Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (320)

Search Parameters:
Keywords = RANSAC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 24773 KiB  
Article
Design and Experiment of Ordinary Tea Profiling Harvesting Device Based on Light Detection and Ranging Perception
by Xiaolong Huan, Min Wu, Xianbing Bian, Jiangming Jia, Chenchen Kang, Chuanyu Wu, Runmao Zhao and Jianneng Chen
Agriculture 2024, 14(7), 1147; https://doi.org/10.3390/agriculture14071147 - 15 Jul 2024
Viewed by 248
Abstract
Due to the complex shape of the tea tree canopy and the large undulation of a tea garden terrain, the quality of fresh tea leaves harvested by existing tea harvesting machines is poor. This study proposed a tea canopy surface profiling method based [...] Read more.
Due to the complex shape of the tea tree canopy and the large undulation of a tea garden terrain, the quality of fresh tea leaves harvested by existing tea harvesting machines is poor. This study proposed a tea canopy surface profiling method based on 2D LiDAR perception and investigated the extraction and fitting methods of canopy point clouds. Meanwhile, a tea profiling harvester prototype was developed and field tests were conducted. The tea profiling harvesting device adopted a scheme of sectional arrangement of multiple groups of profiling tea harvesting units, and each unit sensed the height information of its own bottom canopy area through 2D LiDAR. A cross-platform communication network was established, enabling point cloud fitting of tea plant surfaces and accurate estimation of cutter profiling height through the RANSAC algorithm. Additionally, a sensing control system with multiple execution units was developed using rapid control prototype technology. The results of field tests showed that the bud leaf integrity rate was 84.64%, the impurity rate was 5.94%, the missing collection rate was 0.30%, and the missing harvesting rate was 0.68%. Furthermore, 89.57% of the harvested tea could be processed into commercial tea, with 88.34% consisting of young tea shoots with one bud and three leaves or fewer. All of these results demonstrated that the proposed device effectively meets the technical standards for machine-harvested tea and the requirements of standard tea processing techniques. Moreover, compared to other commercial tea harvesters, the proposed tea profiling harvesting device demonstrated improved performance in harvesting fresh tea leaves. Full article
(This article belongs to the Special Issue Sensor-Based Precision Agriculture)
Show Figures

Figure 1

17 pages, 6246 KiB  
Article
YPL-SLAM: A Simultaneous Localization and Mapping Algorithm for Point–line Fusion in Dynamic Environments
by Xinwu Du, Chenglin Zhang, Kaihang Gao, Jin Liu, Xiufang Yu and Shusong Wang
Sensors 2024, 24(14), 4517; https://doi.org/10.3390/s24144517 - 12 Jul 2024
Viewed by 314
Abstract
Simultaneous Localization and Mapping (SLAM) is one of the key technologies with which to address the autonomous navigation of mobile robots, utilizing environmental features to determine a robot’s position and create a map of its surroundings. Currently, visual SLAM algorithms typically yield precise [...] Read more.
Simultaneous Localization and Mapping (SLAM) is one of the key technologies with which to address the autonomous navigation of mobile robots, utilizing environmental features to determine a robot’s position and create a map of its surroundings. Currently, visual SLAM algorithms typically yield precise and dependable outcomes in static environments, and many algorithms opt to filter out the feature points in dynamic regions. However, when there is an increase in the number of dynamic objects within the camera’s view, this approach might result in decreased accuracy or tracking failures. Therefore, this study proposes a solution called YPL-SLAM based on ORB-SLAM2. The solution adds a target recognition and region segmentation module to determine the dynamic region, potential dynamic region, and static region; determines the state of the potential dynamic region using the RANSAC method with polar geometric constraints; and removes the dynamic feature points. It then extracts the line features of the non-dynamic region and finally performs the point–line fusion optimization process using a weighted fusion strategy, considering the image dynamic score and the number of successful feature point–line matches, thus ensuring the system’s robustness and accuracy. A large number of experiments have been conducted using the publicly available TUM dataset to compare YPL-SLAM with globally leading SLAM algorithms. The results demonstrate that the new algorithm surpasses ORB-SLAM2 in terms of accuracy (with a maximum improvement of 96.1%) while also exhibiting a significantly enhanced operating speed compared to Dyna-SLAM. Full article
Show Figures

Figure 1

17 pages, 5421 KiB  
Article
Application of Micro-Plane Projection Moving Least Squares and Joint Iterative Closest Point Algorithms in Spacecraft Pose Estimation
by Youzhi Li, Yuan Han, Jiaqi Yao, Yanqiu Wang, Fu Zheng and Zhibin Sun
Appl. Sci. 2024, 14(13), 5855; https://doi.org/10.3390/app14135855 - 4 Jul 2024
Viewed by 460
Abstract
Accurately determining the attitude of non-cooperative spacecraft in on-orbit servicing (OOS) has posed a challenge in recent years. In point cloud-based spatial non-cooperative target attitude estimation schemes, high-precision point clouds, which are more robust to noise, can offer more accurate data input for [...] Read more.
Accurately determining the attitude of non-cooperative spacecraft in on-orbit servicing (OOS) has posed a challenge in recent years. In point cloud-based spatial non-cooperative target attitude estimation schemes, high-precision point clouds, which are more robust to noise, can offer more accurate data input for three-dimensional registration. To enhance registration accuracy, we propose a noise filtering method based on moving least squares microplane projection (mpp-MLS). This method retains salient target feature points while eliminating redundant points, thereby enhancing registration accuracy. Higher accuracy in point clouds enables a more precise estimation of spatial target attitudes. For coarse registration, we employed the Random Sampling Consistency (RANSAC) algorithm to enhance accuracy and alleviate the adverse effects of point cloud mismatches. For fine registration, the J-ICP algorithm was utilized to estimate pose transformations and minimize spacecraft cumulative pose estimation errors during movement transformations. Semi-physical experimental results indicate that the proposed attitude parameter measurement method outperformed the classic ICP registration method. It yielded maximum translation and rotation errors of less than 1.57 mm and 0.071°, respectively, and reduced maximum translation and rotation errors by 56% and 65%, respectively, thereby significantly enhancing the attitude estimation accuracy of non-cooperative targets. Full article
Show Figures

Figure 1

18 pages, 4924 KiB  
Article
LOD2-Level+ Low-Rise Building Model Extraction Method for Oblique Photography Data Using U-NET and a Multi-Decision RANSAC Segmentation Algorithm
by Yufeng He, Xiaobian Wu, Weibin Pan, Hui Chen, Songshan Zhou, Shaohua Lei, Xiaoran Gong, Hanzeyu Xu and Yehua Sheng
Remote Sens. 2024, 16(13), 2404; https://doi.org/10.3390/rs16132404 - 30 Jun 2024
Viewed by 443
Abstract
Oblique photography is a regional digital surface model generation technique that can be widely used for building 3D model construction. However, due to the lack of geometric and semantic information about the building, these models make it difficult to differentiate more detailed components [...] Read more.
Oblique photography is a regional digital surface model generation technique that can be widely used for building 3D model construction. However, due to the lack of geometric and semantic information about the building, these models make it difficult to differentiate more detailed components in the building, such as roofs and balconies. This paper proposes a deep learning-based method (U-NET) for constructing 3D models of low-rise buildings that address the issues. The method ensures complete geometric and semantic information and conforms to the LOD2 level. First, digital orthophotos are used to perform building extraction based on U-NET, and then a contour optimization method based on the main direction of the building and the center of gravity of the contour is used to obtain the regular building contour. Second, the pure building point cloud model representing a single building is extracted from the whole point cloud scene based on the acquired building contour. Finally, the multi-decision RANSAC algorithm is used to segment the building detail point cloud and construct a triangular mesh of building components, followed by a triangular mesh fusion and splicing method to achieve monolithic building components. The paper presents experimental evidence that the building contour extraction algorithm can achieve a 90.3% success rate and that the resulting single building 3D model contains LOD2 building components, which contain detailed geometric and semantic information. Full article
Show Figures

Figure 1

15 pages, 4809 KiB  
Article
LiDAR Point Cloud Super-Resolution Reconstruction Based on Point Cloud Weighted Fusion Algorithm of Improved RANSAC and Reciprocal Distance
by Xiaoping Yang, Ping Ni, Zhenhua Li and Guanghui Liu
Electronics 2024, 13(13), 2521; https://doi.org/10.3390/electronics13132521 - 27 Jun 2024
Viewed by 350
Abstract
This paper proposes a point-by-point weighted fusion algorithm based on an improved random sample consensus (RANSAC) and inverse distance weighting to address the issue of low-resolution point cloud data obtained from light detection and ranging (LiDAR) sensors and single technologies. By fusing low-resolution [...] Read more.
This paper proposes a point-by-point weighted fusion algorithm based on an improved random sample consensus (RANSAC) and inverse distance weighting to address the issue of low-resolution point cloud data obtained from light detection and ranging (LiDAR) sensors and single technologies. By fusing low-resolution point clouds with higher-resolution point clouds at the data level, the algorithm generates high-resolution point clouds, achieving the super-resolution reconstruction of lidar point clouds. This method effectively reduces noise in the higher-resolution point clouds while preserving the structure of the low-resolution point clouds, ensuring that the semantic information of the generated high-resolution point clouds remains consistent with that of the low-resolution point clouds. Specifically, the algorithm constructs a K-d tree using the low-resolution point cloud to perform a nearest neighbor search, establishing the correspondence between the low-resolution and higher-resolution point clouds. Next, the improved RANSAC algorithm is employed for point cloud alignment, and inverse distance weighting is used for point-by-point weighted fusion, ultimately yielding the high-resolution point cloud. The experimental results demonstrate that the proposed point cloud super-resolution reconstruction method outperforms other methods across various metrics. Notably, it reduces the Chamfer Distance (CD) metric by 0.49 and 0.29 and improves the Precision metric by 7.75% and 4.47%, respectively, compared to two other methods. Full article
(This article belongs to the Special Issue Digital Security and Privacy Protection: Trends and Applications)
Show Figures

Figure 1

27 pages, 8926 KiB  
Article
Mathematical Modeling for Robot 3D Laser Scanning in Complete Darkness Environments to Advance Pipeline Inspection
by Cesar Sepulveda-Valdez, Oleg Sergiyenko, Vera Tyrsa, Paolo Mercorelli, Julio C. Rodríguez-Quiñonez, Wendy Flores-Fuentes, Alexey Zhirabok, Ruben Alaniz-Plata, José A. Núñez-López, Humberto Andrade-Collazo, Jesús E. Miranda-Vega and Fabian N. Murrieta-Rico
Mathematics 2024, 12(13), 1940; https://doi.org/10.3390/math12131940 - 22 Jun 2024
Viewed by 417
Abstract
This paper introduces an autonomous robot designed for in-pipe structural health monitoring of oil/gas pipelines. This system employs a 3D Optical Laser Scanning Technical Vision System (TVS) to continuously scan the internal surface of the pipeline. This paper elaborates on the mathematical methodology [...] Read more.
This paper introduces an autonomous robot designed for in-pipe structural health monitoring of oil/gas pipelines. This system employs a 3D Optical Laser Scanning Technical Vision System (TVS) to continuously scan the internal surface of the pipeline. This paper elaborates on the mathematical methodology of 3D laser surface scanning based on dynamic triangulation. This paper presents the mathematical framework governing the combined kinematics of the Mobile Robot (MR) and TVS. It discusses the custom design of the MR, adjusting it to use of robustized mathematics, and incorporating a laser scanner produced using a 3D printer. Both experimental and theoretical approaches are utilized to illustrate the formation of point clouds during surface scanning. This paper details the application of the simple and robust mathematical algorithm RANSAC for the preliminary processing of the measured point clouds. Furthermore, it contributes two distinct and simplified criteria for detecting defects in pipelines, specifically tailored for computer processing. In conclusion, this paper assesses the effectiveness of the proposed mathematical and physical method through experimental tests conducted under varying light conditions. Full article
Show Figures

Figure 1

18 pages, 7510 KiB  
Article
An Individual Tree Detection and Segmentation Method from TLS and MLS Point Clouds Based on Improved Seed Points
by Qiuji Chen, Hao Luo, Yan Cheng, Mimi Xie and Dandan Nan
Forests 2024, 15(7), 1083; https://doi.org/10.3390/f15071083 - 22 Jun 2024
Viewed by 406
Abstract
Individual Tree Detection and Segmentation (ITDS) is a key step in accurately extracting forest structural parameters from LiDAR (Light Detection and Ranging) data. However, most ITDS algorithms face challenges with over-segmentation, under-segmentation, and the omission of small trees in high-density forests. In this [...] Read more.
Individual Tree Detection and Segmentation (ITDS) is a key step in accurately extracting forest structural parameters from LiDAR (Light Detection and Ranging) data. However, most ITDS algorithms face challenges with over-segmentation, under-segmentation, and the omission of small trees in high-density forests. In this study, we developed a bottom–up framework for ITDS based on seed points. The proposed method is based on density-based spatial clustering of applications with noise (DBSCAN) to initially detect the trunks and filter the clusters by a set threshold. Then, the K-Nearest Neighbor (KNN) algorithm is used to reclassify the non-core clustered point cloud after threshold filtering. Furthermore, the Random Sample Consensus (RANSAC) cylinder fitting algorithm is used to correct the trunk detection results. Finally, we calculate the centroid of the trunk point clouds as seed points to achieve individual tree segmentation (ITS). In this paper, we use terrestrial laser scanning (TLS) data from natural forests in Germany and mobile laser scanning (MLS) data from planted forests in China to explore the effects of seed points on the accuracy of ITS methods; we then evaluate the efficiency of the method from three aspects: trunk detection, overall segmentation and small tree segmentation. We show the following: (1) the proposed method addresses the issues of missing segmentation and misrecognition of DBSCAN in trunk detection. Compared to using DBSCAN directly, recall (r), precision (p), and F-score (F) increased by 6.0%, 6.5%, and 0.07, respectively; (2) seed points significantly improved the accuracy of ITS methods; (3) the proposed ITDS framework achieved overall r, p, and F of 95.2%, 97.4%, and 0.96, respectively. This work demonstrates excellent accuracy in high-density forests and is able to accurately segment small trees under tall trees. Full article
(This article belongs to the Special Issue Panoptic Segmentation of Tree Scenes from Mobile LiDAR Data)
Show Figures

Figure 1

13 pages, 3236 KiB  
Article
Improved Blob-Based Feature Detection and Refined Matching Algorithms for Seismic Structural Health Monitoring of Bridges Using a Vision-Based Sensor System
by Luna Ngeljaratan, Mohamed A. Moustafa, Agung Sumarno, Agus Mudo Prasetyo, Dany Perwita Sari and Maidina Maidina
Infrastructures 2024, 9(6), 97; https://doi.org/10.3390/infrastructures9060097 - 14 Jun 2024
Viewed by 673
Abstract
The condition and hazard monitoring of bridges play important roles in ensuring their service continuity not only throughout their entire lifespan but also under extreme conditions such as those of earthquakes. Advanced structural health monitoring (SHM) systems using vision-based technology, such as surveillance, [...] Read more.
The condition and hazard monitoring of bridges play important roles in ensuring their service continuity not only throughout their entire lifespan but also under extreme conditions such as those of earthquakes. Advanced structural health monitoring (SHM) systems using vision-based technology, such as surveillance, traffic, or drone cameras, may assist in preventing future impacts due to structural deficiency and are critical to the emergence of sustainable and smart transportation infrastructure. This study evaluates several feature detection and tracking algorithms and implements them in the vision-based SHM of bridges along with their systematic procedures. The proposed procedures are implemented via a two-span accelerated bridge construction (ABC) system undergoing a large-scale shake-table test. The research objectives are to explore the effect of refined matching algorithms on blob-based features in improving their accuracies and to implement the proposed algorithms on large-scale bridges tested under seismic loads using vision-based SHM. The procedure begins by adopting blob-based feature detectors, i.e., the scale-invariant feature transform (SIFT), speeded-up robust features (SURF), and KAZE algorithms, and their stability is compared. The least medium square (LMEDS), least trimmed square (LTS), random sample consensus (RANSAC), and its generalization maximum sample consensus (MSAC) algorithms are applied for model fitting, and their sensitivity for removing outliers is analyzed. The raw data are corrected using mathematical models and scaled to generate displacement data. Finally, seismic vibrations of the bridge are generated, and the seismic responses are compared. The data are validated using target-tracking methods and mechanical sensors, i.e., string potentiometers. The results show a good agreement between the proposed blob feature detection and matching algorithms and target-tracking data and reference data obtained using mechanical sensors. Full article
Show Figures

Figure 1

17 pages, 8147 KiB  
Article
A Dynamic Visual SLAM System Incorporating Object Tracking for UAVs
by Minglei Li, Jia Li, Yanan Cao and Guangyong Chen
Drones 2024, 8(6), 222; https://doi.org/10.3390/drones8060222 - 29 May 2024
Viewed by 590
Abstract
The capability of unmanned aerial vehicles (UAVs) to capture and utilize dynamic object information assumes critical significance for decision making and scene understanding. This paper presents a method for UAV relative positioning and target tracking based on a visual simultaneousocalization and mapping (SLAM) [...] Read more.
The capability of unmanned aerial vehicles (UAVs) to capture and utilize dynamic object information assumes critical significance for decision making and scene understanding. This paper presents a method for UAV relative positioning and target tracking based on a visual simultaneousocalization and mapping (SLAM) framework. By integrating an object detection neural network into the SLAM framework, this method can detect moving objects and effectively reconstruct the 3D map of the environment from image sequences. For multiple object tracking tasks, we combine the region matching of semantic detection boxes and the point matching of the optical flow method to perform dynamic object association. This joint association strategy can prevent trackingoss due to the small proportion of the object in the whole image sequence. To address the problem ofacking scale information in the visual SLAM system, we recover the altitude data based on a RANSAC-based plane estimation approach. The proposed method is tested on both the self-created UAV dataset and the KITTI dataset to evaluate its performance. The results demonstrate the robustness and effectiveness of the solution in facilitating UAV flights. Full article
Show Figures

Figure 1

22 pages, 2739 KiB  
Article
A Registration Method of Overlap Aware Point Clouds Based on Transformer-to-Transformer Regression
by Yafei Zhao, Lineng Chen, Quanchen Zhou, Jiabao Zuo, Huan Wang and Mingwu Ren
Remote Sens. 2024, 16(11), 1898; https://doi.org/10.3390/rs16111898 - 25 May 2024
Viewed by 623
Abstract
Transformer has recently become widely adopted in point cloud registration. Nevertheless, Transformer is unsuitable for handling dense point clouds due to resource constraints and the sheer volume of data. We propose a method for directly regressing the rigid relative transformation of dense point [...] Read more.
Transformer has recently become widely adopted in point cloud registration. Nevertheless, Transformer is unsuitable for handling dense point clouds due to resource constraints and the sheer volume of data. We propose a method for directly regressing the rigid relative transformation of dense point cloud pairs. Specifically, we divide the dense point clouds into blocks according to the down-sampled superpoints. During training, we randomly select point cloud blocks with varying overlap ratios, and during testing, we introduce the overlap-aware Rotation-Invariant Geometric Transformer Cross-Encoder (RIG-Transformer), which predicts superpoints situated within the common area of the point cloud pairs. The dense points corresponding to the superpoints are inputted into the Transformer Cross-Encoder to estimate their correspondences. Through the fusion of our RIG-Transformer and Transformer Cross-Encoder, we propose Transformer-to-Transformer Regression (TTReg), which leverages dense point clouds from overlapping regions for both training and testing phases, calculating the relative transformation of the dense points by using the predicted correspondences without random sample consensus (RANSAC). We have evaluated our method on challenging benchmark datasets, including 3DMatch, 3DLoMatch, ModelNet, and ModelLoNet, demonstrating up to a 7.2% improvement in registration recall. The improvements are attributed to our RIG-Transformer module and regression mechanism, which makes the features of superpoints more discriminative. Full article
Show Figures

Figure 1

19 pages, 16808 KiB  
Article
A Robust Mismatch Removal Method for Image Matching Based on the Fusion of the Local Features and the Depth
by Xinpeng Ling, Jiahang Liu, Zexian Duan and Ji Luan
Remote Sens. 2024, 16(11), 1873; https://doi.org/10.3390/rs16111873 - 24 May 2024
Viewed by 398
Abstract
Feature point matching is a fundamental task in computer vision such as vision simultaneous localization and mapping (VSLAM) and structure from motion (SFM). Due to the similarity or interference of features, mismatches are often unavoidable. Therefore, how to eliminate mismatches is important for [...] Read more.
Feature point matching is a fundamental task in computer vision such as vision simultaneous localization and mapping (VSLAM) and structure from motion (SFM). Due to the similarity or interference of features, mismatches are often unavoidable. Therefore, how to eliminate mismatches is important for robust matching. Smoothness constraint is widely used to remove mismatch, but it cannot effectively deal with the issue in the rapidly changing scene. In this paper, a novel LCS-SSM (Local Cell Statistics and Structural Similarity Measurement) mismatch removal method is proposed. LCS-SSM integrates the motion consistency and structural similarity of a local image block as the statistical likelihood of matched key points. Then, the Random Sampling Consensus (RANSAC) algorithm is employed to preserve the isolated matches that do not satisfy the statistical likelihood. Experimental and comparative results on the public dataset show that the proposed LCS-SSM can effectively and reliably differentiate true and false matches compared with state-of-the-art methods, and can be used for robust matching in scenes with fast motion, blurs, and clustered noise. Full article
Show Figures

Graphical abstract

12 pages, 9872 KiB  
Article
Research and Preliminary Evaluation of Key Technologies for 3D Reconstruction of Pig Bodies Based on 3D Point Clouds
by Kaidong Lei, Xiangfang Tang, Xiaoli Li, Qinggen Lu, Teng Long, Xinghang Zhang and Benhai Xiong
Agriculture 2024, 14(6), 793; https://doi.org/10.3390/agriculture14060793 - 22 May 2024
Viewed by 574
Abstract
In precision livestock farming, the non-contact perception of live pig body measurement data is a critical technological branch that can significantly enhance breeding efficiency, improve animal welfare, and effectively prevent and control diseases. Monitoring pig body measurements allows for accurate assessment of their [...] Read more.
In precision livestock farming, the non-contact perception of live pig body measurement data is a critical technological branch that can significantly enhance breeding efficiency, improve animal welfare, and effectively prevent and control diseases. Monitoring pig body measurements allows for accurate assessment of their growth and production performance. Currently, traditional sensing methods rely heavily on manual measurements, which not only have large errors and high workloads but also may cause stress responses in pigs, increasing the risk of African swine fever, and its costs of prevention and control. Therefore, we integrated and developed a system based on a 3D reconstruction model that includes the following contributions: 1. We developed a non-contact system for perceiving pig body measurements using a depth camera. This system, tailored to the specific needs of laboratory and on-site pig farming processes, can accurately acquire pig body data while avoiding stress and considering animal welfare. 2. Data preprocessing was performed using Gaussian filtering, mean filtering, and median filtering, followed by effective estimation of normals using methods such as least squares, principal component analysis (PCA), and random sample consensus (RANSAC). These steps enhance the quality and efficiency of point cloud processing, ensuring the reliability of 3D reconstruction tasks. 3. Experimental evidence showed that the use of the RANSAC method can significantly speed up 3D reconstruction, effectively reconstructing smooth surfaces of pigs. 4. For the acquisition of smooth surfaces in 3D reconstruction, experimental evidence demonstrated that the RANSAC method significantly improves the speed of reconstruction. 5. Experimental results indicated that the relative errors for chest girth and hip width were 3.55% and 2.83%, respectively. Faced with complex pigsty application scenarios, the technology we provided can effectively perceive pig body measurement data, meeting the needs of modern production. Full article
(This article belongs to the Special Issue Application of Sensor Technologies in Livestock Farming)
Show Figures

Figure 1

20 pages, 7124 KiB  
Article
An Improved RANSAC-ICP Method for Registration of SLAM and UAV-LiDAR Point Cloud at Plot Scale
by Shuting Zhang, Hongtao Wang, Cheng Wang, Yingchen Wang, Shaohui Wang and Zhenqi Yang
Forests 2024, 15(6), 893; https://doi.org/10.3390/f15060893 - 21 May 2024
Viewed by 640
Abstract
Simultaneous Localization and Mapping (SLAM) using LiDAR technology can acquire the point cloud below the tree canopy efficiently in real time, and the Unmanned Aerial Vehicle LiDAR (UAV-LiDAR) can derive the point cloud of the tree canopy. By registering them, the complete 3D [...] Read more.
Simultaneous Localization and Mapping (SLAM) using LiDAR technology can acquire the point cloud below the tree canopy efficiently in real time, and the Unmanned Aerial Vehicle LiDAR (UAV-LiDAR) can derive the point cloud of the tree canopy. By registering them, the complete 3D structural information of the trees can be obtained for the forest inventory. To this end, an improved RANSAC-ICP algorithm for registration of SLAM and UAV-LiDAR point cloud at plot scale is proposed in this study. Firstly, the point cloud features are extracted and transformed into 33-dimensional feature vectors by using the feature descriptor FPFH, and the corresponding point pairs are determined by bidirectional feature matching. Then, the RANSAC algorithm is employed to compute the transformation matrix based on the reduced set of feature points for coarse registration of the point cloud. Finally, the iterative closest point algorithm is used to iterate the transformation matrix to achieve precise registration of the SLAM and UAV-LiDAR point cloud. The proposed algorithm is validated on both coniferous and broadleaf forest datasets, with an average mean absolute distance (MAD) of 11.332 cm for the broadleaf forest dataset and 6.150 cm for the coniferous forest dataset. The experimental results show that the proposed method in this study can be effectively applied to the forest plot scale for the precise alignment of multi-platform point clouds. Full article
(This article belongs to the Special Issue Airborne and Terrestrial Laser Scanning in Forests)
Show Figures

Figure 1

26 pages, 14473 KiB  
Article
Simultaneous Localization and Mapping System for Agricultural Yield Estimation Based on Improved VINS-RGBD: A Case Study of a Strawberry Field
by Quanbo Yuan, Penggang Wang, Wei Luo, Yongxu Zhou, Hongce Chen and Zhaopeng Meng
Agriculture 2024, 14(5), 784; https://doi.org/10.3390/agriculture14050784 - 19 May 2024
Viewed by 745
Abstract
Crop yield estimation plays a crucial role in agricultural production planning and risk management. Utilizing simultaneous localization and mapping (SLAM) technology for the three-dimensional reconstruction of crops allows for an intuitive understanding of their growth status and facilitates yield estimation. Therefore, this paper [...] Read more.
Crop yield estimation plays a crucial role in agricultural production planning and risk management. Utilizing simultaneous localization and mapping (SLAM) technology for the three-dimensional reconstruction of crops allows for an intuitive understanding of their growth status and facilitates yield estimation. Therefore, this paper proposes a VINS-RGBD system incorporating a semantic segmentation module to enrich the information representation of a 3D reconstruction map. Additionally, image matching using L_SuperPoint feature points is employed to achieve higher localization accuracy and obtain better map quality. Moreover, Voxblox is proposed for storing and representing the maps, which facilitates the storage of large-scale maps. Furthermore, yield estimation is conducted using conditional filtering and RANSAC spherical fitting. The results show that the proposed system achieves an average relative error of 10.87% in yield estimation. The semantic segmentation accuracy of the system reaches 73.2% mIoU, and it can save an average of 96.91% memory for point cloud map storage. Localization accuracy tests on public datasets demonstrate that, compared to Shi–Tomasi corner points, using L_SuperPoint feature points reduces the average ATE by 1.933 and the average RPE by 0.042. Through field experiments and evaluations in a strawberry field, the proposed system demonstrates reliability in yield estimation, providing guidance and support for agricultural production planning and risk management. Full article
(This article belongs to the Topic Current Research on Intelligent Equipment for Agriculture)
Show Figures

Figure 1

23 pages, 8731 KiB  
Article
Development of a High-Precision Lidar System and Improvement of Key Steps for Railway Obstacle Detection Algorithm
by Zongliang Nan, Guoan Zhu, Xu Zhang, Xuechun Lin and Yingying Yang
Remote Sens. 2024, 16(10), 1761; https://doi.org/10.3390/rs16101761 - 16 May 2024
Viewed by 2946
Abstract
In response to the growing demand for railway obstacle monitoring, lidar technology has emerged as an up-and-coming solution. In this study, we developed a mechanical 3D lidar system and meticulously calibrated the point cloud transformation to monitor specific areas precisely. Based on this [...] Read more.
In response to the growing demand for railway obstacle monitoring, lidar technology has emerged as an up-and-coming solution. In this study, we developed a mechanical 3D lidar system and meticulously calibrated the point cloud transformation to monitor specific areas precisely. Based on this foundation, we have devised a novel set of algorithms for obstacle detection within point clouds. These algorithms encompass three key steps: (a) the segmentation of ground point clouds and extraction of track point clouds using our RS-Lo-RANSAC (region select Lo-RANSAC) algorithm; (b) the registration of the BP (background point cloud) and FP (foreground point cloud) via an improved Robust ICP algorithm; and (c) obstacle recognition based on the VFOR (voxel-based feature obstacle recognition) algorithm from the fused point clouds. This set of algorithms has demonstrated robustness and operational efficiency in our experiments on a dataset obtained from an experimental field. Notably, it enables monitoring obstacles with dimensions of 15 cm × 15 cm × 15 cm. Overall, our study showcases the immense potential of lidar technology in railway obstacle monitoring, presenting a promising solution to enhance safety in this field. Full article
Show Figures

Figure 1

Back to TopTop