Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = Radix Angelica

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
0 pages, 6015 KiB  
Article
AdNAC20 Regulates Lignin and Coumarin Biosynthesis in the Roots of Angelica dahurica var. formosana
by Wenjie Qu, Wenjuan Huang, Chen Chen, Jinsong Chen, Lin Zhao, Yijie Jiang, Xuan Du, Renlang Liu, Yinyin Chen, Kai Hou, Dongbei Xu and Wei Wu
Int. J. Mol. Sci. 2024, 25(14), 7998; https://doi.org/10.3390/ijms25147998 - 22 Jul 2024
Viewed by 565
Abstract
Angelica dahurica var. formosana (ADF), which belongs to the Umbelliferae family, is one of the original plants of herbal raw material Angelicae Dahuricae Radix. ADF roots represent an enormous biomass resource convertible for disease treatment and bioproducts. But, early bolting of [...] Read more.
Angelica dahurica var. formosana (ADF), which belongs to the Umbelliferae family, is one of the original plants of herbal raw material Angelicae Dahuricae Radix. ADF roots represent an enormous biomass resource convertible for disease treatment and bioproducts. But, early bolting of ADF resulted in lignification and a decrease in the coumarin content in the root, and roots lignification restricts its coumarin for commercial utility. Although there have been attempts to regulate the synthesis ratio of lignin and coumarin through biotechnology to increase the coumarin content in ADF and further enhance its commercial value, optimizing the biosynthesis of lignin and coumarin remains challenging. Based on gene expression analysis and phylogenetic tree profiling, AdNAC20 as the target for genetic engineering of lignin and coumarin biosynthesis in ADF was selected in this study. Early-bolting ADF had significantly greater degrees of root lignification and lower coumarin contents than that of the normal plants. In this study, overexpression of AdNAC20 gene plants were created using transgenic technology, while independent homozygous transgenic lines with precise site mutation of AdNAC20 were created using CRISPR/Cas9 technology. The overexpressing transgenic ADF plants showed a 9.28% decrease in total coumarin content and a significant 12.28% increase in lignin content, while knockout mutant plants showed a 16.3% increase in total coumarin content and a 33.48% decrease in lignin content. Furthermore, 29,671 differentially expressed genes (DEGs) were obtained by comparative transcriptomics of OE-NAC20, KO-NAC20, and WT of ADF. A schematic diagram of the gene network interacting with AdNAC20 during the early-bolting process of ADF was constructed by DEG analysis. AdNAC20 was predicted to directly regulate the transcription of several genes with SNBE-like motifs in their promoter, such as MYB46, C3H, and CCoAOMT. In this study, AdNAC20 was shown to play a dual pathway function that positively enhanced lignin formation but negatively controlled coumarin formation. And the heterologous expression of the AdNAC20 gene at Arabidopsis thaliana proved that the AdNAC20 gene also plays an important role in the process of bolting and flowering. Full article
Show Figures

Figure 1

11 pages, 4500 KiB  
Article
Two-Dimensional High-Performance Thin-Layer Chromatography with Bioautography for Distinguishing Angelicae Dahuricae Radix Varieties: Chemical Fingerprinting and Antioxidant Profiling
by Sejin Ku, Geonha Park and Young Pyo Jang
Plants 2024, 13(10), 1348; https://doi.org/10.3390/plants13101348 - 13 May 2024
Cited by 1 | Viewed by 745
Abstract
Angelicae Dahuricae Radix (ADR) holds a prominent place in traditional medicine for its remarkable antioxidative, anti-allergic, and antiproliferative capabilities. Recognized within the Korean Pharmacopoeia (KP 12th), Angelica dahurica (Hoffm.) Benth. and Hook.f. ex Franch. and Sav. (AD) and Angelica dahurica var. formosana (H. [...] Read more.
Angelicae Dahuricae Radix (ADR) holds a prominent place in traditional medicine for its remarkable antioxidative, anti-allergic, and antiproliferative capabilities. Recognized within the Korean Pharmacopoeia (KP 12th), Angelica dahurica (Hoffm.) Benth. and Hook.f. ex Franch. and Sav. (AD) and Angelica dahurica var. formosana (H. Boissieu) Yen (ADF) serve as the botanical origins for ADR. Differentiating these two varieties is crucial for the formulation and quality control of botanical drugs, as they are categorized under the same medicinal label. This research utilized two-dimensional high-performance thin-layer chromatography (2D-HPTLC) to effectively distinguish AD from ADF. Additionally, a quantitative analysis reveals significant differences in the concentrations of key active constituents such as oxypeucedanin, imperatorin, and isoimperatorin, with AD showing higher total coumarin levels. We further enhanced our investigative depth by incorporating a DPPH bioautography, which confirmed known antioxidant coumarins and unearthed previously undetected antioxidant profiles, including byakangelicin, byakangelicol, falcarindiol in both AD and ADF, and notably, 2-linoleoyl glycerol detected only in AD as an antioxidant spot. This comprehensive approach affords a valuable tool set for botanical drug development, emphasizing the critical need for accurate source plant identification and differentiation in ensuring the efficacy and safety of herbal medicine products. Full article
(This article belongs to the Special Issue Chemistry of Plant Natural Products)
Show Figures

Figure 1

14 pages, 2895 KiB  
Article
Anti-Inflammatory Effect of Columbianadin against D-Galactose-Induced Liver Injury In Vivo via the JAK2/STAT3 and JAK2/p38/NF-κB Pathways
by Zhe Ma, Lin Peng, Yaoyao Sheng, Wenhui Chu and Yongqian Fu
Pharmaceuticals 2024, 17(3), 378; https://doi.org/10.3390/ph17030378 - 15 Mar 2024
Viewed by 1149
Abstract
Angelicae pubescentis radix (APR) has been traditionally used for thousands of years in China to treat rheumatoid arthritis (RA), an autoimmune disorder. As the main active coumarin of APR, columbianadin (CBN) exhibits a significant anti-inflammatory effect in vitro. However, the anti-inflammatory activity and [...] Read more.
Angelicae pubescentis radix (APR) has been traditionally used for thousands of years in China to treat rheumatoid arthritis (RA), an autoimmune disorder. As the main active coumarin of APR, columbianadin (CBN) exhibits a significant anti-inflammatory effect in vitro. However, the anti-inflammatory activity and underlying mechanism of CBN in vivo remain unclear. This work aimed to elucidate the anti-inflammatory activity of CBN in vivo and its related signaling pathways in a D-Gal-induced liver injury mouse model. Analysis of biochemical indices (ALT and AST) and pro-inflammatory cytokines (IL-1β and IL-6) in serum indicated that CBN significantly ameliorated D-Gal-induced liver injury. CBN treatment also significantly increased the activities of antioxidant enzymes (SOD, CAT, GPx), and decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) in liver tissue. Liver histology revealed that CBN treatment reduced hepatic inflammation. Western blot analysis indicated that CBN down-regulates the expression of phosphorylated JAK2, STAT3, MAPK, and NF-κB in the related signaling pathways. These findings support the traditional use of APR as a remedy for the immune system, and indicate that the JAK2/STAT3 and JAK2/p38/NF-κB signaling pathways may be important mechanisms for the anti-inflammatory activity of CBN in vivo. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

2 pages, 546 KiB  
Correction
Correction: Gong et al. Neuroprotective and Cytotoxic Phthalides from Angelicae Sinensis Radix. Molecules 2016, 21, 549
by Wenxia Gong, Yuzhi Zhou, Xiao Li, Xiaoxia Gao, Junsheng Tian, Xuemei Qin and Guanhua Du
Molecules 2023, 28(23), 7814; https://doi.org/10.3390/molecules28237814 - 28 Nov 2023
Viewed by 634
Abstract
Error in Figure [...] Full article
Show Figures

Figure 1

15 pages, 2603 KiB  
Article
Water Extract of Angelica dahurica Inhibits Osteoclast Differentiation and Bone Loss
by Dong Ryun Gu, Hyun Yang, Seong Cheol Kim, Youn-Hwan Hwang and Hyunil Ha
Int. J. Mol. Sci. 2023, 24(19), 14715; https://doi.org/10.3390/ijms241914715 - 28 Sep 2023
Viewed by 1067
Abstract
Angelica dahurica radix has a long history of traditional use in China and Korea for treating headaches, cold-damp pain and skin diseases. Despite various pharmacological studies on A. dahurica, its impact on bones remains unclear. Hence, this study investigated the inhibitory effect [...] Read more.
Angelica dahurica radix has a long history of traditional use in China and Korea for treating headaches, cold-damp pain and skin diseases. Despite various pharmacological studies on A. dahurica, its impact on bones remains unclear. Hence, this study investigated the inhibitory effect of A. dahurica’s radix water extract (WEAD) on osteoclast differentiation. In vitro experiments showed that WEAD effectively suppresses osteoclast differentiation. Treatment of an osteoclast precursor with WEAD significantly suppressed the expression of nuclear factor of activated T-cells 1 (NFATc1), essential transcription factor for osteoclastogenesis, while increasing the expression of negative regulators, interferon regulatory factor 8 (Irf8) and v-maf musculoaponeurotic fibrosarcoma oncogene homolog B (MafB). Consistent with the in vitro findings, the oral administration of WEAD (100 and 300 mg/kg/day) to mice subjected to surgical ovariectomy for a duration of six weeks alleviated bone loss, while also mitigating weight gain and liver fat accumulation. In addition, we also identified phytochemicals present in WEAD, known to regulate osteoclastogenesis and/or bone loss. These results suggest the potential use of WEAD for treating various bone disorders caused by excessive bone resorption. Full article
Show Figures

Figure 1

25 pages, 2901 KiB  
Review
Could Natural Products Help in the Control of Obesity? Current Insights and Future Perspectives
by Jiwon Park, Fahrul Nurkolis, Hyunji Won, Jiye Yang, Dayeon Oh, Hyunkyung Jo, Jinwon Choi, Sanghyun Chung, Rudy Kurniawan and Bonglee Kim
Molecules 2023, 28(18), 6604; https://doi.org/10.3390/molecules28186604 - 13 Sep 2023
Cited by 3 | Viewed by 2603
Abstract
Obesity is a global issue faced by many individuals worldwide. However, no drug has a pronounced effect with few side effects. Green tea, a well-known natural product, shows preventive effects against obesity by decreasing lipogenesis and increasing fat oxidation and antioxidant capacity. In [...] Read more.
Obesity is a global issue faced by many individuals worldwide. However, no drug has a pronounced effect with few side effects. Green tea, a well-known natural product, shows preventive effects against obesity by decreasing lipogenesis and increasing fat oxidation and antioxidant capacity. In contrast, other natural products are known to contribute to obesity. Relevant articles published on the therapeutic effect of natural products on obesity were retrieved from PubMed, Web of Science, and Scopus. The search was conducted by entering keywords such as “obesity”, “natural product”, and “clinical trial”. The natural products were classified as single compounds, foods, teas, fruits, herbal medicines—single extract, herbal medicines—decoction, and herbal medicines—external preparation. Then, the mechanisms of these medicines were organized into lipid metabolism, anti-inflammation, antioxidation, appetite loss, and thermogenesis. This review aimed to assess the efficacy and mechanisms of effective natural products in managing obesity. Several clinical studies reported that natural products showed antiobesity effects, including Coffea arabica (coffee), Camellia sinensis (green tea), Caulerpa racemosa (green algae), Allium sativum (garlic), combined Ephedra intermedia Schrenk, Thea sinensis L., and Atractylodes lancea DC extract (known as Gambisan), Ephedra sinica Stapf, Angelica Gigantis Radix, Atractylodis Rhizoma Alba, Coicis semen, Cinnamomi cortex, Paeoniae radix alba, and Glycyrrhiza uralensis (known as Euiiyin-tang formula). Further studies are expected to refine the pharmacological effects of natural products for clinical use. Full article
(This article belongs to the Special Issue Anti-Obesity Drug Discovery: Recent Advances and Future Perspectives)
Show Figures

Figure 1

12 pages, 2686 KiB  
Article
Adenosine Deaminase Inhibitory Activity of Medicinal Plants: Boost the Production of Cordycepin in Cordyceps militaris
by Ayman Turk, Solip Lee, Sang Won Yeon, Se Hwan Ryu, Yoo Kyong Han, Young Jun Kim, Sung Min Ko, Beom Seok Kim, Bang Yeon Hwang, Ki Yong Lee and Mi Kyeong Lee
Antioxidants 2023, 12(6), 1260; https://doi.org/10.3390/antiox12061260 - 12 Jun 2023
Cited by 2 | Viewed by 2647
Abstract
Cordycepin, also known as 3′-deoxyadenosine, is a major active ingredient of Cordyceps militaris with diverse pharmacological effects. Due to its limited supply, many attempts have been conducted to enhance the cordycepin content. As part of this study, eight medicinal plants were supplemented with cultivation [...] Read more.
Cordycepin, also known as 3′-deoxyadenosine, is a major active ingredient of Cordyceps militaris with diverse pharmacological effects. Due to its limited supply, many attempts have been conducted to enhance the cordycepin content. As part of this study, eight medicinal plants were supplemented with cultivation substrates of Cordyceps to increase the cordycepin content. Cordyceps cultivated on brown rice supplemented with Mori Folium, Curcumae Rhizoma, Saururi Herba, and Angelicae Gigantis Radix exhibited increased cordycepin content compared to a brown rice control. Among them, the addition of 25% Mori Folium increased the cordycepin content up to 4 times. Adenosine deaminase (ADA) modulates the deamination of adenosine and deoxyadenosine, and the inhibitors have therapeutic potential with anti-proliferative and anti-inflammatory properties. As ADA is also known to be involved in converting cordycepin to 3′-deoxyinosine, the inhibitory activity of medicinal plants on ADA was measured by spectrophotometric analysis using cordycepin as a substrate. As expected, Mori Folium, Curcumae Rhizoma, Saururi Herba, and Angelicae Gigas Radix strongly inhibited ADA activity. Molecular docking analysis also showed the correlation between ADA and the major components of these medicinal plants. Conclusively, our research suggests a new strategy of using medicinal plants to enhance cordycepin production in C. militaris. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

17 pages, 2000 KiB  
Article
Comparative Analysis of Roots from Vicatia thibetica de Boiss and Angelica sinensis Based on Chemical Composition, Antioxidant, Nitrite-Scavenging and Enzyme Inhibition Activities
by Wenwen Tang, Yuan Chen and Fengxia Guo
Molecules 2023, 28(4), 1942; https://doi.org/10.3390/molecules28041942 - 17 Feb 2023
Cited by 2 | Viewed by 1638
Abstract
Radix Vicatia thibetica de Boiss (RVT) is locally known as “Xigui” or “Dujiao-danggui” in Tibetan medicine and is often used as a substitute for Radix Angelica sinensis (RAS) in daily nourishing diets and clinical applications. In this study, we determined and compared the [...] Read more.
Radix Vicatia thibetica de Boiss (RVT) is locally known as “Xigui” or “Dujiao-danggui” in Tibetan medicine and is often used as a substitute for Radix Angelica sinensis (RAS) in daily nourishing diets and clinical applications. In this study, we determined and compared the contents of polysaccharides, total coumarins, ferulic acid, total phenols, total flavonoids, chlorogenic acid, protein, and amino acids, and the composition of volatile oil in RVT and RAS. Biological activities, including antioxidants, scavenging of nitrite, inhibition of tyrosinase, thrombin, and coagulation FXa, were comparatively evaluated. Results showed that RVT contains more polysaccharides, phenols, flavonoids, proteins, glutamic acid, and lysine as compared to RAS. Among volatile compounds, 14 species are similar, and 20 species are different in RVT and RAS. Overall, among volatile compounds, the content of 3-N-Butylphthalide was higher, whereas the content of ligustilide was lower in RVT volatile oil. A significant difference was reported in the bioactivity of RVT and RAS. The biological activity of RVT had higher antioxidant, nitrite scavenging, and tyrosinase inhibitory activities, whereas it showed much lower thrombin and FXa inhibitory activities. Correlation analysis showed that the antioxidant, nitrite scavenging, and tyrosinase inhibitory activities were related to the phenol and flavonoid content, whereas the thrombin and FXa inhibitory activities were related to ferulic acid and volatile oil content. This study presents a comparative analysis of RAS and RVT’s chemical compositions of antioxidant, nitrite-scavenging, inhibition of tyrosinase, thrombin, and coagulation FXa activities. It was found that both RVT and RAS have their unique advantages, and RVT has the potential to be utilized as functional foods, cosmetics, and medical products. Full article
Show Figures

Figure 1

16 pages, 4552 KiB  
Article
Osthole Suppresses Knee Osteoarthritis Development by Enhancing Autophagy Activated via the AMPK/ULK1 Pathway
by Teng Ma, Xiangpeng Wang, Wenjing Qu, Lingsen Yang, Cheng Jing, Bingrui Zhu, Yongkui Zhang and Wenpeng Xie
Molecules 2022, 27(23), 8624; https://doi.org/10.3390/molecules27238624 - 6 Dec 2022
Cited by 7 | Viewed by 1842
Abstract
Knee osteoarthritis (KOA) is an increasingly prevalent heterogeneous disease characterized by cartilage erosion and inflammation. As the main chemical constituent of Angelicae Pubescentis Radix (APR), an anti-inflammatory herbal medicine, the potential biological effects and underlying mechanism of osthole on chondrocytes and KOA progression [...] Read more.
Knee osteoarthritis (KOA) is an increasingly prevalent heterogeneous disease characterized by cartilage erosion and inflammation. As the main chemical constituent of Angelicae Pubescentis Radix (APR), an anti-inflammatory herbal medicine, the potential biological effects and underlying mechanism of osthole on chondrocytes and KOA progression remain elusive. In this study, the potential effect and mechanism of osthole on KOA were investigated in vitro and in vivo. We found that osthole inhibited IL-1β-induced apoptosis and cartilage matrix degeneration by activating autophagy in rat chondrocytes. In addition, osthole could activate autophagy through phosphorylation of AMPK/ULK1, and AMPK serves as a positive upstream regulator of ULK1. Furthermore, KOA rats treated with osthole showed phosphorylation of the AMPK/ULK1 pathway and autophagy activation, as well as cartilage protection. Collectively, the AMPK/ULK1 signaling pathway can be activated by osthole to enhance autophagy, thereby suppressing KOA development. Osthole may be a novel and effective therapeutic agent for the clinical treatment of KOA. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

11 pages, 1159 KiB  
Article
Xuebijing Administration Alleviates Pulmonary Endothelial Inflammation and Coagulation Dysregulation in the Early Phase of Sepsis in Rats
by Jie Lv, Xiaoxia Guo, Huiying Zhao, Gang Zhou and Youzhong An
J. Clin. Med. 2022, 11(22), 6696; https://doi.org/10.3390/jcm11226696 - 11 Nov 2022
Cited by 5 | Viewed by 1598
Abstract
Ethnopharmacological relevance: Xuebijing injection is a Chinese herbal-derived drug composed of radix paeoniaerubra, rhizomachuanxiong, Salvia miltiorrhiza, floscarthami, and Angelica sinensis. This study aimed to investigate the effects of Xuebijing administration on pulmonary endothelial injury and coagulation dysfunction in a cecal ligation and puncture [...] Read more.
Ethnopharmacological relevance: Xuebijing injection is a Chinese herbal-derived drug composed of radix paeoniaerubra, rhizomachuanxiong, Salvia miltiorrhiza, floscarthami, and Angelica sinensis. This study aimed to investigate the effects of Xuebijing administration on pulmonary endothelial injury and coagulation dysfunction in a cecal ligation and puncture (CLP)-induced sepsis rat model. Materials and methods: A CLP-induced sepsis rat model was established. The CLP rats were treated with a vehicle or Xuebijing via intravenous infusion and sacrificed at 2, 4, 6, 8, or 12 h after CLP for lung tissue and blood sample collection. The mean arterial pressure (MAP) was monitored. Transmission microscopy examination and H&E staining were performed to observe pulmonary structural alterations. Enzyme linked immunosorbent assay (ELISA) was performed to measure the plasma levels of epithelial markers, proinflammatory cytokines, and coagulation-related proteins. Results: Compared with vehicle treatment, Xuebijing administration maintained the MAP in the normal range until 11 h after CLP. Transmission microscopy and H&E staining revealed that Xuebijing administration alleviated alveolar–capillary barrier impairments and lung inflammation in CLP rats. ELISA showed that Xuebijing administration effectively reversed CLP-induced elevations in the plasma levels of epithelial markers endothelin-1 and von Willebrand factor, starting 6 and 8 h after CLP, respectively. Xuebijing administration also significantly abolished CLP-induced rises in circulating proinflammatory cytokines interleukin 6 (IL-6) at 6 h after CLP, IL-1β at 2 and 12 h after CLP, and TNF-α at 2, 4, 6, 8, and 12 h after CLP. In addition, Xuebijing administration strongly reversed CLP-induced alterations in circulating active protein C and tissue-type plasminogen activator, starting 4 h and 2 h after CLP, respectively. Conclusions: Xuebijing ameliorates pulmonary endothelial injury, systemic inflammation, and coagulation dysfunction in early sepsis. Full article
(This article belongs to the Special Issue Evaluation and Management of Major Trauma)
Show Figures

Figure 1

21 pages, 4281 KiB  
Article
Network Pharmacology-Based Investigation on Therapeutic Mechanisms of the Angelica dahurica Radix and Ligusticum chuanxiong Rhizoma Herb Pair for Anti-Migraine Effect
by Chu Duc Thanh, Chu Van Men, Hyung Min Kim and Jong Seong Kang
Plants 2022, 11(17), 2196; https://doi.org/10.3390/plants11172196 - 24 Aug 2022
Cited by 2 | Viewed by 2641
Abstract
Migraines are a common neurological disorder characterized by desperate throbbing unilateral headaches and are related to phonophobia, photophobia, nausea, and vomiting. The Angelica dahurica Radix and Ligusticum chuanxiong Rhizoma herb pair (ALHP) has been used to treat migraines for centuries in traditional Chinese [...] Read more.
Migraines are a common neurological disorder characterized by desperate throbbing unilateral headaches and are related to phonophobia, photophobia, nausea, and vomiting. The Angelica dahurica Radix and Ligusticum chuanxiong Rhizoma herb pair (ALHP) has been used to treat migraines for centuries in traditional Chinese medicine (TCM). However, the physiological mechanisms of migraine treatment have not yet been elucidated. In this study, a total of 50 hub targets related to the effect of 28 bioactive compounds in ALHP on anti-migraine were obtained through network pharmacology analysis. GO and KEGG analyses of the hub targets demonstrated that ALHP treatment of migraines significantly involved the G-protein-coupled receptor signaling pathway, chemical synaptic transmission, inflammatory response, and other biological processes. According to the degree of gene targets in the network, ACE, SLC3A6, NR3CI, MAPK1, PTGS2, PIK3CA, RELA, GRIN1, GRM5, IL1B, and DRD2 were found to be the core gene targets. The docking results showed a high affinity for docked conformations between compounds and predicted targets. The results of this study suggest that ALHP could treat migraines by regulating immunological functions, diminishing inflammation, and improving immunity through different physiological pathways, which contributes to the scientific base for more in-depth research as well as for a more widespread clinical application of ALHP. Full article
(This article belongs to the Special Issue Pharmacological and Toxicological Study of Medicinal Plants)
Show Figures

Figure 1

15 pages, 3246 KiB  
Article
Optimization of Steam Distillation Process and Chemical Constituents of Volatile Oil from Angelicaesinensis Radix
by Na Wan, Jing Lan, Zhenfeng Wu, Xinying Chen, Qin Zheng and Xingchu Gong
Separations 2022, 9(6), 137; https://doi.org/10.3390/separations9060137 - 30 May 2022
Cited by 4 | Viewed by 3237
Abstract
In this study, the steam distillation process of volatile oil from Angelicaesinensis Radix was optimized according to the concept of quality-by-design. A homemade glass volatile oil extractor was used to achieve better cooling of the volatile oil. First, the soaking time, distillation [...] Read more.
In this study, the steam distillation process of volatile oil from Angelicaesinensis Radix was optimized according to the concept of quality-by-design. A homemade glass volatile oil extractor was used to achieve better cooling of the volatile oil. First, the soaking time, distillation time, and liquid–material ratio were identified as potential critical process parameters by consulting the literature. Then, the three parameters were investigated by single factor experiments. The volatile oil yield increased with the extension in the distillation time, and first increased and then decreased with the increase in soaking time and liquid–material ratio. The results confirmed that soaking time, distillation time, and liquid–material ratio were all critical process parameters. The kinetics models of volatile oil distillation from Angelicaesinensis Radix were established. The diffusion model of spherical particle was found to be the best model and indicated that the major resistance of mass transfer was the diffusion of volatile oil from the inside to the surface of the medicinal herb. Furthermore, the Box–Behnken experimental design was used to study the relationship between the three parameters and volatile oil yield. A second-order polynomial model was established, with R2 exceeding 0.99. The design space of the volatile oil yield was calculated by a probability-based method. In the verification experiments, the average volatile oil yield reached 0.711%. The results showed that the model was accurate and the design space was reliable. In this study, 21 chemical constituents of volatile oil from Angelicaesinensis Radix were identified by gas chromatograph-mass spectrometer(GC-MS), accounting for 99.4% of the total volatile oil. It was found that the content of Z-ligustilide was the highest, accounting for 85.4%. Full article
Show Figures

Figure 1

13 pages, 1591 KiB  
Article
Immunoenhancement Effects of the Herbal Formula Hemomine on Cyclophosphamide-Induced Immunosuppression in Mice
by Hyemee Kim, Joo Wan Kim, Yeon-Kye Kim, Sae Kwang Ku and Hae-Jeung Lee
Appl. Sci. 2022, 12(10), 4935; https://doi.org/10.3390/app12104935 - 13 May 2022
Cited by 4 | Viewed by 2107
Abstract
Hemomine is an herbal blend comprising Angelicae Gigantis Radix and other herbs known to have immunomodulatory effects. We examined the immunopotentiating effect of this herbal blend on cyclophosphamide (CPA)-induced immunosuppression. Male mice were assigned to one of six groups: the intact control and [...] Read more.
Hemomine is an herbal blend comprising Angelicae Gigantis Radix and other herbs known to have immunomodulatory effects. We examined the immunopotentiating effect of this herbal blend on cyclophosphamide (CPA)-induced immunosuppression. Male mice were assigned to one of six groups: the intact control and five CPA treatment groups (one control, one reference (β-glucan), and three with the application of hemomine at different concentrations; 4, 2, or 1 mL/kg; n = 10 per group). Mice were injected with CPA to induce myelosuppression and immunosuppression, after which they received one of the experimental treatments. In immunosuppressed mice, hemomine treatment alleviated the noticeable reductions in body, spleen, and submandibular lymph node weights caused by CPA; caused changes in hematological markers; induced the reduced levels of serum IFN-γ and spleen TNF-α, IL-1β, and IL-10 by CPA; improved natural killer cell activities in the spleen and peritoneal cavity; and also improved lymphoid organ atrophy in a dose-dependent manner. We demonstrate that hemomine, a mixture of six immunomodulatory herbs, is an effective immunomodulatory agent, with the potential to enhance immunity. Full article
(This article belongs to the Special Issue Functional Food and Chronic Disease II)
Show Figures

Figure 1

15 pages, 1441 KiB  
Article
Sedative–Hypnotic Activity of the Water Extracts of Coptidis Rhizoma in Rodents
by Hye-Young Joung, Minsook Ye, Miyoung Lee, Yunki Hong, Minji Kim, Kyung Soo Kim and Insop Shim
Clocks & Sleep 2022, 4(1), 145-159; https://doi.org/10.3390/clockssleep4010014 - 4 Mar 2022
Cited by 1 | Viewed by 3212
Abstract
Many medicinal plants have been used in Asia for treating a variety of mental diseases, including insomnia and depression. However, their sedative–hypnotic effects and mechanisms have not been clarified yet. Accordingly, the objective of this study was to investigate the sedative–hypnotic effects of [...] Read more.
Many medicinal plants have been used in Asia for treating a variety of mental diseases, including insomnia and depression. However, their sedative–hypnotic effects and mechanisms have not been clarified yet. Accordingly, the objective of this study was to investigate the sedative–hypnotic effects of water extracts of five medicinal plants: Coptidis Rhizoma, Lycii Fructus, Angelicae sinensis Radix, Bupleuri Radix, and Polygonum multiflorum Thunberg. The binding abilities of five medicinal plant extracts to the GABAA–BZD and 5-HT2C receptors were compared. Their abilities to activate arylalkylamine N-acetyltransferase (AANAT), a melatonin synthesis enzyme, in pineal cells were also determined. Following in vitro tests, the sedative and hypnotic activities of extracts with the highest activities were determined in an animal sleep model. In the binding assay, the water extracts of Coptidis Rhizoma (WCR) showed high binding affinity to the GABAA–BZD and 5-HT2C receptors in a dose-dependent manner. Additionally, WCR increased the AANAT activity up to five times compared with the baseline level. Further animal sleep model experiments showed that WCR potentiated pentobarbital-induced sleep by prolonging the sleep time. It also decreased the sleep onset time in mice. In addition, WCR reduced wake time and increased non-rapid eye movement (NREM) sleep without EEG power density (percentages of δ, θ, and α waves) during NREM sleep in rats. WCR could effectively induce NREM sleep without altering the architectural physiologic profile of sleep. This is the first report of the sedative–hypnotic effect of Coptidis Rhizoma possibly by regulating GABAA and 5-HT2C receptors and by activating AANAT activity. Full article
(This article belongs to the Section Animal Basic Research)
Show Figures

Figure 1

20 pages, 1004 KiB  
Review
Effect and Mechanism of Herbal Medicines on Cisplatin-Induced Anorexia
by Daeun Min, Bonglee Kim, Seong-Gyu Ko and Woojin Kim
Pharmaceuticals 2022, 15(2), 208; https://doi.org/10.3390/ph15020208 - 9 Feb 2022
Cited by 5 | Viewed by 4724
Abstract
Cisplatin is a well-known chemotherapeutic agent used to treat various types of cancers; however, it can also induce anorexia, which results in reduced food intake, loss of body weight, and lower quality of life. Although drugs such as megestrol acetate and cyproheptadine are [...] Read more.
Cisplatin is a well-known chemotherapeutic agent used to treat various types of cancers; however, it can also induce anorexia, which results in reduced food intake, loss of body weight, and lower quality of life. Although drugs such as megestrol acetate and cyproheptadine are used to decrease this severe feeding disorder, they can also induce side effects, such as diarrhea and somnolence, which limit their widespread use. Various types of herbal medicines have long been used to prevent and treat numerous gastrointestinal tract diseases; however, to date, no study has been conducted to analyze and summarize their effects on cisplatin-induced anorexia. In this paper, we analyze 12 animal studies that used either a single herbal medicine extract or mixtures thereof to decrease cisplatin-induced anorexia. Among the herbal medicines, Ginseng Radix was the most used, as it was included in seven studies, whereas both Glycyrrhizae Radix et Rhizoma and Angelicae Gigantis Radix were used in four studies. As for the mechanisms of action, the roles of serotonin and its receptors, cytokines, white blood cells, ghrelin, and leptin were investigated. Based on these results, we suggest that herbal medicines could be considered a useful treatment method for cisplatin-induced anorexia. Full article
(This article belongs to the Special Issue Clinical Development of Cancer Treatment)
Show Figures

Figure 1

Back to TopTop