Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (133)

Search Parameters:
Keywords = Retinex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1000 KiB  
Article
Zero-Shot Day–Night Domain Adaptation for Face Detection Based on DAl-CLIP-Dino
by Huadong Sun, Yinghui Liu, Ziyang Chen and Pengyi Zhang
Electronics 2025, 14(1), 143; https://doi.org/10.3390/electronics14010143 - 1 Jan 2025
Viewed by 477
Abstract
Two challenges in computer vision (CV) related to face detection are the difficulty of acquisition in the target domain and the degradation of image quality. Especially in low-light situations, the poor visibility of images is difficult to label, which results in detectors trained [...] Read more.
Two challenges in computer vision (CV) related to face detection are the difficulty of acquisition in the target domain and the degradation of image quality. Especially in low-light situations, the poor visibility of images is difficult to label, which results in detectors trained under well-lit conditions exhibiting reduced performance in low-light environments. Conventional works image enhancement and object detection techniques are unable to resolve the inherent difficulties in collecting and labeling low-light images. The Dark-Illuminated Network with Contrastive Language–Image Pretraining (CLIP) and Self-Supervised Vision Transformer (Dino), abbreviated as DAl-CLIP-Dino is proposed to address the degradation of object detection performance in low-light environments and achieve zero-shot day–night domain adaptation. Specifically, an advanced reflectance representation learning module (which leverages Retinex decomposition to extract reflectance and illumination features from both low-light and well-lit images) and an interchange–redecomposition coherence process (which performs a second decomposition on reconstructed images after the exchange to generate a second round of reflectance and illumination predictions while validating their consistency using redecomposition consistency loss) are employed to achieve illumination invariance and enhance model performance. CLIP (VIT-based image encoder part) and Dino have been integrated for feature extraction, improving performance under extreme lighting conditions and enhancing its generalization capability. Our model achieves a mean average precision (mAP) of 29.6% for face detection on the DARK FACE dataset, outperforming other models in zero-shot domain adaptation for face detection. Full article
(This article belongs to the Topic Computer Vision and Image Processing, 2nd Edition)
Show Figures

Figure 1

17 pages, 16110 KiB  
Article
Low-Light Image Enhancement Integrating Retinex-Inspired Extended Decomposition with a Plug-and-Play Framework
by Chenping Zhao, Wenlong Yue, Yingjun Wang, Jianping Wang, Shousheng Luo, Huazhu Chen and Yan Wang
Mathematics 2024, 12(24), 4025; https://doi.org/10.3390/math12244025 - 22 Dec 2024
Viewed by 370
Abstract
Images captured under low-light conditions often suffer from serious degradation due to insufficient light, which adversely impacts subsequent computer vision tasks. Retinex-based methods have demonstrated strong potential in low-light image enhancement. However, existing approaches often directly design prior regularization functions for either illumination [...] Read more.
Images captured under low-light conditions often suffer from serious degradation due to insufficient light, which adversely impacts subsequent computer vision tasks. Retinex-based methods have demonstrated strong potential in low-light image enhancement. However, existing approaches often directly design prior regularization functions for either illumination or reflectance components, which may unintentionally introduce noise. To address these limitations, this paper presents an enhancement method by integrating a Plug-and-Play strategy into an extended decomposition model. The proposed model consists of three main components: an extended decomposition term, an iterative reweighting regularization function for the illumination component, and a Plug-and-Play refinement term applied to the reflectance component. The extended decomposition enables a more precise representation of image components, while the iterative reweighting mechanism allows for gentle smoothing near edges and brighter areas while applying more pronounced smoothing in darker regions. Additionally, the Plug-and-Play framework incorporates off-the-shelf image denoising filters to effectively suppress noise and preserve useful image details. Extensive experiments on several datasets confirm that the proposed method consistently outperforms existing techniques. Full article
(This article belongs to the Special Issue Mathematical Methods for Machine Learning and Computer Vision)
Show Figures

Figure 1

24 pages, 11018 KiB  
Article
Integrating Few-Shot Learning and Multimodal Image Enhancement in GNut: A Novel Approach to Groundnut Leaf Disease Detection
by Imran Qureshi
Computers 2024, 13(12), 306; https://doi.org/10.3390/computers13120306 - 22 Nov 2024
Viewed by 675
Abstract
Groundnut is a vital crop worldwide, but its production is significantly threatened by various leaf diseases. Early identification of such diseases is vital for maintaining agricultural productivity. Deep learning techniques have been employed to address this challenge and enhance the detection, recognition, and [...] Read more.
Groundnut is a vital crop worldwide, but its production is significantly threatened by various leaf diseases. Early identification of such diseases is vital for maintaining agricultural productivity. Deep learning techniques have been employed to address this challenge and enhance the detection, recognition, and classification of groundnut leaf diseases, ensuring better management and protection of this important crop. This paper presents a new approach to the detection and classification of groundnut leaf diseases by the use of an advanced deep learning model, GNut, which integrates ResNet50 and DenseNet121 architectures for feature extraction and Few-Shot Learning (FSL) for classification. The proposed model overcomes groundnut crop diseases by addressing an efficient and highly accurate method of managing diseases in agriculture. Evaluated on a novel Pak-Nuts dataset collected from groundnut fields in Pakistan, the GNut model achieves promising accuracy rates of 99% with FSL and 95% without it. Advanced image preprocessing techniques, such as Multi-Scale Retinex with Color Restoration and Adaptive Histogram Equalization and Multimodal Image Enhancement for Vegetative Feature Isolation were employed to enhance the quality of input data, further improving classification accuracy. These results illustrate the robustness of the proposed model in real agricultural applications, establishing a new benchmark for groundnut leaf disease detection and highlighting the potential of AI-powered solutions to play a role in encouraging sustainable agricultural practices. Full article
(This article belongs to the Special Issue Machine Learning Applications in Pattern Recognition)
Show Figures

Figure 1

19 pages, 3896 KiB  
Article
No-Reference Quality Assessment Based on Dual-Channel Convolutional Neural Network for Underwater Image Enhancement
by Renzhi Hu, Ting Luo, Guowei Jiang, Zhiqiang Lin and Zhouyan He
Electronics 2024, 13(22), 4451; https://doi.org/10.3390/electronics13224451 - 13 Nov 2024
Viewed by 427
Abstract
Underwater images are important for underwater vision tasks, yet their quality often degrades during imaging, promoting the generation of Underwater Image Enhancement (UIE) algorithms. This paper proposes a Dual-Channel Convolutional Neural Network (DC-CNN)-based quality assessment method to evaluate the performance of different UIE [...] Read more.
Underwater images are important for underwater vision tasks, yet their quality often degrades during imaging, promoting the generation of Underwater Image Enhancement (UIE) algorithms. This paper proposes a Dual-Channel Convolutional Neural Network (DC-CNN)-based quality assessment method to evaluate the performance of different UIE algorithms. Specifically, inspired by the intrinsic image decomposition, the enhanced underwater image is decomposed into reflectance with color information and illumination with texture information based on the Retinex theory. Afterward, we design a DC-CNN with two branches to learn color and texture features from reflectance and illumination, respectively, reflecting the distortion characteristics of enhanced underwater images. To integrate the learned features, a feature fusion module and attention mechanism are conducted to align efficiently and reasonably with human visual perception characteristics. Finally, a quality regression module is used to establish the mapping relationship between the extracted features and quality scores. Experimental results on two public enhanced underwater image datasets (i.e., UIQE and SAUD) show that the proposed DC-CNN method outperforms a variety of the existing quality assessment methods. Full article
Show Figures

Figure 1

31 pages, 14397 KiB  
Article
Precision Ice Detection on Power Transmission Lines: A Novel Approach with Multi-Scale Retinex and Advanced Morphological Edge Detection Monitoring
by Nalini Rizkyta Nusantika, Jin Xiao and Xiaoguang Hu
J. Imaging 2024, 10(11), 287; https://doi.org/10.3390/jimaging10110287 - 8 Nov 2024
Viewed by 775
Abstract
Line icings on the power transmission lines are dangerous risks that may lead to situations like structural damage or power outages. The current techniques used for identifying ice have certain drawbacks, particularly when used in complex environments. This paper aims to detect lines [...] Read more.
Line icings on the power transmission lines are dangerous risks that may lead to situations like structural damage or power outages. The current techniques used for identifying ice have certain drawbacks, particularly when used in complex environments. This paper aims to detect lines on the top and bottom in PTLI with low illumination and complex backgrounds. The proposed method integrates multistage image processing techniques, including image enhancement, filtering, thresholding, object isolation, edge detection, and line identification. A binocular camera is used to capture images of PTLI. The effectiveness of the method is evaluated through a series of metrics, including accuracy, sensitivity, specificity, and precision, and compared with existing methods. It is observed that the proposed method significantly outperforms the existing methods of ice detection and thickness measurement. This paper uses average accuracy of detection and isolation of ice formations under various conditions at a percentage of 98.35, sensitivity at 91.63%, specificity at 99.42%, and precision of 96.03%. Furthermore, the accuracy of the ice thickness based on the thickness measurements is shown with a much smaller RMSE of 1.20 mm, MAE of 1.10 mm, and R-squared of 0.95. The proposed scheme for ice detection provides a more accurate and reliable method for monitoring ice formation on power transmission lines. Full article
(This article belongs to the Topic Applications in Image Analysis and Pattern Recognition)
Show Figures

Figure 1

22 pages, 9206 KiB  
Article
An Enhanced Multiscale Retinex, Oriented FAST and Rotated BRIEF (ORB), and Scale-Invariant Feature Transform (SIFT) Pipeline for Robust Key Point Matching in 3D Monitoring of Power Transmission Line Icing with Binocular Vision
by Nalini Rizkyta Nusantika, Jin Xiao and Xiaoguang Hu
Electronics 2024, 13(21), 4252; https://doi.org/10.3390/electronics13214252 - 30 Oct 2024
Viewed by 682
Abstract
Power transmission line icing (PTLI) poses significant threats to the reliability and safety of electrical power systems, particularly in cold regions. Accumulation of ice on power lines can lead to severe consequences, such as line breaks, tower collapses, and widespread power outages, resulting [...] Read more.
Power transmission line icing (PTLI) poses significant threats to the reliability and safety of electrical power systems, particularly in cold regions. Accumulation of ice on power lines can lead to severe consequences, such as line breaks, tower collapses, and widespread power outages, resulting in economic losses and infrastructure damage. This study proposes an enhanced image processing pipeline to accurately detect and match key points in PTLI images for 3D monitoring of ice thickness using binocular vision. The pipeline integrates established techniques such as multiscale retinex (MSR), oriented FAST and rotated BRIEF (ORB) and scale-invariant feature transform (SIFT) algorithms, further refined with m-estimator sample consensus (MAGSAC)-based random sampling consensus (RANSAC) optimization. The image processing steps include automatic cropping, image enhancement, feature detection, and robust key point matching, all designed to operate in challenging environments with poor lighting and noise. Experiments demonstrate that the proposed method significantly improves key point matching accuracy and computational efficiency, reducing processing time to make it suitable for real-time applications. The effectiveness of the pipeline is validated through 3D ice thickness measurements, with results showing high precision and low error rates, making it a valuable tool for monitoring power transmission lines in harsh conditions. Full article
Show Figures

Figure 1

17 pages, 2991 KiB  
Article
Feature Extraction and Identification of Rheumatoid Nodules Using Advanced Image Processing Techniques
by Azmath Mubeen and Uma N. Dulhare
Rheumato 2024, 4(4), 176-192; https://doi.org/10.3390/rheumato4040014 - 24 Oct 2024
Viewed by 640
Abstract
Background/Objectives: Accurate detection and classification of nodules in medical images, particularly rheumatoid nodules, are critical due to the varying nature of these nodules, where their specific type is often unknown before analysis. This study addresses the challenges of multi-class prediction in nodule detection, [...] Read more.
Background/Objectives: Accurate detection and classification of nodules in medical images, particularly rheumatoid nodules, are critical due to the varying nature of these nodules, where their specific type is often unknown before analysis. This study addresses the challenges of multi-class prediction in nodule detection, with a specific focus on rheumatoid nodules, by employing a comprehensive approach to feature extraction and classification. We utilized a diverse dataset of nodules, including rheumatoid nodules sourced from the DermNet dataset and local rheumatologists. Method: This study integrates 62 features, combining traditional image characteristics with advanced graph-based features derived from a superpixel graph constructed through Delaunay triangulation. The key steps include image preprocessing with anisotropic diffusion and Retinex enhancement, superpixel segmentation using SLIC, and graph-based feature extraction. Texture analysis was performed using Gray-Level Co-occurrence Matrix (GLCM) metrics, while shape analysis was conducted with Fourier descriptors. Vascular pattern recognition, crucial for identifying rheumatoid nodules, was enhanced using the Frangi filter. A Hybrid CNN–Transformer model was employed for feature fusion, and feature selection and hyperparameter tuning were optimized using Gray Wolf Optimization (GWO) and Particle Swarm Optimization (PSO). Feature importance was assessed using SHAP values. Results: The proposed methodology achieved an accuracy of 85%, with a precision of 0.85, a recall of 0.89, and an F1 measure of 0.87, demonstrating the effectiveness of the approach in detecting and classifying rheumatoid nodules in both binary and multi-class classification scenarios. Conclusions: This study presents a robust tool for the detection and classification of nodules, particularly rheumatoid nodules, in medical imaging, offering significant potential for improving diagnostic accuracy and aiding in the early identification of rheumatoid conditions. Full article
Show Figures

Figure 1

30 pages, 26891 KiB  
Article
Multiexposed Image-Fusion Strategy Using Mutual Image Translation Learning with Multiscale Surround Switching Maps
by Young-Ho Go, Seung-Hwan Lee and Sung-Hak Lee
Mathematics 2024, 12(20), 3244; https://doi.org/10.3390/math12203244 - 16 Oct 2024
Cited by 1 | Viewed by 1007
Abstract
The dynamic range of an image represents the difference between its darkest and brightest areas, a crucial concept in digital image processing and computer vision. Despite display technology advancements, replicating the broad dynamic range of the human visual system remains challenging, necessitating high [...] Read more.
The dynamic range of an image represents the difference between its darkest and brightest areas, a crucial concept in digital image processing and computer vision. Despite display technology advancements, replicating the broad dynamic range of the human visual system remains challenging, necessitating high dynamic range (HDR) synthesis, combining multiple low dynamic range images captured at contrasting exposure levels to generate a single HDR image that integrates the optimal exposure regions. Recent deep learning advancements have introduced innovative approaches to HDR generation, with the cycle-consistent generative adversarial network (CycleGAN) gaining attention due to its robustness against domain shifts and ability to preserve content style while enhancing image quality. However, traditional CycleGAN methods often rely on unpaired datasets, limiting their capacity for detail preservation. This study proposes an improved model by incorporating a switching map (SMap) as an additional channel in the CycleGAN generator using paired datasets. The SMap focuses on essential regions, guiding weighted learning to minimize the loss of detail during synthesis. Using translated images to estimate the middle exposure integrates these images into HDR synthesis, reducing unnatural transitions and halo artifacts that could occur at boundaries between various exposures. The multilayered application of the retinex algorithm captures exposure variations, achieving natural and detailed tone mapping. The proposed mutual image translation module extends CycleGAN, demonstrating superior performance in multiexposure fusion and image translation, significantly enhancing HDR image quality. The image quality evaluation indices used are CPBDM, JNBM, LPC-SI, S3, JPEG_2000, and SSEQ, and the proposed model exhibits superior performance compared to existing methods, recording average scores of 0.6196, 15.4142, 0.9642, 0.2838, 80.239, and 25.054, respectively. Therefore, based on qualitative and quantitative results, this study demonstrates the superiority of the proposed model. Full article
Show Figures

Figure 1

15 pages, 6894 KiB  
Article
A Novel Approach to Pedestrian Re-Identification in Low-Light and Zero-Shot Scenarios: Exploring Transposed Convolutional Reflectance Decoders
by Zhenghao Li and Jiping Xiong
Electronics 2024, 13(20), 4069; https://doi.org/10.3390/electronics13204069 - 16 Oct 2024
Viewed by 979
Abstract
In recent years, pedestrian re-identification technology has made significant progress, with various neural network models performing well under normal conditions, such as good weather and adequate lighting. However, most research has overlooked extreme environments, such as rainy weather and nighttime. Additionally, the existing [...] Read more.
In recent years, pedestrian re-identification technology has made significant progress, with various neural network models performing well under normal conditions, such as good weather and adequate lighting. However, most research has overlooked extreme environments, such as rainy weather and nighttime. Additionally, the existing pedestrian re-identification datasets predominantly consist of well-lit images. Although some studies have started to address these issues by proposing methods for enhancing low-light images to restore their original features, the effectiveness of these approaches remains limited. We noted that a method based on Retinex theory designed a reflectance representation learning module aimed at restoring image features as much as possible. However, this method has so far only been applied in object detection networks. In response to this, we improved the method and applied it to pedestrian re-identification, proposing a transposed convolution reflectance decoder (TransConvRefDecoder) to better restore details in low-light images. Extensive experiments on the Market1501, CUHK03, and MSMT17 datasets demonstrated that our approach delivered superior performance. Full article
Show Figures

Figure 1

20 pages, 7568 KiB  
Article
Application of End-to-End Perception Framework Based on Boosted DETR in UAV Inspection of Overhead Transmission Lines
by Jinyu Wang, Lijun Jin, Yingna Li and Pei Cao
Drones 2024, 8(10), 545; https://doi.org/10.3390/drones8100545 - 1 Oct 2024
Cited by 1 | Viewed by 1410
Abstract
As crucial predecessor tasks for fault detection and transmission line inspection, insulators, anti-vibration hammers, and arc sag detection are critical jobs. Due to the complexity of the high-voltage transmission line environment and other factors, target detection work on transmission lines remains challenging. A [...] Read more.
As crucial predecessor tasks for fault detection and transmission line inspection, insulators, anti-vibration hammers, and arc sag detection are critical jobs. Due to the complexity of the high-voltage transmission line environment and other factors, target detection work on transmission lines remains challenging. A method for high-voltage transmission line inspection based on DETR (TLI-DETR) is proposed to detect insulators, anti-vibration hammers, and arc sag. This model achieves a better balance in terms of speed and accuracy than previous methods. Due to environmental interference such as mountainous forests, rivers, and lakes, this paper uses the Improved Multi-Scale Retinex with Color Restoration (IMSRCR) algorithm to make edge extraction more robust with less noise interference. Based on the TLI-DETR’s feature extraction network, we introduce the edge and semantic information by Momentum Comparison (MoCo) to boost the model’s feature extraction ability for small targets. The different shooting angles and distances of drones result in the target images taking up small proportions and impeding each other. Consequently, the statistical profiling of the area and aspect ratio of transmission line targets captured by UAV generate target query vectors with prior information to enable the model to adapt to the detection needs of transmission line targets more accurately and effectively improve the detection accuracy of small targets. The experimental results show that this method has excellent performance in high-voltage transmission line detection, achieving up to 91.65% accuracy and a 55FPS detection speed, which provides a technical basis for the online detection of transmission line targets. Full article
(This article belongs to the Topic Civil and Public Domain Applications of Unmanned Aviation)
Show Figures

Figure 1

17 pages, 15407 KiB  
Article
Research on Defect Detection Method of Fusion Reactor Vacuum Chamber Based on Photometric Stereo Vision
by Guodong Qin, Haoran Zhang, Yong Cheng, Youzhi Xu, Feng Wang, Shijie Liu, Xiaoyan Qin, Ruijuan Zhao, Congju Zuo and Aihong Ji
Sensors 2024, 24(19), 6227; https://doi.org/10.3390/s24196227 - 26 Sep 2024
Viewed by 879
Abstract
This paper addresses image enhancement and 3D reconstruction techniques for dim scenes inside the vacuum chamber of a nuclear fusion reactor. First, an improved multi-scale Retinex low-light image enhancement algorithm with adaptive weights is designed. It can recover image detail information that is [...] Read more.
This paper addresses image enhancement and 3D reconstruction techniques for dim scenes inside the vacuum chamber of a nuclear fusion reactor. First, an improved multi-scale Retinex low-light image enhancement algorithm with adaptive weights is designed. It can recover image detail information that is not visible in low-light environments, maintaining image clarity and contrast for easy observation. Second, according to the actual needs of target plate defect detection and 3D reconstruction inside the vacuum chamber, a defect reconstruction algorithm based on photometric stereo vision is proposed. To optimize the position of the light source, a light source illumination profile simulation system is designed in this paper to provide an optimized light array for crack detection inside vacuum chambers without the need for extensive experimental testing. Finally, a robotic platform mounted with a binocular stereo-vision camera is constructed and image enhancement and defect reconstruction experiments are performed separately. The results show that the above method can broaden the gray level of low-illumination images and improve the brightness value and contrast. The maximum depth error is less than 24.0% and the maximum width error is less than 15.3%, which achieves the goal of detecting and reconstructing the defects inside the vacuum chamber. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

11 pages, 1496 KiB  
Article
An Improved Retinex-Based Approach Based on Attention Mechanisms for Low-Light Image Enhancement
by Shan Jiang, Yingshan Shi, Yingchun Zhang and Yulin Zhang
Electronics 2024, 13(18), 3645; https://doi.org/10.3390/electronics13183645 - 13 Sep 2024
Cited by 1 | Viewed by 1079
Abstract
Captured images often suffer from issues like color distortion, detail loss, and significant noise. Therefore, it is necessary to improve image quality for reliable threat detection. Balancing brightness enhancement with the preservation of natural colors and details is particularly challenging in low-light image [...] Read more.
Captured images often suffer from issues like color distortion, detail loss, and significant noise. Therefore, it is necessary to improve image quality for reliable threat detection. Balancing brightness enhancement with the preservation of natural colors and details is particularly challenging in low-light image enhancement. To address these issues, this paper proposes an unsupervised low-light image enhancement approach using a U-net neural network with Retinex theory and a Convolutional Block Attention Module (CBAM). This method leverages Retinex-based decomposition to separate and enhance the reflectance map, ensuring visibility and contrast without introducing artifacts. A local adaptive enhancement function improves the brightness of the reflection map, while the designed loss function addresses illumination smoothness, brightness enhancement, color restoration, and denoising. Experiments validate the effectiveness of our method, revealing improved image brightness, reduced color deviation, and superior color restoration compared to leading approaches. Full article
(This article belongs to the Special Issue Network Security Management in Heterogeneous Networks)
Show Figures

Figure 1

26 pages, 4676 KiB  
Article
Optimisation of Convolution-Based Image Lightness Processing
by D. Andrew Rowlands and Graham D. Finlayson
J. Imaging 2024, 10(8), 204; https://doi.org/10.3390/jimaging10080204 - 22 Aug 2024
Viewed by 947
Abstract
In the convolutional retinex approach to image lightness processing, an image is filtered by a centre/surround operator that is designed to mitigate the effects of shading (illumination gradients), which in turn compresses the dynamic range. Typically, the parameters that define the shape and [...] Read more.
In the convolutional retinex approach to image lightness processing, an image is filtered by a centre/surround operator that is designed to mitigate the effects of shading (illumination gradients), which in turn compresses the dynamic range. Typically, the parameters that define the shape and extent of the filter are tuned to provide visually pleasing results, and a mapping function such as a logarithm is included for further image enhancement. In contrast, a statistical approach to convolutional retinex has recently been introduced, which is based upon known or estimated autocorrelation statistics of the image albedo and shading components. By introducing models for the autocorrelation matrices and solving a linear regression, the optimal filter is obtained in closed form. Unlike existing methods, the aim is simply to objectively mitigate shading, and so image enhancement components such as a logarithmic mapping function are not included. Here, the full mathematical details of the method are provided, along with implementation details. Significantly, it is shown that the shapes of the autocorrelation matrices directly impact the shape of the optimal filter. To investigate the performance of the method, we address the problem of shading removal from text documents. Further experiments on a challenging image dataset validate the method. Full article
Show Figures

Figure 1

24 pages, 5412 KiB  
Review
A Comprehensive Survey on Visual Perception Methods for Intelligent Inspection of High Dam Hubs
by Zhangjun Peng, Li Li, Daoguang Liu, Shuai Zhou and Zhigui Liu
Sensors 2024, 24(16), 5246; https://doi.org/10.3390/s24165246 - 14 Aug 2024
Viewed by 1137
Abstract
There are many high dam hubs in the world, and the regular inspection of high dams is a critical task for ensuring their safe operation. Traditional manual inspection methods pose challenges related to the complexity of the on-site environment, the heavy inspection workload, [...] Read more.
There are many high dam hubs in the world, and the regular inspection of high dams is a critical task for ensuring their safe operation. Traditional manual inspection methods pose challenges related to the complexity of the on-site environment, the heavy inspection workload, and the difficulty in manually observing inspection points, which often result in low efficiency and errors related to the influence of subjective factors. Therefore, the introduction of intelligent inspection technology in this context is urgently necessary. With the development of UAVs, computer vision, artificial intelligence, and other technologies, the intelligent inspection of high dams based on visual perception has become possible, and related research has received extensive attention. This article summarizes the contents of high dam safety inspections and reviews recent studies on visual perception techniques in the context of intelligent inspections. First, this article categorizes image enhancement methods into those based on histogram equalization, Retinex, and deep learning. Representative methods and their characteristics are elaborated for each category, and the associated development trends are analyzed. Second, this article systematically enumerates the principal achievements of defect and obstacle perception methods, focusing on those based on traditional image processing and machine learning approaches, and outlines the main techniques and characteristics. Additionally, this article analyzes the principal methods for damage quantification based on visual perception. Finally, the major issues related to applying visual perception techniques for the intelligent safety inspection of high dams are summarized and future research directions are proposed. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

12 pages, 7794 KiB  
Article
Single-Shot Direct Transmission Terahertz Imaging Based on Intense Broadband Terahertz Radiation
by Zhang Yue, Xiaoyu Peng, Guangyuan Li, Yilei Zhou, Yezi Pu and Yuhui Zhang
Sensors 2024, 24(13), 4160; https://doi.org/10.3390/s24134160 - 26 Jun 2024
Cited by 1 | Viewed by 1412
Abstract
There are numerous applications of terahertz (THz) imaging in many fields. However, current THz imaging is generally based on scanning technique due to the limited intensity of the THz sources. Thus, it takes a long time to obtain a frame image of the [...] Read more.
There are numerous applications of terahertz (THz) imaging in many fields. However, current THz imaging is generally based on scanning technique due to the limited intensity of the THz sources. Thus, it takes a long time to obtain a frame image of the target and cannot meet the requirement of fast THz imaging. Here, we demonstrate a single-shot direct THz imaging strategy based on a broadband intense THz source with a frequency range of 0.1~23 THz and a THz camera with a frequency response range of 1~7 THz. This THz source was generated from the laser–plasma interaction, with its central frequency at ~12 THz. The frame rate of this imaging system was 8.5 frames per second. The imaging resolution reached 146.2 μm. With this imaging system, a single-shot THz image for a target object with a size of more than 7 cm was routinely obtained, showing a potential application for fast THz imaging. Furthermore, we proposed and tested an image enhancement algorithm based on an improved dark channel prior (DCP) theory and multi-scale retinex (MSR) theory to optimize the image brightness, contrast, entropy and peak signal-to-noise ratio (PSNR). Full article
Show Figures

Figure 1

Back to TopTop