Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (989)

Search Parameters:
Keywords = RAFT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5132 KiB  
Article
Double Hydrophilic Hyperbranched Copolymer-Based Lipomer Nanoparticles: Copolymer Synthesis and Co-Assembly Studies
by Angelica Maria Gerardos and Stergios Pispas
Polymers 2024, 16(22), 3129; https://doi.org/10.3390/polym16223129 (registering DOI) - 9 Nov 2024
Viewed by 290
Abstract
Double hydrophilic, random, hyperbranched copolymers were synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) utilizing ethylene glycol dimethacrylate (EGDMA) as the branching agent. The resulting copolymers were characterized in terms of their [...] Read more.
Double hydrophilic, random, hyperbranched copolymers were synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) utilizing ethylene glycol dimethacrylate (EGDMA) as the branching agent. The resulting copolymers were characterized in terms of their molecular weight and dispersity using size exclusion chromatography (SEC), and their chemical structure was confirmed using FT-IR and 1H-NMR spectroscopy techniques. The choice of the two hydrophilic blocks and the design of the macromolecular structure allowed the formation of self-assembled nanoparticles, partially due to the pH-responsive character of the DMAEMA segments and their interaction with -COOH end groups remaining from the chain transfer agent. The copolymers showed pH-responsive properties, mainly due to the protonation–deprotonation equilibria of the DMAEMA segments. Subsequently, a nanoscopic polymer–lipid (lipomer) mixed system was formulated by complexing the synthesized copolymers with cosmetic amphiphilic emulsifiers, specifically glyceryl stearate (GS) and glyceryl stearate citrate (GSC). This study aims to show that developing lipid–polymer hybrid nanoparticles can effectively address the limitations of both liposomes and polymeric nanoparticles. The effects of varying the ionic strength and pH on stimuli-sensitive polymeric and mixed polymer–lipid nanostructures were thoroughly investigated. To achieve this, the structural properties of the hybrid nanoparticles were comprehensively characterized using physicochemical techniques providing insights into their size distribution and stability. Full article
(This article belongs to the Special Issue Block Copolymers: Self-Assembly and Applications, 2nd Edition)
Show Figures

Figure 1

23 pages, 2006 KiB  
Review
Exploring the Dynamic Changes of Brain Lipids, Lipid Rafts, and Lipid Droplets in Aging and Alzheimer’s Disease
by Michele Cerasuolo, Irene Di Meo, Maria Chiara Auriemma, Giuseppe Paolisso, Michele Papa and Maria Rosaria Rizzo
Biomolecules 2024, 14(11), 1362; https://doi.org/10.3390/biom14111362 - 26 Oct 2024
Viewed by 655
Abstract
Aging induces complex changes in the lipid profiles across different areas of the brain. These changes can affect the function of brain cells and may contribute to neurodegenerative diseases such as Alzheimer’s disease. Research shows that while the overall lipid profile in the [...] Read more.
Aging induces complex changes in the lipid profiles across different areas of the brain. These changes can affect the function of brain cells and may contribute to neurodegenerative diseases such as Alzheimer’s disease. Research shows that while the overall lipid profile in the human brain remains quite steady throughout adulthood, specific changes occur with age, especially after the age of 50. These changes include a slow decline in total lipid content and shifts in the composition of fatty acids, particularly in glycerophospholipids and cholesterol levels, which can vary depending on the brain region. Lipid rafts play a crucial role in maintaining membrane integrity and facilitating cellular signaling. In the context of Alzheimer’s disease, changes in the composition of lipid rafts have been associated with the development of the disease. For example, alterations in lipid raft composition can lead to increased accumulation of amyloid β (Aβ) peptides, contributing to neurotoxic effects. Lipid droplets store neutral lipids and are key for cellular energy metabolism. As organisms age, the dynamics of lipid droplets in the brain change, with evidence suggesting a decline in metabolic activity over time. This reduced activity may lead to an imbalance in lipid synthesis and mobilization, contributing to neurodegenerative processes. In model organisms like Drosophila, studies have shown that lipid metabolism in the brain can be influenced by diet and insulin signaling pathways, crucial for maintaining metabolic balance. The interplay between lipid metabolism, oxidative stress, and inflammation is critical in the context of aging and Alzheimer’s disease. Lipid peroxidation, a consequence of oxidative stress, can lead to the formation of reactive aldehydes that further damage neurons. Inflammatory processes can also disrupt lipid metabolism, contributing to the pathology of AD. Consequently, the accumulation of oxidized lipids can affect lipid raft integrity, influencing signaling pathways involved in neuronal survival and function. Full article
(This article belongs to the Section Biomacromolecules: Lipids)
Show Figures

Figure 1

16 pages, 1333 KiB  
Article
Occurrence of Multi-Drug-Resistant Bacteria in Rainbow Trout–Lettuce Bio-Integrated Culture Systems in Chile
by Christopher Concha, Luz Hurtado, Norma Pérez, German E. Merino and Claudio D. Miranda
Fishes 2024, 9(11), 432; https://doi.org/10.3390/fishes9110432 - 25 Oct 2024
Viewed by 442
Abstract
In an aquaponic system, fish and plants are cultivated together in a symbiotic environment where they mutually benefit, using significantly less water than traditional farming methods. The main aim of this study was to investigate the occurrence of antimicrobial resistance in two aquaponic [...] Read more.
In an aquaponic system, fish and plants are cultivated together in a symbiotic environment where they mutually benefit, using significantly less water than traditional farming methods. The main aim of this study was to investigate the occurrence of antimicrobial resistance in two aquaponic systems implemented in two Chilean high schools using rainbow trout and lettuce cultures. When water samples (fish tank, biofilter, and plant raft) were analyzed over a three-month period, no resistance to oxytetracycline was detected, whereas the occurrence of resistance to florfenicol was rather small, ranging from 0.01% to 3.1% of bacterial culturable counts. Eighteen isolates were recovered from various sources as representatives of the florfenicol-resistant population, and all of them belonged to the Pseudomonas genus, showing a multi-drug-resistance phenotype and exhibiting simultaneous resistance to 7–13 antimicrobials. All isolates exhibited resistance to amoxicillin, chloramphenicol, florfenicol, and furazolidone and susceptibility to meropenem, oxytetracycline, oxolinic acid, flumequine, ciprofloxacin, and enrofloxacin. Five and two isolates carried the amphenicol-resistance-encoding genes floR and cmlA, respectively, whereas no carriage of integrons or the fexA, fexB, pexA, optrA, and cfr genes encoding for florfenicol resistance was detected. Eleven isolates carried plasmids, but only two of them were able to transfer their plasmid content by conjugation. The knowledge of the microbiome associated with aquaponic systems is still scarce, and their role as potential reservoirs of antimicrobial-resistant bacteria and related genes of these systems must be elucidated. Full article
(This article belongs to the Special Issue Advances in Rainbow Trout)
Show Figures

Figure 1

21 pages, 5803 KiB  
Article
Proteomic and Targeted Lipidomic Analyses of Fluid and Rigid Rubber Particle Membrane Domains in Guayule
by Joshua J. Blakeslee, Eun-Hyang Han, Yun Lin, Jinshan Lin, Seema Nath, Liwen Zhang, Zhenyu Li and Katrina Cornish
Plants 2024, 13(21), 2970; https://doi.org/10.3390/plants13212970 - 24 Oct 2024
Viewed by 481
Abstract
Rubber (cis-1,4-polyisoprene) is produced in cytosolic unilamellar vesicles called rubber particles (RPs), and the protein complex responsible for this synthesis, the rubber transferase (RTase), is embedded in, or tethered to, the membranes of these RPs. Solubilized enzyme activity is very difficult [...] Read more.
Rubber (cis-1,4-polyisoprene) is produced in cytosolic unilamellar vesicles called rubber particles (RPs), and the protein complex responsible for this synthesis, the rubber transferase (RTase), is embedded in, or tethered to, the membranes of these RPs. Solubilized enzyme activity is very difficult to achieve because the polymerization of highly hydrophilic substrates into hydrophobic polymers requires a polar/non-polar interface and a hydrophobic compartment. Using guayule (Parthenium argentatum) as a model rubber-producing species, we optimized methods to isolate RP unilamellear membranes and then a subset of membrane microdomains (detergent-resistant membranes) likely to contain protein complexes such as RTase. The phospholipid and sterol composition of these membranes and microdomains were analyzed using thin-layer chromatography (TLC) and liquid chromatography tandem mass spectroscopy (LC-MS/MS). Our data indicate that RP membranes consist predominantly of phosphatidic acid-containing membrane microdomains (DRMs or “lipid rafts”). Proteomic analyses of guayule RP membranes and membrane microdomains identified 80 putative membrane proteins covering 30 functional categories. From this population, we have tentatively identified several proteins in multiple functional domains associated with membrane microdomains which may be critical to RTase function. Definition of the mechanisms underlying rubber synthesis will provide targets for both metabolic engineering and breeding strategies designed to increase natural rubber production in latex-producing species. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

15 pages, 2545 KiB  
Article
The Kinetics of Polymer Brush Growth in the Frame of the Reaction Diffusion Front Formalism
by Piotr Polanowski and Andrzej Sikorski
Polymers 2024, 16(21), 2963; https://doi.org/10.3390/polym16212963 - 23 Oct 2024
Viewed by 450
Abstract
We studied the properties of a reaction front that forms in irreversible reaction–diffusion systems with concentration-dependent diffusivities during the synthesis of polymer brushes. A coarse-grained model of the polymerization process during the formation of polymer brushes was designed and investigated for this purpose. [...] Read more.
We studied the properties of a reaction front that forms in irreversible reaction–diffusion systems with concentration-dependent diffusivities during the synthesis of polymer brushes. A coarse-grained model of the polymerization process during the formation of polymer brushes was designed and investigated for this purpose. In this model, a certain amount of initiator was placed on an impenetrable surface, and the “grafted from” procedure of polymerization was carried out. The system consisted of monomer molecules and growing chains. The obtained brush consisted of linear chains embedded in nodes of a face-centered cubic lattice with excluded volume interactions only. The simulations were carried out for high rafting densities of 0.1, 0.3, and 0.6 and for reaction probabilities of 0.02, 0.002, and 0.0002. Simulations were performed by means of the Monte Carlo method while employing the Dynamic Lattice Liquid model. Some universal behavior was found, i.e., irrespective of reaction rate and grafting density, the width of the reaction front as well as the height of the front show for long times the same scaling with respect to time. During the formation of the polymer layer despite the observed difference in dispersion of chain lengths for different grafting densities and reaction rates at a given layer height, the quality of the polymer layer does not seem to depend on these parameters. Full article
(This article belongs to the Special Issue Polymer Brushes: Synthesis, Characterization and Applications)
Show Figures

Figure 1

15 pages, 4480 KiB  
Article
Comparing the Efficacy of Seaweed Rafts and Light Traps in Monitoring the Variation in Abundance and Diversity of Juvenile Fish Assemblage During Diurnal and Nocturnal Periods in Tropical Coastal Waters
by Chufeng Fan, Zhongbo Miao, Yongxiang Li, Wentong Xia, Ying Lu, Songguang Xie and Yiqing Song
Fishes 2024, 9(10), 416; https://doi.org/10.3390/fishes9100416 - 17 Oct 2024
Viewed by 367
Abstract
This study evaluates the relative and combined effectiveness of seaweed rafts and light traps in attracting juvenile fish, focusing on diel variations in juvenile fish assemblage in the tropical coastal waters of Gaolong Bay, Wenchang City, Hainan Province. Sampling was conducted in May [...] Read more.
This study evaluates the relative and combined effectiveness of seaweed rafts and light traps in attracting juvenile fish, focusing on diel variations in juvenile fish assemblage in the tropical coastal waters of Gaolong Bay, Wenchang City, Hainan Province. Sampling was conducted in May 2023 during various time periods using self-made artificial drifting seaweed rafts and light traps. The nonparametric Kruskal–Wallis was employed to compare the diversity and catch per unit effort of juvenile fish across different time periods and sampling methods. The Permutational Multivariate Analysis of Variance, heatmaps, and Principal Coordinates Analysis were used to analyze and visualize the differences between juvenile fish assemblages. Our findings indicate that light traps were particularly effective during nocturnal periods, capturing a diverse array of species and achieving the highest richness and evenness indices. Seaweed rafts demonstrated the lowest diversity indices, largely due to the dominance of specific species, which likely contributed to the competitive exclusion of other species. Seaweed rafts showed significant effectiveness during noon, providing critical habitat and shelter that attracted juvenile fish despite the lower diversity. While each method demonstrated specific advantages, their combined approach did not significantly improve juvenile fish aggregation compared to the individual method. These findings underscore the importance of considering diel and tidal cycles in the selection of sampling methods, as aligning the method with the time of day can greatly enhance the accuracy of biodiversity assessments, leading to more informed conservation and management strategies for tropical coastal waters. Full article
(This article belongs to the Special Issue Assessment and Management of Fishery Resources)
Show Figures

Figure 1

16 pages, 3319 KiB  
Article
Performance of Micropiled-Raft Foundations in Sand
by Adel Hanna and Farhad Nabizadeh
Geotechnics 2024, 4(4), 1065-1080; https://doi.org/10.3390/geotechnics4040054 - 15 Oct 2024
Viewed by 361
Abstract
Micropiles were first used to repair the damaged structures of “Scuola Angiulli” in Naples after World War II. They are known as small versions of regular piles, with a diameter of less than 30 cm, and are made of high-strength, steel casing and/or [...] Read more.
Micropiles were first used to repair the damaged structures of “Scuola Angiulli” in Naples after World War II. They are known as small versions of regular piles, with a diameter of less than 30 cm, and are made of high-strength, steel casing and/or threaded bars, produce minimal noise and vibration during installation, and use lightweight machinery. They are capable to withstand axial loads and moderate lateral loads. They are used for underpinning existing foundations and to restore historical buildings and to support moderate structures. In the literature, several reports can be found dealing with micropiles, yet little has been reported on Micropiled-Raft Foundations (MPR). This technology did not receive the recognition it deserved until the 1970s when its technical and economic benefits were noted. A series of laboratory tests and numerical modeling were developed to examine the parameters governing the performance of MPR, including the relative density of the sand, the micropile spacing, and the rigidity of the raft. The numerical model, after being validated with the present experimental results, was used to generate data for a wide range of governing parameters. The theory developed by Poulos (2001) (PDR) to predict the capacity of pile-raft foundations was adopted for the design of MPR. The PDR method is widely used by geotechnical engineers because of its simplicity. Full article
Show Figures

Figure 1

26 pages, 13529 KiB  
Article
Automatic Design and Monitoring of Mass Concrete Based on Information Technology
by Daguang Han, Chunli Ying, Yujun Qi, Qinghao Liu, Rui Wu and Chuanbang Xia
Buildings 2024, 14(10), 3248; https://doi.org/10.3390/buildings14103248 - 14 Oct 2024
Viewed by 513
Abstract
Mass concrete construction has the characteristics of large scale, complex technology, high professional requirements, and complex management. In this paper, information technology is introduced into the construction process of mass concrete, aiming to develop a system that integrates the automatic design and visual [...] Read more.
Mass concrete construction has the characteristics of large scale, complex technology, high professional requirements, and complex management. In this paper, information technology is introduced into the construction process of mass concrete, aiming to develop a system that integrates the automatic design and visual management of mass concrete construction monitoring schemes to improve its construction efficiency. In this paper, the automatic design of a mass concrete construction monitoring scheme is designed, the information of its data acquisition terminal sensor is extended, and the sensor information model is created based on the IFC framework. Finally, this paper verifies the feasibility and practicability of the automatic design and visual monitoring of the monitoring scheme through the actual case-commercial complex raft foundation. The results show that the method provides a digital and information platform for mass concrete construction, highlighting the advantages of the proposed method and the traditional method. Full article
Show Figures

Figure 1

17 pages, 2642 KiB  
Article
Effects of Temperature and Packaging Atmosphere on Shelf Life, Biochemical, and Sensory Attributes of Glasswort (Salicornia europaea L.) Grown Hydroponically at Different Salinity Levels
by Chiara Sanmartin, Isabella Taglieri, Alessandro Bianchi, Prangthip Parichanon, Martina Puccinelli, Alberto Pardossi and Francesca Venturi
Foods 2024, 13(20), 3260; https://doi.org/10.3390/foods13203260 - 13 Oct 2024
Viewed by 725
Abstract
Halophytes, such as Salicornia species, are promising new foods and are consumed for their pleasant salty taste and nutritional value. Since Salicornia is perishable, modified atmospheric packaging (MAP) can be a useful tool, in combination with proper temperature, to halt further quality degradation [...] Read more.
Halophytes, such as Salicornia species, are promising new foods and are consumed for their pleasant salty taste and nutritional value. Since Salicornia is perishable, modified atmospheric packaging (MAP) can be a useful tool, in combination with proper temperature, to halt further quality degradation in this type of product. The purpose of this study was to investigate the effect of MAP, with or without refrigeration, to extend the shelf life of glasswort (Salicornia europaea L.) grown hydroponically (floating raft system) in a greenhouse with a nutrient solution containing 0 g/L (C) or 12.5 g/L of NaCl (T). The dry matter content, weight loss, respiration rate, biochemical composition, color, antioxidant capacity, and sensorial attributes were determined in shoots after harvest and during storage in plastic bags filled with technical air or with MAP at 4 or 20 °C for 120 h. At harvest, plants supplied with salt-enriched solution (T) showed a significant improvement in nutritional value and sensory profile. Storage in air at room temperature (20 °C) accelerated weight loss and diminished color stability, particularly in non-salinity samples (C), while MAP extended the shelf life of all the samples regardless of the storage temperature adopted. Optimal storage conditions were observed when MAP was combined with refrigeration, which allowed to effectively preserve shoots sensory acceptability for a period of about seven days. Future research could further explore the long-term effects on the nutritional value and sensory quality of S. europaea under various combinations of MAP and different storage temperatures ranging between 4 °C and 20 °C. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

14 pages, 319 KiB  
Article
Growth, Ecophysiological Responses, and Leaf Mineral Composition of Lettuce and Curly Endive in Hydroponic and Aquaponic Systems
by Lucia Vanacore, Christophe El-Nakhel, Giuseppe Carlo Modarelli, Youssef Rouphael, Antonio Pannico, Antonio Luca Langellotti, Paolo Masi, Chiara Cirillo and Stefania De Pascale
Plants 2024, 13(20), 2852; https://doi.org/10.3390/plants13202852 - 11 Oct 2024
Viewed by 864
Abstract
Against the backdrop of climate change, soil loss, and water scarcity, sustainable food production is a pivotal challenge for humanity. As the global population grows and urbanization intensifies, innovative agricultural methods are crucial to meet rising food demand, while mitigating environmental degradation. Hydroponic [...] Read more.
Against the backdrop of climate change, soil loss, and water scarcity, sustainable food production is a pivotal challenge for humanity. As the global population grows and urbanization intensifies, innovative agricultural methods are crucial to meet rising food demand, while mitigating environmental degradation. Hydroponic and aquaponic systems, has emerged as one of these solutions by minimizing land use, reducing water consumption, and enabling year-round crop production in urban areas. This study aimed at assessing the yield, ecophysiological performance, and nutritional content of Lactuca sativa L. and Cichorium endivia L. var. crispum grown in hydroponic and aquaponic floating raft systems, with Oreochromis niloticus L. integrated into the aquaponic system. Both species exhibited higher fresh biomass and canopy/root ratios in hydroponics compared to aquaponics. Additionally, hydroponics increased the leaf number in curly endive by 18%. Ecophysiological parameters, such as the leaf net photosynthesis rate, actual yield of PSII, and linear electron transport rate, were also higher in hydroponics for both species. However, the nutritional profiles varied between the two cultivation systems and between the two species. Given that standard fish feed often lacks sufficient potassium levels for optimal plant growth, potassium supplementation could be a viable strategy to enhance plant development in aquaponic systems. In conclusion, although aquaponic systems may demonstrate lower productivity compared to hydroponics, they offer a more sustainable and potentially healthier product with fewer harmful compounds due to the reduced use of synthetic fertilizers, pesticides, and the absence of chemical residue accumulation. However, careful system management and monitoring are crucial to minimize potential contaminants. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
16 pages, 4340 KiB  
Article
“Grafting-from” and “Grafting-to” Poly(N-isopropyl acrylamide) Functionalization of Glass for DNA Biosensors with Improved Properties
by Pauline Skigin, Perrine Robin, Alireza Kavand, Mounir Mensi and Sandrine Gerber-Lemaire
Polymers 2024, 16(20), 2873; https://doi.org/10.3390/polym16202873 - 11 Oct 2024
Viewed by 565
Abstract
Surface-based biosensors have proven to be of particular interest in the monitoring of human pathogens by means of their distinct nucleic acid sequences. Genosensors rely on targeted gene/DNA probe hybridization at the surface of a physical transducer and have been exploited for their [...] Read more.
Surface-based biosensors have proven to be of particular interest in the monitoring of human pathogens by means of their distinct nucleic acid sequences. Genosensors rely on targeted gene/DNA probe hybridization at the surface of a physical transducer and have been exploited for their high specificity and physicochemical stability. Unfortunately, these sensing materials still face limitations impeding their use in current diagnostic techniques. Most of their shortcomings arise from their suboptimal surface properties, including low hybridization density, inadequate probe orientation, and biofouling. Herein, we describe and compare two functionalization methodologies to immobilize DNA probes on a glass substrate via a thermoresponsive polymer in order to produce genosensors with improved properties. The first methodology relies on the use of a silanization step, followed by PET-RAFT of NIPAM monomers on the coated surface, while the second relies on vinyl sulfone modifications of the substrate, to which the pre-synthetized PNIPAM was grafted to. The functionalized substrates were fully characterized by means of X-ray photoelectron spectroscopy for their surface atomic content, fluorescence assay for their DNA hybridization density, and water contact angle measurements for their thermoresponsive behavior. The antifouling properties were evaluated by fluorescence microscopy. Both immobilization methodologies hold the potential to be applied to the engineering of DNA biosensors with a variety of polymers and other metal oxide surfaces. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

20 pages, 4247 KiB  
Article
Enhanced Anti-Melanoma Activity of Nutlin-3a Delivered via Ethosomes: Targeting p53-Mediated Apoptosis in HT144 Cells
by Arianna Romani, Giada Lodi, Fabio Casciano, Arianna Gonelli, Paola Secchiero, Giorgio Zauli, Olga Bortolini, Giuseppe Valacchi, Daniele Ragno, Agnese Bondi, Mascia Benedusi, Elisabetta Esposito and Rebecca Voltan
Cells 2024, 13(20), 1678; https://doi.org/10.3390/cells13201678 - 11 Oct 2024
Viewed by 810
Abstract
This study evaluated ethosomes as a novel nanodelivery system for nutlin-3a, a known MDM2 inhibitor and activator of the p53 pathway, to improve nutlin-3a’s poor solubility, limiting its bio-distribution and therapeutic efficacy. The potential of nutlin-3a-loaded ethosomes was investigated on two in vitro [...] Read more.
This study evaluated ethosomes as a novel nanodelivery system for nutlin-3a, a known MDM2 inhibitor and activator of the p53 pathway, to improve nutlin-3a’s poor solubility, limiting its bio-distribution and therapeutic efficacy. The potential of nutlin-3a-loaded ethosomes was investigated on two in vitro models of melanoma: the HT144 cell line p53wild-type and the SK-MEL-28 cell line p53mutated. Nutlin-3a-loaded ethosomes were characterized for their physicochemical properties and used to treat melanoma cells at different concentrations, considering nutlin-3a solution and empty ethosomes as controls. The biological effects on cells were evaluated 24 and 48 h after treatment by analyzing the cell morphology and viability, cell cycle, and apoptosis rate using flow cytometry and the p53 pathway’s activation via Western blotting. The results indicate that ethosomes are delivery systems able to maintain nutlin-3a’s functionality and specific biological action, as evidenced by the molecular activation of the p53 pathway and the biological events leading to cell cycle block and apoptosis in p53wild-type cells. Nutlin-3a-loaded ethosomes induced morphological changes in the HT144 cell line, with evident apoptotic cells and a reduction in the number of viable cells of over 80%. Furthermore, nutlin-3a-loaded ethosomes successfully modulated two p53-regulated proteins involved in survival/apoptosis, with up to a 2.5-fold increase in membrane TRAIL-R2 and up to an 8.2-fold decrease in Notch-1 (Notch intracellular domain, NICD) protein expression. The expression of these molecules is known to be altered or dysfunctional in a large percentage of melanoma tumors. Notably, ethosomes, regardless of their nutlin-3a loading, exhibited the ability to reduce HT144 melanoma cellular migration, as assessed in real time using xCELLigence, likely due to the modification of lipid rafts, suggesting their potential antimetastatic properties. Overall, nutlin-3a delivery using ethosomes appears to be a significantly effective means for upregulating the p53 pathway and downregulating active Notch-1, while also taking advantage of their unexpected ability to reduce cellular migration. The findings of this study could pave the way for the development of specific nutlin-3a-loaded ethosome-based medicinal products for cutaneous use. Full article
Show Figures

Graphical abstract

16 pages, 4211 KiB  
Article
An Optimized Liquid Chromatography–Mass Spectrometry Method for Ganglioside Analysis in Cell Lines
by Akeem Sanni, Andrew I. Bennett, Yifan Huang, Isabella Gidi, Moyinoluwa Adeniyi, Judith Nwaiwu, Min H. Kang, Michelle E. Keyel, ChongFeng Gao, C. Patrick Reynolds, Haab Brian and Yehia Mechref
Cells 2024, 13(19), 1640; https://doi.org/10.3390/cells13191640 - 2 Oct 2024
Viewed by 1360
Abstract
Gangliosides are glycosphingolipids composed of a sialylated glycan head group and a ceramide backbone. These anionic lipids form lipid rafts and play crucial roles in regulating various proteins involved in signal transduction, adhesion, and cell–cell recognition. Neuroblastoma, a pediatric cancer of the sympathetic [...] Read more.
Gangliosides are glycosphingolipids composed of a sialylated glycan head group and a ceramide backbone. These anionic lipids form lipid rafts and play crucial roles in regulating various proteins involved in signal transduction, adhesion, and cell–cell recognition. Neuroblastoma, a pediatric cancer of the sympathetic nervous system, is treated with intensive chemotherapy, radiation, and an antibody targeting the GD2 ganglioside. Gangliosides are critical in neuroblastoma development and serve as therapeutic targets, making it essential to establish a reliable, rapid, and cost-effective method for profiling gangliosides, particularly one capable of isomeric separation of intact species. In this study, liquid chromatography–mass spectrometry (LC-MS) was optimized using standard gangliosides, followed by the optimization of sphingolipid extraction methods from cell lines by comparing Folch and absolute methanol extraction techniques. Percent recovery and the number of identified sphingolipids were used to evaluate the analytical merits of these methods. A standard gangliosides calibration curve demonstrated excellent linearity (R2 = 0.9961–0.9975). The ZIC-HILIC column provided the best separation of ganglioside GD1 isomers with a 25 min runtime. GD1a elutes before GD1b on the ZIC-HILIC column. Absolute methanol yielded better percent recovery (96 ± 7) and identified 121 different sphingolipids, the highest number between the two extraction methods. The optimized method was applied to profile gangliosides in neuroblastoma (COG-N-683), pancreatic cancer (PSN1), breast cancer (MDA-MB-231BR), and brain tumor (CRL-1620) cell lines. The ganglioside profile of the neuroblastoma cell line COG-N-683 showed an inverse relationship between GD1 and GD2. Ceramide, Hex1Cer, GM1, and GM3 were highly abundant in CRL-1620, PSN1, and MDA-MB-231BR, respectively. These results suggest that our method provides a sensitive, reliable, and high-throughput workflow for ganglioside profiling across different cell types. Full article
Show Figures

Figure 1

16 pages, 10997 KiB  
Article
Non-Intrusive Water Surface Velocity Measurement Based on Deep Learning
by Guocheng An, Tiantian Du, Jin He and Yanwei Zhang
Water 2024, 16(19), 2784; https://doi.org/10.3390/w16192784 - 30 Sep 2024
Viewed by 560
Abstract
Accurate assessment of water surface velocity (WSV) is essential for flood prevention, disaster mitigation, and erosion control within hydrological monitoring. Existing image-based velocimetry techniques largely depend on correlation principles, requiring users to input and adjust parameters to achieve reliable results, which poses challenges [...] Read more.
Accurate assessment of water surface velocity (WSV) is essential for flood prevention, disaster mitigation, and erosion control within hydrological monitoring. Existing image-based velocimetry techniques largely depend on correlation principles, requiring users to input and adjust parameters to achieve reliable results, which poses challenges for users lacking relevant expertise. This study presents RivVideoFlow, a user-friendly, rapid, and precise method for WSV. RivVideoFlow combines two-dimensional and three-dimensional orthorectification based on Ground Control Points (GCPs) with a deep learning-based multi-frame optical flow estimation algorithm named VideoFlow, which integrates temporal cues. The orthorectification process employs a homography matrix to convert images from various angles into a top-down view, aligning the image coordinates with actual geographical coordinates. VideoFlow achieves superior accuracy and strong dataset generalization compared to two-frame RAFT models due to its more effective capture of flow velocity continuity over time, leading to enhanced stability in velocity measurements. The algorithm has been validated on a flood simulation experimental platform, in outdoor settings, and with synthetic river videos. Results demonstrate that RivVideoFlow can robustly estimate surface velocity under various camera perspectives, enabling continuous real-time dynamic measurement of the entire flow field. Moreover, RivVideoFlow has demonstrated superior performance in low, medium, and high flow velocity scenarios, especially in high-velocity conditions where it achieves high measurement precision. This method provides a more effective solution for hydrological monitoring. Full article
Show Figures

Figure 1

10 pages, 2393 KiB  
Article
The Effects of Different Blending Methods on the Thermal, Mechanical, and Optical Properties of PMMA/SiO2 Composites
by Chi-Kai Lin, Jia-Wei Xie, Ping-Jui Tsai, Hao-Yu Wang, Zhi-Wei Lu, Tung-Yi Lin and Chih-Yu Kuo
J. Compos. Sci. 2024, 8(9), 369; https://doi.org/10.3390/jcs8090369 - 20 Sep 2024
Viewed by 650
Abstract
In this study, PMMA/SiO2 composites were fabricated with monodispersed SiO2 and PMMA using four distinct methods—physical blending, in situ polymerization, random copolymerization, and block copolymerization—to investigate the composites’ thermal, mechanical, and optical properties. In the physical blending approach, SiO2 nanoparticles [...] Read more.
In this study, PMMA/SiO2 composites were fabricated with monodispersed SiO2 and PMMA using four distinct methods—physical blending, in situ polymerization, random copolymerization, and block copolymerization—to investigate the composites’ thermal, mechanical, and optical properties. In the physical blending approach, SiO2 nanoparticles were dispersed in a PMMA solution, while during in situ polymerization, silica nanoparticles were incorporated during the synthesis of PMMA/SiO2 composites. 3-methacryloxypropyltrimethoxysilane (MPS) was modified on the SiO2 surface to introduce the reactive double bonds. The MPS@SiO2 was either random- or block-copolymerized with PMMA through RAFT polymerization. The PMMA/SiO2 composites prepared via these different methods were characterized using FTIR, TGA, and DSC to determine their chemical structures, thermal degradation temperatures, and glass transition temperatures, respectively. Scanning electron microscopy (SEM) was employed to observe the microstructures and dispersion of the composites. This comprehensive analysis revealed that the PMMA/SiO2 composites prepared via block copolymerization exhibited thermal stability at temperatures between 200 and 300 °C. Additionally, they demonstrated excellent transparency (86%) and scratch resistance (≥6H) while maintaining mechanical strength, suggesting their potential application in thermal insulation materials. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Graphical abstract

Back to TopTop