Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = QGP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3402 KiB  
Article
Antiviral Properties of Moringa oleifera Leaf Extracts against Respiratory Viruses
by Rosa Giugliano, Valeria Ferraro, Annalisa Chianese, Roberta Della Marca, Carla Zannella, Francesca Galdiero, Teresa M. A. Fasciana, Anna Giammanco, Antonio Salerno, Joseph Cannillo, Natalie Paola Rotondo, Giovanni Lentini, Maria Maddalena Cavalluzzi, Anna De Filippis and Massimiliano Galdiero
Viruses 2024, 16(8), 1199; https://doi.org/10.3390/v16081199 - 25 Jul 2024
Viewed by 442
Abstract
Moringa oleifera (M. oleifera) is a plant widely used for its beneficial properties both in medical and non-medical fields. Because they produce bioactive metabolites, plants are a major resource for drug discovery. In this study, two different cultivars of leaves of [...] Read more.
Moringa oleifera (M. oleifera) is a plant widely used for its beneficial properties both in medical and non-medical fields. Because they produce bioactive metabolites, plants are a major resource for drug discovery. In this study, two different cultivars of leaves of M. oleifera (Salento and Barletta) were obtained by maceration or microwave-assisted extraction (MAE). We demonstrated that extracts obtained by MAE exhibited a lower cytotoxic profile compared to those obtained by maceration at concentrations ranged from 25 to 400 µg/mL, on both Vero CCL-81 and Vero/SLAM cells. We examined their antiviral properties against two viruses, i.e., the human coronavirus 229E (HCoV-229E) and measles virus (MeV), which are both responsible for respiratory infections. The extracts were able to inhibit the infection of both viruses and strongly prevented their attack and entry into the cells in a range of concentrations from 50 to 12 µg/mL. Particularly active was the variety of Salento that registered a 50% inhibitory concentration (IC50) at 21 µg/mL for HCoV-229E and at 6 µg/mL for MeV. We identified the presence of several compounds through high performance liquid chromatography (HPLC); in particular, chlorogenic and neochlorogenic acids, quercetin 3-O-β-d-glucopyranoside (QGP), and glucomoringin (GM) were mainly observed. In the end, M. oleifera can be considered a promising candidate for combating viral infections with a very strong action in the early stages of viral life cycle, probably by destructuring the viral particles blocking the virus–cell fusion. Full article
(This article belongs to the Special Issue Recent Advances in Antiviral Natural Products 2023)
Show Figures

Figure 1

14 pages, 15013 KiB  
Review
Theoretical Perspectives on Viscous Nature of Strongly Interacting Systems
by Kinkar Saha
Universe 2024, 10(6), 259; https://doi.org/10.3390/universe10060259 - 11 Jun 2024
Viewed by 538
Abstract
Matter prevailing during the early stages of the Universe or under extreme conditions in high-energy heavy-ion experiments supposedly possesses a rich phase structure. During the evolution of such a system, the complicated pictures of transitions among various phases are studied as part of [...] Read more.
Matter prevailing during the early stages of the Universe or under extreme conditions in high-energy heavy-ion experiments supposedly possesses a rich phase structure. During the evolution of such a system, the complicated pictures of transitions among various phases are studied as part of hydrodynamics. This system, on most occasions, is considered to be non-viscous. However, various theoretical studies reveal the importance of incorporating viscous effects into the analysis. Here, the paper discusses the behavioral patterns of transport coefficients with varying temperatures and chemical potentials to obtain a qualitative, if not quantitative, picture of the same. Discussions are also shared regarding their impacts on such an exotic system for different energies, as explored in the experimental domain. This theoretical analysis, made using the structure of the Polyakov–Nambu–Jona-Lasinio (PNJL) model with a 2+1-flavor quark–antiquark system reveals important aspects of the inclusion of viscous effects in the hydrodynamic studies of QGP. Full article
Show Figures

Figure 1

10 pages, 1717 KiB  
Article
Inhibitory Effects of Metformin for Pancreatic Neuroendocrine Neoplasms: Experimental Study on Mitochondrial Function
by Shogo Maruzen, Seiichi Munesue, Mitsuyoshi Okazaki, Satoshi Takada, Shinichi Nakanuma, Isamu Makino, Linxiang Gong, Susumu Kohno, Chiaki Takahashi, Hidehiro Tajima, Yasuhiko Yamamoto and Shintaro Yagi
Onco 2024, 4(2), 77-86; https://doi.org/10.3390/onco4020007 - 27 Apr 2024
Viewed by 728
Abstract
Although pancreatic neuroendocrine neoplasms (panNENs) are much less common and have a better prognosis than exocrine pancreatic cancers, their recurrence rate is not low, even in Grade 1 (World Health Organization classification) panNEN. Recently, there have been several reports that the progression-free survival [...] Read more.
Although pancreatic neuroendocrine neoplasms (panNENs) are much less common and have a better prognosis than exocrine pancreatic cancers, their recurrence rate is not low, even in Grade 1 (World Health Organization classification) panNEN. Recently, there have been several reports that the progression-free survival in patients with unresectable panNEN could be improved by an antidiabetic drug, metformin, with the co-treatment of everolimus or a somatostatin analog. In this study, we aimed to evaluate the effects of metformin on cell metabolism and viability using the panNEN cell line, QGP-1, and RIN-m in culture. We observed an inhibitory effect of metformin on QGP-1 cell proliferation in a dose-dependent manner. Metformin was found to decrease the oxygen consumption rate in QGP-1 and RIN-m cells after metformin 48 h treatment and immediately after exposure. Cell proliferation was suppressed after metformin treatment. Phosphorylated adenosine monophosphate-activated protein kinase (AMPK) expression was increased, and cyclin D1 expression was decreased in RIN-m cells 24 h after metformin treatment by Western blotting in a dose-dependent manner. In conclusion, suppressive mitochondrial respiration and AMPK activation by metformin are, thus, suggested to inhibit panNEN cell viability and cell survival. Full article
Show Figures

Figure 1

11 pages, 2175 KiB  
Article
Mapping of a Major-Effect Quantitative Trait Locus for Seed Dormancy in Wheat
by Yu Gao, Linyi Qiao, Chao Mei, Lina Nong, Qiqi Li, Xiaojun Zhang, Rui Li, Wei Gao, Fang Chen, Lifang Chang, Shuwei Zhang, Huijuan Guo, Tianling Cheng, Huiqin Wen, Zhijian Chang and Xin Li
Int. J. Mol. Sci. 2024, 25(7), 3681; https://doi.org/10.3390/ijms25073681 - 26 Mar 2024
Viewed by 791
Abstract
The excavation and utilization of dormancy loci in breeding are effective endeavors for enhancing the resistance to pre-harvest sprouting (PHS) of wheat varieties. CH1539 is a wheat breeding line with high-level seed dormancy. To clarify the dormant loci carried by CH1539 and obtain [...] Read more.
The excavation and utilization of dormancy loci in breeding are effective endeavors for enhancing the resistance to pre-harvest sprouting (PHS) of wheat varieties. CH1539 is a wheat breeding line with high-level seed dormancy. To clarify the dormant loci carried by CH1539 and obtain linked molecular markers, in this study, a recombinant inbred line (RIL) population derived from the cross of weak dormant SY95-71 and strong dormant CH1539 was genotyped using the Wheat17K single-nucleotide polymorphism (SNP) array, and a high-density genetic map covering 21 chromosomes and consisting of 2437 SNP markers was constructed. Then, the germination percentage (GP) and germination index (GI) of the seeds from each RIL were estimated. Two QTLs for GP on chromosomes 5A and 6B, and four QTLs for GI on chromosomes 5A, 6B, 6D and 7A were identified. Among them, the QTL on chromosomes 6B controlling both GP and GI, temporarily named QGp/Gi.sxau-6B, is a major QTL for seed dormancy with the maximum phenotypic variance explained of 17.66~34.11%. One PCR-based diagnostic marker Ger6B-3 for QGp/Gi.sxau-6B was developed, and the genetic effect of QGp/Gi.sxau-6B on the RIL population and a set of wheat germplasm comprising 97 accessions was successfully confirmed. QGp/Gi.sxau-6B located in the 28.7~30.9 Mbp physical position is different from all the known dormancy loci on chromosomes 6B, and within the interval, there are 30 high-confidence annotated genes. Our results revealed a novel QTL QGp/Gi.sxau-6B whose CH1539 allele had a strong and broad effect on seed dormancy, which will be useful in further PHS-resistant wheat breeding. Full article
(This article belongs to the Special Issue Molecular Genetics and Breeding Mechanisms in Crops: 2nd Edition)
Show Figures

Figure 1

7 pages, 789 KiB  
Communication
Nuclear Modification Factor of Inclusive Charged Particles in Au+Au Collisions at sNN = 27 GeV with the STAR Experiment
by Alisher Aitbayev
Universe 2024, 10(3), 139; https://doi.org/10.3390/universe10030139 - 13 Mar 2024
Viewed by 1130
Abstract
The Beam Energy Scan (BES) program at RHIC aims to explore the QCD phase diagram, including the search for the evidence of the 1st order phase transition from hadronic matter to Quark-Gluon Plasma (QGP) and the location of the QCD critical point. One [...] Read more.
The Beam Energy Scan (BES) program at RHIC aims to explore the QCD phase diagram, including the search for the evidence of the 1st order phase transition from hadronic matter to Quark-Gluon Plasma (QGP) and the location of the QCD critical point. One of the features previously observed in the study of QGP is the effect of suppression of particle production with high transverse momenta pT (>2 GeV/c) at energies sNN = 62.4200 GeV, which was deduced from the charged-particle nuclear modification factor (RCP) measured using the data from Beam Energy Scan Program Phase I (BES-I) of STAR experiment. In 2018, STAR has collected over 500 million events from Au+Au collisions at sNN = 27 GeV as a part of the STAR BES-II program, which is about a factor of 10 higher than BES-I 27 GeV data size. In this report, we present new measurements of charged particle production and the nuclear modification factor RCP, from this new 27 GeV data set and compare them with the BES-I results. The new measurements extend the previous BES-I results to higher transverse momentum range, which allows better exploration of the jet quenching effects at low RHIC energies, and may help to understand the effects of the formation and properties of QGP at these energies. Full article
(This article belongs to the Special Issue Multiparticle Dynamics)
Show Figures

Figure 1

31 pages, 1269 KiB  
Review
Recent Findings from Heavy-Flavor Angular Correlation Measurements in Hadronic Collisions
by Deepa Thomas and Fabio Colamaria
Universe 2024, 10(3), 109; https://doi.org/10.3390/universe10030109 - 27 Feb 2024
Viewed by 1178
Abstract
The study of angular correlations of heavy-flavor particles in hadronic collisions can provide crucial insight into the heavy quark production, showering, and hadronization processes. The comparison with model predictions allows us to discriminate among different approaches for heavy quark production and hadronization, as [...] Read more.
The study of angular correlations of heavy-flavor particles in hadronic collisions can provide crucial insight into the heavy quark production, showering, and hadronization processes. The comparison with model predictions allows us to discriminate among different approaches for heavy quark production and hadronization, as well as different treatments of the underlying event employed by the models to reproduce correlation observables. In ultra-relativistic heavy-ion collisions, where a deconfined state of matter, the quark–gluon plasma (QGP), is created, heavy-flavor correlations can shed light on the modification of the heavy quark fragmentation due to the interaction between charm and beauty quarks with the QGP constituents, as well as characterize their energy loss processes while traversing the medium. Insight into the possible emergence of collective-like mechanisms in smaller systems, resembling those observed in heavy-ion collisions, can also be obtained by performing correlation studies in high-multiplicity proton–proton and proton–nucleus collisions. In this review, the most recent and relevant measurements of heavy-flavor correlations performed in all collision systems at the LHC and RHIC will be presented, and the new understandings that they provide will be discussed. Full article
(This article belongs to the Special Issue Jet and Heavy Flavor Production)
Show Figures

Figure 1

28 pages, 5465 KiB  
Review
Towards Experimental Confirmation of Quarkonia Melting in Quark–Gluon Plasma: A Review of Recent Measurements of Quarkonia Production in Relativistic Heavy-Ion Collisions
by Kara R. Mattioli
Symmetry 2024, 16(2), 225; https://doi.org/10.3390/sym16020225 - 13 Feb 2024
Viewed by 800
Abstract
The dissociation, or “melting”, of heavy quarkonia states due to color charge screening is a predicted signature of quark–gluon plasma (QGP) formation, with a quarkonium state predicted to dissociate when the temperature of the medium is higher than the binding energy of the [...] Read more.
The dissociation, or “melting”, of heavy quarkonia states due to color charge screening is a predicted signature of quark–gluon plasma (QGP) formation, with a quarkonium state predicted to dissociate when the temperature of the medium is higher than the binding energy of the quarkonium state. A conclusive experimental observation of quarkonium melting coupled with a detailed theoretical understanding of the melting mechanism would enable the use of quarkonia states as temperature probes of the QGP, a long-sought goal in the field of relativistic heavy-ion collisions. However, the interpretation of quarkonia suppression measurements in heavy-ion collisions is complicated by numerous other cold nuclear matter effects that also result in the dissociation of bound quarkonia states. A comprehensive understanding of these cold nuclear matter effects is therefore needed in order to correctly interpret quarkonia production measurements in heavy-ion collisions and to observe the melting of quarkonium states experimentally. In this review, recent measurements of quarkonia production in pA and AA collisions and their state-of-the-art theoretical interpretations will be discussed, as well as the future measurements needed to further the knowledge of cold nuclear matter effects and realize a measurement of quarkonia melting in heavy-ion collisions. Full article
Show Figures

Figure 1

17 pages, 545 KiB  
Article
Equation of State of Quark–Gluon Matter in the Clustering-of-Color-Sources Approach
by Aditya Nath Mishra, Guy Paić, Carlos Vales Pajares, Rolf P. Scharenberg and B. K. Srivastava
Universe 2024, 10(2), 55; https://doi.org/10.3390/universe10020055 - 23 Jan 2024
Viewed by 1217
Abstract
In the first few microseconds after the Big Bang, the hot dense matter was in the form of quark–gluon plasma consisting of free quarks and gluons. By colliding heavy nuclei at RHIC and LHC at a velocity close to the speed of light, [...] Read more.
In the first few microseconds after the Big Bang, the hot dense matter was in the form of quark–gluon plasma consisting of free quarks and gluons. By colliding heavy nuclei at RHIC and LHC at a velocity close to the speed of light, we were able to recreate primordial matter and observe that matter after expansion and cooling. In the present work, we have analyzed the transverse-momentum spectra of charged particles in high-multiplicity pp collisions at LHC energies s= 5.02 and 13 TeV, published by the ALICE Collaboration, using the Color-String Percolation Model. For heavy ions, Pb–Pb at sNN= 2.76 and 5.02 TeV along with Xe–Xe at sNN= 5.44 TeV have been analyzed. The initial temperature was extracted both in low- and high-multiplicity events in pp collisions. For AA collisions, the temperature was obtained as a function of centrality. A universal scaling in the temperature from pp and AA collisions was obtained when multiplicity was scaled by the transverse interaction area. For the higher-multiplicity events in pp collisions at s= 5.02 and 13 TeV, the initial temperature was above the universal hadronization temperature and was consistent with the creation of deconfined matter. From the measured energy density ε and the temperature, the dimensionless quantity ε/T4 was obtained, to obtain the degree of freedom of the deconfined matter. Full article
(This article belongs to the Special Issue Relativistic Heavy Ion Collision)
Show Figures

Figure 1

10 pages, 586 KiB  
Article
Scaling Behaviour of dN/dy in High-Energy Collisions
by Gábor Kasza and Tamás Csörgő
Universe 2024, 10(1), 45; https://doi.org/10.3390/universe10010045 - 17 Jan 2024
Cited by 1 | Viewed by 1077
Abstract
From a recently found family of analytic, finite and accelerating 1+1-dimensional solutions to perfect fluid relativistic hydrodynamics, we derive simple and powerful formulae to describe the rapidity and pseudorapidity density distributions. By introducing a new scaling function, we notice that the rapidity distribution [...] Read more.
From a recently found family of analytic, finite and accelerating 1+1-dimensional solutions to perfect fluid relativistic hydrodynamics, we derive simple and powerful formulae to describe the rapidity and pseudorapidity density distributions. By introducing a new scaling function, we notice that the rapidity distribution data of the different experiments all collapse into a single curve. This data-collapsing (or -scaling) behaviour in the rapidity distributions suggests that high-energy p+p collisions may be described as collective systems. Full article
(This article belongs to the Special Issue Multiparticle Dynamics)
Show Figures

Figure 1

10 pages, 515 KiB  
Article
Centrality and System Size Dependence among Freezeout Parameters and the Implications for EOS and QGP in High-Energy Collisions
by Muhammad Waqas, Abd Haj Ismail, Haifa I. Alrebdi and Muhammad Ajaz
Entropy 2023, 25(12), 1586; https://doi.org/10.3390/e25121586 - 26 Nov 2023
Viewed by 931
Abstract
Utilizing the Modified Hagedorn function with embedded flow, we analyze the transverse momenta (pT) and transverse mass (mT) spectra of π+ in Au–Au, Cu–Cu, and d–Au collisions at sNN = 200 GeV across various [...] Read more.
Utilizing the Modified Hagedorn function with embedded flow, we analyze the transverse momenta (pT) and transverse mass (mT) spectra of π+ in Au–Au, Cu–Cu, and d–Au collisions at sNN = 200 GeV across various centrality bins. Our study reveals the centrality and system size dependence of key freezeout parameters, including kinetic freezeout temperature (T0), transverse flow velocity (βT), entropy-related parameter (n), and kinetic freezeout volume (V). Specifically, T0 and n increase from central to peripheral collisions, while βT and V show the opposite trend. These parameters also exhibit system size dependence; T0 and βT are smaller in larger collision systems, whereas V is larger. Importantly, central collisions correspond to a stiffer Equation of State (EOS), characterized by larger βT and smaller T0, while peripheral collisions indicate a softer EOS. These insights are crucial for understanding the properties of Quark–Gluon Plasma (QGP) and offer valuable constraints for Quantum Chromodynamics (QCD) models at high temperatures and densities. Full article
Show Figures

Figure 1

29 pages, 7394 KiB  
Article
Investigating the Therapeutic Potential of Plants and Plant-Based Medicines: Relevance to Antioxidant and Neuroprotective Effects
by Naomi May, Julianna Lys de Sousa Alves Neri, Helen Clunas, Jiahua Shi, Ella Parkes, Anjila Dongol, Zhizhen Wang, Carlos Jimenez Naranjo, Yinghua Yu, Xu-Feng Huang, Karen Charlton and Katrina Weston-Green
Nutrients 2023, 15(18), 3912; https://doi.org/10.3390/nu15183912 - 8 Sep 2023
Cited by 2 | Viewed by 2533
Abstract
Oxidative stress is a common characteristic of psychiatric, neurological, and neurodegenerative disorders. Therefore, compounds that are neuroprotective and reduce oxidative stress may be of interest as novel therapeutics. Phenolic, flavonoid and anthocyanin content, ORAC and DPPH free radical scavenging, and Cu2+ and [...] Read more.
Oxidative stress is a common characteristic of psychiatric, neurological, and neurodegenerative disorders. Therefore, compounds that are neuroprotective and reduce oxidative stress may be of interest as novel therapeutics. Phenolic, flavonoid and anthocyanin content, ORAC and DPPH free radical scavenging, and Cu2+ and Fe2+ chelating capacities were examined in variations (fresh/capsule) of Queen Garnet plum (QGP, Prunus salicina), black pepper (Piper nigrum) clove (Syzygium aromaticum), elderberry (Sambucus nigra), lemon balm (Melissa officinalis) and sage (Salvia officinalis), plus two blends (Astralagus membranaceus—lemon balm-rich, WC and R8). The ability of samples to prevent and treat H2O2-induced oxidative stress in SH-SY5Y cells was investigated. Pre-treatment with WC, elderberry, QGP, and clove prevented the oxidative stress-induced reduction in cell viability, demonstrating a neuroprotective effect. Elderberry increased cell viability following oxidative stress induction, demonstrating treatment effects. Clove had the highest phenolic and flavonoid content, DPPH, and Cu2+ chelating capacities, whereas QGP and elderberry were highest in anthocyanins. Black pepper had the highest ORAC and Fe2+ chelating capacity. These findings demonstrate that plant extracts can prevent and treat oxidative stress-induced apoptosis of neuron-like cells in vitro. Further research into phytochemicals as novel therapeutics for oxidative stress in the brain is needed. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Graphical abstract

14 pages, 2144 KiB  
Article
The Genetic Architecture of Vitamin D Deficiency among an Elderly Lebanese Middle Eastern Population: An Exome-Wide Association Study
by Nagham Nafiz Hendi, Marlene Chakhtoura, Yasser Al-Sarraj, Dania Saleh Basha, Omar Albagha, Ghada El-Hajj Fuleihan and Georges Nemer
Nutrients 2023, 15(14), 3216; https://doi.org/10.3390/nu15143216 - 20 Jul 2023
Cited by 2 | Viewed by 1186
Abstract
The Middle East region experiences a high prevalence of vitamin D deficiency, yet most genetic studies on vitamin D have focused on European populations. Furthermore, there is a lack of research on the genomic risk factors affecting elderly people, who are more susceptible [...] Read more.
The Middle East region experiences a high prevalence of vitamin D deficiency, yet most genetic studies on vitamin D have focused on European populations. Furthermore, there is a lack of research on the genomic risk factors affecting elderly people, who are more susceptible to health burdens. We investigated the genetic determinants of 25-hydroxyvitamin D concentrations in elderly Lebanese individuals (n = 199) through a whole-exome-based genome-wide association study. Novel genomic loci displaying suggestive evidence of association with 25-hydroxyvitamin D levels were identified in our study, including rs141064014 in the MGAM (p-value of 4.40 × 10−6) and rs7036592 in PHF2 (p-value of 8.43 × 10−6). A meta-analysis of the Lebanese data and the largest European genome-wide association study confirmed consistency replication of numerous variants, including rs2725405 in SLC38A10 (p-value of 3.73 × 10−8). Although the polygenic risk score model derived from European populations exhibited lower performance than European estimations, it still effectively predicted vitamin D deficiency among our cohort. Our discoveries offer novel perspectives on the genetic mechanisms underlying vitamin D deficiency among elderly Middle Eastern populations, facilitating the development of personalized approaches for more effective management of vitamin D deficiency. Additionally, we demonstrated that whole-exome-based genome-wide association study is an effective method for identifying genetic components associated with phenotypes. Full article
(This article belongs to the Section Geriatric Nutrition)
Show Figures

Figure 1

12 pages, 2900 KiB  
Article
Neural-Network-Based Quark–Gluon Plasma Trigger for the CBM Experiment at FAIR
by Artemiy Belousov, Ivan Kisel, Robin Lakos and Akhil Mithran
Algorithms 2023, 16(7), 344; https://doi.org/10.3390/a16070344 - 18 Jul 2023
Viewed by 1184
Abstract
Algorithms optimized for high-performance computing, which ensure both speed and accuracy, are crucial for real-time data analysis in heavy-ion physics experiments. The application of neural networks and other machine learning methodologies, which are fast and have high accuracy, in physics experiments has become [...] Read more.
Algorithms optimized for high-performance computing, which ensure both speed and accuracy, are crucial for real-time data analysis in heavy-ion physics experiments. The application of neural networks and other machine learning methodologies, which are fast and have high accuracy, in physics experiments has become increasingly popular over recent years. This paper introduces a fast neural network package named ANN4FLES developed in C++, which has been optimized for use on a high-performance computing cluster for the future Compressed Baryonic Matter (CBM) experiment at the Facility for Antiproton and Ion Research (FAIR, Darmstadt, Germany). The use of neural networks for classifying events during heavy-ion collisions in the CBM experiment is under investigation. This paper provides a detailed description of the application of ANN4FLES in identifying collisions where a quark–gluon plasma (QGP) was produced. The methodology detailed here will be used in the development of a QGP trigger for event selection within the First Level Event Selection (FLES) package for the CBM experiment. Fully-connected and convolutional neural networks have been created for the identification of events containing QGP, which are simulated with the Parton–Hadron–String Dynamics (PHSD) microscopic off-shell transport approach, for central Au + Au collisions at an energy of 31.2 A GeV. The results show that the convolutional neural network outperforms the fully-connected networks and achieves over 95% accuracy on the testing dataset. Full article
(This article belongs to the Special Issue 2022 and 2023 Selected Papers from Algorithms Editorial Board Members)
Show Figures

Figure 1

48 pages, 7424 KiB  
Review
A Short Survey of Matter-Antimatter Evolution in the Primordial Universe
by Johann Rafelski, Jeremiah Birrell, Andrew Steinmetz and Cheng Tao Yang
Universe 2023, 9(7), 309; https://doi.org/10.3390/universe9070309 - 27 Jun 2023
Cited by 5 | Viewed by 1373
Abstract
We offer a survey of the matter-antimatter evolution within the primordial Universe. While the origin of the tiny matter-antimatter asymmetry has remained one of the big questions in modern cosmology, antimatter itself has played a large role for much of the Universe’s early [...] Read more.
We offer a survey of the matter-antimatter evolution within the primordial Universe. While the origin of the tiny matter-antimatter asymmetry has remained one of the big questions in modern cosmology, antimatter itself has played a large role for much of the Universe’s early history. In our study of the evolution of the Universe we adopt the position of the standard model Lambda-CDM Universe implementing the known baryonic asymmetry. We present the composition of the Universe across its temperature history while emphasizing the epochs where antimatter content is essential to our understanding. Special topics we address include the heavy quarks in quark-gluon plasma (QGP), the creation of matter from QGP, the free-streaming of the neutrinos, the vanishing of the muons, the magnetism in the electron-positron cosmos, and a better understanding of the environment of the Big Bang Nucleosynthesis (BBN) producing the light elements. We suggest but do not explore further that the methods used in exploring the early Universe may also provide new insights in the study of exotic stellar cores, magnetars, as well as gamma-ray burst (GRB) events. We describe future investigations required in pushing known physics to its extremes in the unique laboratory of the matter-antimatter early Universe. Full article
(This article belongs to the Special Issue Remo Ruffini Festschrift)
Show Figures

Figure 1

23 pages, 10179 KiB  
Review
Recent Quarkonia Measurements in Small Systems at RHIC and LHC Energies
by Krista L. Smith
Universe 2023, 9(4), 174; https://doi.org/10.3390/universe9040174 - 3 Apr 2023
Viewed by 1008
Abstract
Heavy-ion research at the Relativistic Heavy Ion Collider (RHIC) during the first decade of data collection, approximately during the years 2000–2010, was primarily focused on the study of Au+Au collisions. The search for evidence of quark-gluon plasma (QGP), a state of matter where [...] Read more.
Heavy-ion research at the Relativistic Heavy Ion Collider (RHIC) during the first decade of data collection, approximately during the years 2000–2010, was primarily focused on the study of Au+Au collisions. The search for evidence of quark-gluon plasma (QGP), a state of matter where quarks and gluons become unbound within a high energy density environment, which was at the forefront of research efforts. However, studies of the azimuthal anisotropy parameter v2 in p/d+Pb collisions from the Large Hadron Collider (LHC) yielded results consistent with the hydrodynamic flow, one of the signatures of quark-gluon plasma formation in heavy-ion collisions. Since the publication of these findings, the field of heavy-ion physics has made subsequent measurements in small system collisions to study cold nuclear matter effects as well as look for additional evidence of hot nuclear matter effects. Quarkonia, a bound state of a cc¯ or bb¯ pair, has often been used to probe a wide range of nuclear effects in both large and small collision systems. Here we will review recent quarkonia measurements in small system collisions at RHIC and LHC energies and summarize the experimental conclusions. Full article
(This article belongs to the Special Issue Jet and Heavy Flavor Production)
Show Figures

Figure 1

Back to TopTop