrological performance, including the impact of conditioning circuits, digital processing algorithms, and working conditions, is a complex and novel area of study. The purpose of this work is to investigate and understand the measurement errors associated with different QCM measurement techniques, specifically focusing on the influence of conditioning electronic circuits. Through a tailored and novel experimental setup, two measurement architectures—a Quartz Crystal Microbalance with dissipation monitoring (QCM-D) system and an oscillator-based QCM-R system—were compared under the same mechanical load conditions. Through rigorous experimentation and signal processing techniques, the study elucidated the complexities of accurately assessing QCM parameters, especially in liquid environments and under large mechanical loads. The comparison between the two different techniques allows for highlighting the critical aspects of the measurement techniques. The experimental results were discussed and interpreted based on models allowing for a deep understanding of the measurement problems encountered with QCM-based measurement systems. The performance of the different techniques was derived, showing that while the QCM-D technique exhibited higher accuracy, the QCM-R technique offered greater precision with a simpler design. This research advances our understanding of QCM-based measurements, providing insights for designing robust measurement systems adaptable to diverse conditions, thus enhancing their effectiveness in various applications. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

14 pages, 2337 KiB  
Article
Development of an Aptamer-Based QCM-D Biosensor for the Detection of Thrombin Using Supported Lipid Bilayers as Surface Functionalization
by Anne Görner, Leyla Franz, Tuba Çanak-Ipek, Meltem Avci-Adali and Anna-Kristina Marel
Biosensors 2024, 14(6), 270; https://doi.org/10.3390/bios14060270 - 25 May 2024
Viewed by 960
Abstract
Biosensors play an important role in numerous research fields. Quartz crystal microbalances with dissipation monitoring (QCM-Ds) are sensitive devices, and binding events can be observed in real-time. In combination with aptamers, they have great potential for selective and label-free detection of various targets. [...] Read more.
Biosensors play an important role in numerous research fields. Quartz crystal microbalances with dissipation monitoring (QCM-Ds) are sensitive devices, and binding events can be observed in real-time. In combination with aptamers, they have great potential for selective and label-free detection of various targets. In this study, an alternative surface functionalization for a QCM-D-based aptasensor was developed, which mimics an artificial cell membrane and thus creates a physiologically close environment for the binding of the target to the sensor. Vesicle spreading was used to form a supported lipid bilayer (SLB) of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphethanolamine-N-(cap biotinyl) (biotin-PE). The SLB was then coated with streptavidin followed by applying a biotinylated aptamer against thrombin. SLB formation was investigated in terms of temperature and composition. Temperatures of 25 °C and below led to incomplete SLB formation, whereas a full bilayer was built at higher temperatures. We observed only a small influence of the content of biotinylated lipids in the mixture on the further binding of streptavidin. The functionalization of the sensor surface with the thrombin aptamer and the subsequent thrombin binding were investigated at different concentrations. The sensor could be reconstituted by incubation with a 5 M urea solution, which resulted in the release of the thrombin from the sensor surface. Thereafter, it was possible to rebind thrombin. Thrombin in spiked samples of human serum was successfully detected. The developed system can be easily applied to other target analytes using the desired aptamers. Full article
Show Figures

Figure 1

16 pages, 3532 KiB  
Article
pH-Triggered Controlled Release of Chlorhexidine Using Chitosan-Coated Titanium Silica Composite for Dental Infection Prevention
by Mrinal Gaurav Srivastava, Nur Hidayatul Nazirah Kamarudin, Merve Kübra Aktan, Kai Zheng, Naiera Zayed, Derick Yongabi, Patrick Wagner, Wim Teughels, Aldo R. Boccaccini and Annabel Braem
Pharmaceutics 2024, 16(3), 377; https://doi.org/10.3390/pharmaceutics16030377 - 8 Mar 2024
Cited by 1 | Viewed by 1543
Abstract
Peri-implantitis is a growing pathological concern for dental implants which aggravates the occurrence of revision surgeries. This increases the burden on both hospitals and the patients themselves. Research is now focused on the development of materials and accompanying implants designed to resist biofilm [...] Read more.
Peri-implantitis is a growing pathological concern for dental implants which aggravates the occurrence of revision surgeries. This increases the burden on both hospitals and the patients themselves. Research is now focused on the development of materials and accompanying implants designed to resist biofilm formation. To enhance this endeavor, a smart method of biofilm inhibition coupled with limiting toxicity to the host cells is crucial. Therefore, this research aims to establish a proof-of-concept for the pH-triggered release of chlorhexidine (CHX), an antiseptic commonly used in mouth rinses, from a titanium (Ti) substrate to inhibit biofilm formation on its surface. To this end, a macroporous Ti matrix is filled with mesoporous silica (together referred to as Ti/SiO2), which acts as a diffusion barrier for CHX from the CHX feed side to the release side. To limit release to acidic conditions, the release side of Ti/SiO2 is coated with crosslinked chitosan (CS), a pH-responsive and antimicrobial natural polymer. Scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDX) and Fourier transform infrared (FTIR) spectroscopy confirmed successful CS film formation and crosslinking on the Ti/SiO2 disks. The presence of the CS coating reduced CHX release by 33% as compared to non-coated Ti/SiO2 disks, thus reducing the antiseptic exposure to the environment in normal conditions. Simultaneous differential scanning calorimetry and thermogravimetric analyzer (SDT) results highlighted the thermal stability of the crosslinked CS films. Quartz crystal microbalance with dissipation monitoring (QCM-D) indicated a clear pH response for crosslinked CS coatings in an acidic medium. This pH response also influenced CHX release through a Ti/SiO2/CS disk where the CHX release was higher than the average trend in the neutral medium. Finally, the antimicrobial study revealed a significant reduction in biofilm formation for the CS-coated samples compared to the control sample using viability quantitative polymerase chain reaction (v-qPCR) measurements, which were also corroborated using SEM imaging. Overall, this study investigates the smart triggered release of pharmaceutical agents aimed at inhibiting biofilm formation, with potential applicability to implant-like structures. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

20 pages, 9641 KiB  
Article
The Effect of Stereocomplexation and Crystallinity on the Degradation of Polylactide Nanoparticles
by Chuan Yin, Jenny Hemstedt, Karl Scheuer, Maja Struczyńska, Christine Weber, Ulrich S. Schubert, Jörg Bossert and Klaus D. Jandt
Nanomaterials 2024, 14(5), 440; https://doi.org/10.3390/nano14050440 - 28 Feb 2024
Viewed by 1069
Abstract
Polymeric nanoparticles (PNPs) are frequently researched and used in drug delivery. The degradation of PNPs is highly dependent on various properties, such as polymer chemical structure, size, crystallinity, and melting temperature. Hence, a precise understanding of PNP degradation behavior is essential for optimizing [...] Read more.
Polymeric nanoparticles (PNPs) are frequently researched and used in drug delivery. The degradation of PNPs is highly dependent on various properties, such as polymer chemical structure, size, crystallinity, and melting temperature. Hence, a precise understanding of PNP degradation behavior is essential for optimizing the system. This study focused on enzymatic hydrolysis as a degradation mechanism by investigation of the degradation of PNP with various crystallinities. The aliphatic polyester polylactide ([C3H4O2]n, PLA) was used as two chiral forms, poly l-lactide (PlLA) and poly d-lactide (PdLA), and formed a unique crystalline stereocomplex (SC). PNPs were prepared via a nanoprecipitation method. In order to further control the crystallinity and melting temperatures of the SC, the polymer poly(3-ethylglycolide) [C6H8O4]n (PEtGly) was synthesized. Our investigation shows that the PNP degradation can be controlled by various chemical structures, crystallinity and stereocomplexation. The influence of proteinase K on PNP degradation was also discussed in this research. AFM did not reveal any changes within the first 24 h but indicated accelerated degradation after 7 days when higher EtGly content was present, implying that lower crystallinity renders the particles more susceptible to hydrolysis. QCM-D exhibited reduced enzyme adsorption and a slower degradation rate in SC-PNPs with lower EtGly contents and higher crystallinities. A more in-depth analysis of the degradation process unveiled that QCM-D detected rapid degradation from the outset, whereas AFM exhibited delayed changes of degradation. The knowledge gained in this work is useful for the design and creation of advanced PNPs with enhanced structures and properties. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Theranostic Applications)
Show Figures

Figure 1

16 pages, 5912 KiB  
Article
Unraveling How Antimicrobial Lipid Mixtures Disrupt Virus-Mimicking Lipid Vesicles: A QCM-D Study
by Suji Moon, Tun Naw Sut, Bo Kyeong Yoon and Joshua A. Jackman
Biomimetics 2024, 9(2), 67; https://doi.org/10.3390/biomimetics9020067 - 24 Jan 2024
Viewed by 1484
Abstract
Single-chain lipid amphiphiles such as fatty acids and monoglycerides are promising antimicrobial alternatives to replace industrial surfactants for membrane-enveloped pathogen inhibition. Biomimetic lipid membrane platforms in combination with label-free biosensing techniques offer a promising route to compare the membrane-disruptive properties of different fatty [...] Read more.
Single-chain lipid amphiphiles such as fatty acids and monoglycerides are promising antimicrobial alternatives to replace industrial surfactants for membrane-enveloped pathogen inhibition. Biomimetic lipid membrane platforms in combination with label-free biosensing techniques offer a promising route to compare the membrane-disruptive properties of different fatty acids and monoglycerides individually and within mixtures. Until recently, most related studies have utilized planar model membrane platforms, and there is an outstanding need to investigate how antimicrobial lipid mixtures disrupt curved model membrane platforms such as intact vesicle adlayers that are within the size range of membrane-enveloped virus particles. This need is especially evident because certain surfactants that completely disrupt planar/low-curvature membranes are appreciably less active against high-curvature membranes. Herein, we conducted quartz crystal microbalance–dissipation (QCM-D) measurements to investigate the membrane-disruptive properties of glycerol monolaurate (GML) monoglyceride and lauric acid (LA) fatty acid mixtures to rupture high-curvature, ~75 nm diameter lipid vesicle adlayers. We identified that the vesicle rupture activity of GML/LA mixtures mainly occurred above the respective critical micelle concentration (CMC) of each mixture, and that 25/75 mol% GML/LA micelles exhibited the greatest degree of vesicle rupture activity with ~100% efficiency that exceeded the rupture activity of other tested mixtures, individual compounds, and past reported values with industrial surfactants. Importantly, 25/75 GML/LA micelles outperformed 50/50 GML/LA micelles, which were previously reported to have the greatest membrane-disruptive activity towards planar model membranes. We discuss the mechanistic principles behind how antimicrobial lipid engineering can influence membrane-disruptive activity in terms of optimizing the balance between competitive membrane remodeling processes and inducing anisotropic vs. isotropic spontaneous curvature in lipid membrane systems. Full article
(This article belongs to the Special Issue Biomimicry and Functional Materials: 3rd Edition)
Show Figures

Figure 1

15 pages, 7988 KiB  
Article
The Application of Dextran Sodium Sulfate to the Efficient Separation of Ilmenite and Forsterite, as a Flotation Depressant
by Guixia Fan, Huaiyao Zhang, Fuqiang Tian, Hongbin Wang, Longhua Xu, Yijun Cao, Hongxiang Xu, Fanfan Zhang, Jianyong He and Guosheng Li
Processes 2024, 12(1), 134; https://doi.org/10.3390/pr12010134 - 4 Jan 2024
Viewed by 908
Abstract
A depressant is essential to the effective flotation-based separation of ilmenite and forsterite, based on their comparable physicochemical characteristics. In this work, dextran sodium sulfate (DSS) was initially introduced as a depressant, to aid in the separation of ilmenite and forsterite. Comparing the [...] Read more.
A depressant is essential to the effective flotation-based separation of ilmenite and forsterite, based on their comparable physicochemical characteristics. In this work, dextran sodium sulfate (DSS) was initially introduced as a depressant, to aid in the separation of ilmenite and forsterite. Comparing the DSS to conventional natural starch, the results indicate that the forsterite exerts a greater depression over the ilmenite. The difference in recovery of ilmenite and forsterite was 75.44% at 10 mg/L of DSS dosage. The DSS was chemisorbed strongly onto the forsterite surface via Mg active sites, whereas its interaction with the ilmenite surface via physisorption was weak, based on the XPS and molecular-dynamics-simulation analyses. The results of the AFM and QCM-D investigations showed that the DSS adsorption layer on the forsterite surface was larger than those on the ilmenite surface. Consequently, DSS may function as a depressant, to effectively separate forsterite from ilmenite ore. Full article
Show Figures

Graphical abstract

19 pages, 6223 KiB  
Article
Bovine Serum Albumin as a Platform for Designing Biologically Active Nanocarriers—Experimental and Computational Studies
by Olga Adamczyk, Magdalena Szota, Kamil Rakowski, Magdalena Prochownik, Daniel Doveiko, Yu Chen and Barbara Jachimska
Int. J. Mol. Sci. 2024, 25(1), 37; https://doi.org/10.3390/ijms25010037 - 19 Dec 2023
Cited by 6 | Viewed by 1721
Abstract
Due to the specificity of their structure, protein systems are adapted to carry various ligands. The structure of many proteins potentially allows for two types of immobilization of a therapeutic agent, either on the outer surface of the protein or within the protein [...] Read more.
Due to the specificity of their structure, protein systems are adapted to carry various ligands. The structure of many proteins potentially allows for two types of immobilization of a therapeutic agent, either on the outer surface of the protein or within the protein structure. The existence of two active sites in BSA’s structure, the so-called Sudlow I and II, was confirmed. The conducted research involved determining the effectiveness of BSA as a potential carrier of 5-fluorouracil (5FU). 5-fluorouracil is a broad-spectrum anticancer drug targeting solid tumors. The research was carried out to estimate the physicochemical properties of the system using complementary measurement techniques. The optimization of the complex formation conditions made it possible to obtain significant correlations between the form of the drug and the effective localization of the active substance in the structure of the protein molecule. The presence of two amino groups in the 5FU structure contributes to the deprotonation of the molecule at high pH values (pH > 8) and the transition to the anionic form (AN1 and AN3). To investigate the binding affinity of the tautomeric form with BSA, UV-vis absorption, fluorescence quenching, zeta potential, QCM-D, and CD spectroscopic studies were performed. The experimental research was supported by molecular dynamics (MD) simulations and molecular docking. The simulations confirm the potential location of 5FU tautomers inside the BSA structure and on its surface. Full article
Show Figures

Graphical abstract

19 pages, 4343 KiB  
Article
Properties of Heat-Assisted pH Shifting and Compounded Chitosan from Insoluble Rice Peptide Precipitate and Its Application in the Curcumin-Loaded Pickering Emulsions
by Zhenyu Yang, Zhiying Li, Zitong Xu, Zhihao Kong, Xin Qiao, Liwen Zhang, Lei Dai, Yanfei Wang, Qingjie Sun, David Julian McClements and Xingfeng Xu
Foods 2023, 12(24), 4384; https://doi.org/10.3390/foods12244384 - 6 Dec 2023
Cited by 4 | Viewed by 1103
Abstract
Curcumin exhibits antioxidant and antitumor properties, but its poor chemical stability limits its application. Insoluble peptide precipitates formed by proteolysis of rice glutelin are usually discarded, resulting in resource waste. The coupled treatment of heat-assisted pH shifting and compounded chitosan (CS) was used [...] Read more.
Curcumin exhibits antioxidant and antitumor properties, but its poor chemical stability limits its application. Insoluble peptide precipitates formed by proteolysis of rice glutelin are usually discarded, resulting in resource waste. The coupled treatment of heat-assisted pH shifting and compounded chitosan (CS) was used to fabricate rice peptide aggregate–chitosan complexes (RPA–CS). The structure, interfacial behavior, emulsion properties, and digestibility of curcumin-loaded RPA–CS Pickering emulsions were investigated. Increasing the CS concentration led to lower interfacial tension but larger particle size, and the three-phase contact angle of the RPA–CS complexes approached 90°. Quartz crystal microbalance with dissipation (QCM–D) indicated that RPA–CS complexes with 6 g·kg−1 of CS (RPA–CS6) had the highest K1 (0.592 × 106 Hz−1) and K4 (0.487 × 106 Hz−1), suggesting that the softest interfacial layers were formed. The solid–liquid balance of RPA–RPA–CS emulsions was lower than 0.5, declaring that they had more elastic behavior than that of RPA emulsions. RPA–RPA–CS4-and RPA–CS6 emulsions had better storage stability, lower FFA release (79.8% and 76.3%, respectively), and higher curcumin bioaccessibility (65.2% and 68.2%, respectively) than RPA emulsions. This study showed that a low-value insoluble rice peptide precipitate could be used as a valuable emulsifier in foods, which may increase the economics and sustainability of the food supply. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

Back to TopTop