Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,386)

Search Parameters:
Keywords = SPR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 13337 KiB  
Article
Evaluation of Corrosion and Its Impact on the Mechanical Performance of Al–Steel Joints
by Weiling Wen, Blair Carlson and Mihaela Banu
Materials 2024, 17(14), 3542; https://doi.org/10.3390/ma17143542 (registering DOI) - 17 Jul 2024
Viewed by 129
Abstract
Aluminum–steel joints are increasingly used in the automotive industry to meet the requirements for energy saving and emission reduction. Among various joining technologies, self-pierce riveting (SPR) and resistance spot welding (RSW) are two well-established technologies for fabricating dissimilar joints with stable and high [...] Read more.
Aluminum–steel joints are increasingly used in the automotive industry to meet the requirements for energy saving and emission reduction. Among various joining technologies, self-pierce riveting (SPR) and resistance spot welding (RSW) are two well-established technologies for fabricating dissimilar joints with stable and high mechanical performance. However, corrosion will occur in these joints inevitably due to different electrochemical properties, which can degrade the surface quality and the mechanical performance, such as strength. This paper presents a method of understanding the corrosion mechanisms in joining aluminum and steel. For this understanding, a hybrid method combining experimental observations, mechanical properties identification, and analytical approaches was used to assess the evolution of the impact of corrosion on the joining performance, such as traction separation curves. The study was conducted on common combinations used in the vehicles, e.g., a 1.2 mm thickness aluminum alloy (AA 6022) and 2.0 mm thickness hot deep galvanized steel (HDG HSLA 340) joined by SPR and RSW. After the fabrication of these joints, accelerated cyclic corrosion tests of up to 104 cycles were performed, which reproduced the environmental conditions to which a vehicle was exposed. By investigating the microstructural evolution within the joints, the corrosion mechanisms of SPR and RSW joints were revealed, including the initiation and propagation. Moreover, the intrinsic impact of the corrosion on the mechanical performance, including the strength, axial stiffness, and crashworthiness, was analyzed by performing a lap-shear test. It showed that as corrosion proceeds, the fracture modes and mechanical performance are affected significantly. Full article
(This article belongs to the Special Issue Advanced Welding in Alloys and Composites)
Show Figures

Figure 1

13 pages, 3119 KiB  
Article
Plasmonic Optical Fiber Sensors and Molecularly Imprinted Polymers for Glyphosate Detection at an Ultra-Wide Range
by Luca Pasquale Renzullo, Ines Tavoletta, Giancarla Alberti, Luigi Zeni, Maria Pesavento and Nunzio Cennamo
Chemosensors 2024, 12(7), 142; https://doi.org/10.3390/chemosensors12070142 - 17 Jul 2024
Viewed by 231
Abstract
In this study, a surface plasmon resonance (SPR) sensor based on modified plastic optical fibers (POFs) was combined with a specific molecularly imprinted polymer (MIP), used as a synthetic receptor, for glyphosate (GLY) determination in aqueous solutions. Since GLY is a non-selective herbicide [...] Read more.
In this study, a surface plasmon resonance (SPR) sensor based on modified plastic optical fibers (POFs) was combined with a specific molecularly imprinted polymer (MIP), used as a synthetic receptor, for glyphosate (GLY) determination in aqueous solutions. Since GLY is a non-selective herbicide associated with severe environmental and health problems, detecting glyphosate in environmental and biological samples remains challenging. The selective interaction between the MIP layer and GLY is monitored by exploiting the SPR phenomenon at the POF’s gold surface. Experimental results show that in about ten minutes and by dropping microliter volume samples, the presented optical–chemical sensor can quantify up to three orders of magnitude of GLY concentrations, from nanomolar to micromolar, due to a thin MIP layer over the SPR surface. The developed optical–chemical sensor presents a detection limit of about 1 nM and can be used for onsite GLY measurements. Moreover, the experimental analysis demonstrated the high selectivity of the proposed POF-based chemical sensor. Full article
Show Figures

Figure 1

17 pages, 1001 KiB  
Article
Enhanced Coexistence of Quantum Key Distribution and Classical Communication over Hollow-Core and Multi-Core Fibers
by Weiwen Kong, Yongmei Sun, Tianqi Dou, Yuheng Xie, Zhenhua Li, Yaoxian Gao, Qi Zhao, Na Chen, Wenpeng Gao, Yuanchen Hao, Peizhe Han, Yang Liu and Jianjun Tang
Entropy 2024, 26(7), 601; https://doi.org/10.3390/e26070601 - 15 Jul 2024
Viewed by 275
Abstract
In this paper, we investigate the impact of classical optical communications in quantum key distribution (QKD) over hollow-core fiber (HCF), multi-core fiber (MCF) and single-core fiber (SCF) and propose wavelength allocation schemes to enhance QKD performance. Firstly, we theoretically analyze noise interference in [...] Read more.
In this paper, we investigate the impact of classical optical communications in quantum key distribution (QKD) over hollow-core fiber (HCF), multi-core fiber (MCF) and single-core fiber (SCF) and propose wavelength allocation schemes to enhance QKD performance. Firstly, we theoretically analyze noise interference in QKD over HCF, MCF and SCF, such as spontaneous Raman scattering (SpRS) and four-wave mixing (FWM). To mitigate these noise types and optimize QKD performance, we propose a joint noise suppression wavelength allocation (JSWA) scheme. FWM noise suppression wavelength allocation and Raman noise suppression wavelength allocation are also proposed for comparison. The JSWA scheme indicates a significant enhancement in extending the simultaneous transmission distance of classical signals and QKD, reaching approximately 100 km in HCF and 165 km in MCF under a classical power per channel of 10 dBm. Therefore, MCF offers a longer secure transmission distance compared with HCF when classical signals and QKD coexist in the C-band. However, when classical signals are in the C-band and QKD operates in the O-band, the performance of QKD in HCF surpasses that in MCF. This research establishes technical foundations for the design and deployment of QKD optical networks. Full article
(This article belongs to the Special Issue Classical and Quantum Networks: Theory, Modeling and Optimization)
Show Figures

Figure 1

15 pages, 5344 KiB  
Article
Grating Structures for Silver-Based Surface Plasmon Resonance Sensors with Adjustable Excitation Angle
by Pongsak Sarapukdee, Dirk Schulz and Stefan Palzer
Sensors 2024, 24(14), 4538; https://doi.org/10.3390/s24144538 - 13 Jul 2024
Viewed by 290
Abstract
Silver-based grating structures offer means for implementing low-cost, efficient grating couplers for use in surface plasmon resonance (SPR) sensors. One-dimensional grating structures with a fixed periodicity are confined to operate effectively within a single planar orientation. However, two-dimensional grating structures as well as [...] Read more.
Silver-based grating structures offer means for implementing low-cost, efficient grating couplers for use in surface plasmon resonance (SPR) sensors. One-dimensional grating structures with a fixed periodicity are confined to operate effectively within a single planar orientation. However, two-dimensional grating structures as well as grating structures with variable periodicity allow for the plasmon excitation angle to be seamlessly adjusted. This study demonstrates silver-based grating designs that allow for the plasmon excitation angle to be adjusted via rotation or beam position. The flexible angle adjustment opens up the possibility of developing SPR sensor designs with an expanded dynamic range and increased flexibility in sensing applications. The results demonstrate that efficient coupling into two diffraction orders is possible, which ultimately leads to an excitation angle range from 16° to 40° by rotating a single structure. The findings suggest a promising direction for the development of versatile and adaptable SPR sensing platforms with enhanced performance characteristics. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

14 pages, 14389 KiB  
Article
Preparation and Characterization of Melamine–Benzoguanamine–Formaldehyde Resins and Their Flame-Retardant Properties in Impregnated Paper for Low Pressure Laminates
by Yusuf Çekiç, Halil Duyar and Ferda Hacıvelioğlu
Coatings 2024, 14(7), 873; https://doi.org/10.3390/coatings14070873 - 12 Jul 2024
Viewed by 392
Abstract
In this study, Melamine–formaldehyde (MF) resins were subjected to modification with benzoguanamine (BG) to produce MF-BG resins, followed by a comprehensive analysis of their chemical composition using advanced spectroscopic techniques such as Fourier transform infrared (FTIR), 1H-NMR, and 13C-NMR spectroscopy. The [...] Read more.
In this study, Melamine–formaldehyde (MF) resins were subjected to modification with benzoguanamine (BG) to produce MF-BG resins, followed by a comprehensive analysis of their chemical composition using advanced spectroscopic techniques such as Fourier transform infrared (FTIR), 1H-NMR, and 13C-NMR spectroscopy. The flame-retardant characteristics and thermal decomposition behavior of papers impregnated with MF-BG were examined and contrasted with those treated with standard MF. In particular, the optimized MF-BG5-treated paper exhibited a Limiting Oxygen Index (LOI) value exceeding 30%, and analysis using a cone calorimeter indicated a notable decrease in parameters such as the heat-release rate (P-HRR), total heat release (THR), smoke production rate (SPR), and total smoke production (TSP) when compared to papers impregnated with standard MF. The findings from the scanning electron microscopy (SEM) analysis of the residual char following cone calorimeter experiments revealed that the MF-BG5-treated paper exhibited a denser and more uniform char formation. This phenomenon consequently limits the emission of combustion by-products and impedes the spread of flame. This study provides a feasible method for low-pressure laminates with better flame retardancy by using the BG additive up to a limit in MF resin. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

10 pages, 3742 KiB  
Article
Surface Plasmon Resonance Sensor Based on Fe2O3/Au for Alcohol Concentration Detection
by Junyi Wang, Yanpei Xu, Yutong Song and Qi Wang
Sensors 2024, 24(14), 4477; https://doi.org/10.3390/s24144477 - 11 Jul 2024
Viewed by 242
Abstract
Hematite (α-Fe2O3) is widely used in sensor sensitization due to its excellent optical properties. In this study, we present a sensitivity-enhanced surface plasmon resonance alcohol sensor based on Fe2O3/Au. We describe the fabrication [...] Read more.
Hematite (α-Fe2O3) is widely used in sensor sensitization due to its excellent optical properties. In this study, we present a sensitivity-enhanced surface plasmon resonance alcohol sensor based on Fe2O3/Au. We describe the fabrication process of the sensor and characterize its structure. We conduct performance testing on sensors coated multiple times and use solutions with the same gradient of refractive indices as the sensing medium. Within the refractive index range of 1.3335–1.3635, the sensor that was coated twice achieved the highest sensitivity, reaching 2933.2 nm/RIU. This represents a 30.26% enhancement in sensitivity compared to a sensor with a pure gold monolayer film structure. Additionally, we demonstrated the application of this sensor in alcohol concentration detection by testing the alcohol content of common beverages, showing excellent agreement with theoretical values and highlighting the sensor’s potential in food testing. Full article
Show Figures

Figure 1

18 pages, 15489 KiB  
Article
Ultra-Broadband Minuscule Polarization Beam Splitter Based on Dual-Core Photonic Crystal Fiber with Two Silver Wires
by Yuxiang Ji, Hui Zou, Yuhang Du and Ningyi Wang
Electronics 2024, 13(13), 2675; https://doi.org/10.3390/electronics13132675 - 8 Jul 2024
Viewed by 319
Abstract
This paper presents a polarizing beam splitter (PBS) based on a hexagonal lattice silver-filled photonic crystal fiber (PCF) with two silver wires, which possesses advantages such as a short splitting length, high extinction ratio (ER), and an ultra-wide bandwidth in commonly used communication [...] Read more.
This paper presents a polarizing beam splitter (PBS) based on a hexagonal lattice silver-filled photonic crystal fiber (PCF) with two silver wires, which possesses advantages such as a short splitting length, high extinction ratio (ER), and an ultra-wide bandwidth in commonly used communication bands. Utilizing the full-vector finite element method (FV-FEM), thorough investigations were conducted on lasers within the wavelength range of 1.1 to 1.9 μm. The PBS demonstrates a working bandwidth of 725 nm (1.14 to 1.865 μm) under an ultra-short splitting length of 55.3 μm, with an ER exceeding 20 dB, covering all bands of O + E + S + C + L + U optical communication, and achieving a maximum ER of 74.65 dB, where the surface plasmon resonance (SPR) effect of silver metal plays a significant role. It not only features an ultra-short splitting length and an ultra-wide splitting bandwidth but also exhibits excellent manufacturing tolerances and anti-interference capabilities. This polarizing beam splitter represents a promising candidate in communication and may find various applications in optical communication. Full article
(This article belongs to the Special Issue Advances in Optical Fibers for Fiber Sensors)
Show Figures

Figure 1

13 pages, 2928 KiB  
Article
Smoke Suppression Properties of Fe2O3 on Intumescent Fire-Retardant Coatings of Styrene–Acrylic Emulsion
by Fang Dong, Qingfeng Song and Liyong Ma
Coatings 2024, 14(7), 850; https://doi.org/10.3390/coatings14070850 - 7 Jul 2024
Viewed by 455
Abstract
The intumescent flame-retardant coatings were prepared using ammonium polyphosphate (APP), pentaerythritol (PER), melamine (MEL), styrene–acrylic emulsion, and iron oxide yellow (FeOOH) as the base material. A cone calorimeter (CCT), smoke density meter (SDA), and scanning electron microscope (SEM) were employed to investigate the [...] Read more.
The intumescent flame-retardant coatings were prepared using ammonium polyphosphate (APP), pentaerythritol (PER), melamine (MEL), styrene–acrylic emulsion, and iron oxide yellow (FeOOH) as the base material. A cone calorimeter (CCT), smoke density meter (SDA), and scanning electron microscope (SEM) were employed to investigate the smoke suppression and flame retardancy of FeOOH in intumescent fire-retardant coatings. The thermal degradation performance of intumescent fireproofing coatings with varying FeOOH content was investigated through thermogravimetric analysis (TGA). The structure of the carbon slag in the CCT test was analyzed using a scanning electron microscope (SEM). The results of the cone calorimeter (CCT) experiments demonstrated that FeOOH significantly reduced the heat release rate (HRR), total heat release rate (THR), smoke production rate (SPR), and total smoke release rate (TSR) of the coating, while simultaneously increasing the carbon residue rate of the coating. The smoke density analysis (SDA) results demonstrate that adding FeOOH can effectively reduce smoke generation, regardless of whether a pilot flame is used. TGA results demonstrate that FeOOH can enhance the weight of coke residue at elevated temperatures. SEM results indicate that incorporating FeOOH resulted in a more compact coke residue. According to these findings, among all the samples, those containing 2 wt% FeOOH showed low levels of HRR, THR, SPR, and TSR and high levels of SOD, which proves that FeOOH can be used as a smoke inhibitor in flame-retardant coatings. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

14 pages, 4607 KiB  
Article
ZIF-8-Based Surface Plasmon Resonance and Fabry–Pérot Sensors for Volatile Organic Compounds
by Anna Estany-Macià, Ignasi Fort-Grandas, Nirav Joshi, Winnie E. Svendsen, Maria Dimaki, Albert Romano-Rodríguez and Mauricio Moreno-Sereno
Sensors 2024, 24(13), 4381; https://doi.org/10.3390/s24134381 - 5 Jul 2024
Viewed by 371
Abstract
This work explores the use of ZIF-8, a metal–organic framework (MOF) material, for its use in the optical detection of volatile organic compounds (VOCs) in Fabry–Pérot and surface plasmon resonance (SPR)-based sensors. The experiments have been carried out with ethanol (EtOH) and show [...] Read more.
This work explores the use of ZIF-8, a metal–organic framework (MOF) material, for its use in the optical detection of volatile organic compounds (VOCs) in Fabry–Pérot and surface plasmon resonance (SPR)-based sensors. The experiments have been carried out with ethanol (EtOH) and show response times as low as 30 s under VOC-saturated atmospheres, and the estimated limit of detection is below 4000 ppm for both sensor types. The selectivity towards other VOCs is relatively poor, although the dynamics of adsorption/desorption differ for each VOC and could be used for selectivity purposes. Furthermore, the hydrophobicity of ZIF-8 has been confirmed and the fabricated sensors are insensitive to this compound, which is a very attractive result for its practical use in gas sensing devices. Full article
(This article belongs to the Special Issue Chemical Sensors—Recent Advances and Future Challenges 2023–2024)
Show Figures

Figure 1

18 pages, 3106 KiB  
Article
A Dynamic and Effective Peptide-Based Strategy for Promptly Addressing Emerging SARS-CoV-2 Variants of Concern
by Michela Murdocca, Isabella Romeo, Gennaro Citro, Andrea Latini, Federica Centofanti, Antonella Bugatti, Francesca Caccuri, Arnaldo Caruso, Francesco Ortuso, Stefano Alcaro, Federica Sangiuolo and Giuseppe Novelli
Pharmaceuticals 2024, 17(7), 891; https://doi.org/10.3390/ph17070891 - 4 Jul 2024
Viewed by 902
Abstract
Genomic surveillance based on sequencing the entire genetic code of SARS-CoV-2 involves monitoring and studying genetic changes and variations in disease-causing organisms such as viruses and bacteria. By tracing the virus, it is possible to prevent epidemic spread in the community, ensuring a [...] Read more.
Genomic surveillance based on sequencing the entire genetic code of SARS-CoV-2 involves monitoring and studying genetic changes and variations in disease-causing organisms such as viruses and bacteria. By tracing the virus, it is possible to prevent epidemic spread in the community, ensuring a ‘precision public health’ strategy. A peptide-based design was applied to provide an efficacious strategy that is able to counteract any emerging viral variant of concern dynamically and promptly to affect the outcomes of a pandemic at an early stage while waiting for the production of the anti-variant-specific vaccine, which require longer times. The inhibition of the interaction between the receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and one of the cellular receptors (DPP4) that its receptors routinely bind to infect human cells is an intriguing therapeutic approach to prevent the virus from entering human cells. Among the other modalities developed for this purpose, peptides surely offer unique advantages, including ease of synthesis, serum stability, low immunogenicity and toxicity, and small production and distribution chain costs. Here, we obtained a potent new inhibitor based on the rearrangement of a previously identified peptide that has been rationally designed on a cell dipeptidyl peptidase 4 (DPP4) sequence, a ubiquitous membrane protein known to bind the RBD-SPIKE domain of the virus. This novel peptide (named DPP4-derived), conceived as an endogenous “drug”, is capable of targeting the latest tested variants with a high affinity, reducing the VSV* DG-Fluc pseudovirus Omicron’s infection capacity by up to 14%, as revealed by in vitro testing in human Calu-3 cells. Surface plasmon resonance (SPR) confirmed the binding affinity of the new DPP4-derived peptide with Omicron variant RBD. Full article
(This article belongs to the Special Issue Design, Synthesis and Development of Novel Antiviral Agents)
Show Figures

Graphical abstract

12 pages, 3890 KiB  
Article
Side-Opened Hollow Fiber-Based SPR Sensor for High Refractive Index Detection
by Ge Meng, Nannan Luan, Hao He, Fan Lei and Jianfei Liu
Sensors 2024, 24(13), 4335; https://doi.org/10.3390/s24134335 - 4 Jul 2024
Viewed by 341
Abstract
To facilitate the sensor fabrication and sensing operation in microstructured optical fiber-based surface plasmon resonance (SPR) sensors for high refractive index (RI) detection, we propose a special hollow fiber-based SPR sensor that comprises an opening on its body side and a thin gold [...] Read more.
To facilitate the sensor fabrication and sensing operation in microstructured optical fiber-based surface plasmon resonance (SPR) sensors for high refractive index (RI) detection, we propose a special hollow fiber-based SPR sensor that comprises an opening on its body side and a thin gold layer coated on its outer surface. The analyte is able to flow into the hollow core through the side-opening to form new fiber core, with the Gaussian-like mode propagating in it. We investigate the sensing performance of the proposed sensor in a higher RI range of 1.48 to 1.54 at two feasible schemes: one is to only fill the fiber core with analyte (Scheme A), and the other is to directly immerse the sensor in the analyte (Scheme B). The results demonstrate that our sensor exhibits higher wavelength sensitivity at Scheme A with a maximum wavelength sensitivity of 12,320 nm/RIU, while a greater amplitude sensitivity was found at Scheme B with a maximum amplitude sensitivity of 1146 RIU−1. Our proposed sensor features the advantages of simple fabrication, flexible operation, easy analyte filling and replacing, enhanced real-time detection capabilities, high RI detection, and very high wavelength sensitivity and amplitude sensitivity, which makes it more competitive in SPR sensing applications. Full article
(This article belongs to the Collection Optical Fiber Sensors)
Show Figures

Figure 1

12 pages, 725 KiB  
Article
Match-to-Match Variation on High-Intensity Demands in a Portuguese Professional Football Team
by José E. Teixeira, Luís Branquinho, Miguel Leal, Ryland Morgans, Andrew Sortwell, Tiago M. Barbosa, António M. Monteiro, Pedro Afonso, Guilherme Machado, Samuel Encarnação, Ricardo Ferraz and Pedro Forte
J. Funct. Morphol. Kinesiol. 2024, 9(3), 120; https://doi.org/10.3390/jfmk9030120 - 4 Jul 2024
Viewed by 366
Abstract
The aim of this study was to analyze the match-to-match variation in high-intensity demands from one Portuguese professional football team according to playing positions. Twenty-three male outfield professional football players were observed during eighteen matches of the Portuguese Second League. Time–motion data were [...] Read more.
The aim of this study was to analyze the match-to-match variation in high-intensity demands from one Portuguese professional football team according to playing positions. Twenty-three male outfield professional football players were observed during eighteen matches of the Portuguese Second League. Time–motion data were collected using Global Positioning System (GPS) technology. Match running performance was analyzed based on the following three playing positions: defenders (DF), midfielders (MF), and forwards (FW). Repeated measures ANOVA was utilized to compare match running performance within each position role, and seasonal running variation. Practical differences were assessed using the smallest worthwhile change (SWC), coefficient of variation (CV), and twice the coefficient of variation (2CV). Significant differences were found among playing positions in total distance covered (F = 15.45, p < 0.001, η2 = 0.33), average speed (F = 12.79, p < 0.001, η2 = 0.29), high-speed running (F = 16.93, p < 0.001, η2 = 0.36), sprinting (F = 13.49, p < 0.001, η2 = 0.31), accelerations (F = 4.69, p = 0.001, η2 = 0.132), and decelerations (F = 12.21, p < 0.001, η2 = 0.284). The match-to-match running performance encompassed TD (6.59%), AvS (8.67%), HSRr (37.83%), SPR (34.82%), ACC (26.92%), and DEC (27.85%). CV values for total distance covered ranged from 4.87–6.82%, with forwards and midfielders exhibiting the greatest and smallest variation, respectively. Midfielders demonstrated the highest match-to-match variation for all other analyzed variables (8.12–69.17%). All playing positions showed significant variation in high-demanding variables (26.94–37.83%). This study presents the initial analysis of match-to-match variation in high-intensity demands within a Portuguese professional football team. Thus, the position’s specificity and context can provide a helpful strategy for evaluating match-to-match running performance, and for recommending individualized training exercises based on the peak and high-intensity demands for each player’s role within the game. Full article
Show Figures

Figure 1

12 pages, 2575 KiB  
Communication
Thiram Determination in Milk Samples by Surface Plasmon Resonance Based on Molecularly Imprinted Polymers and Sulphur-Doped Titanium Dioxide
by Sezen Harmankaya, Hacı Ahmet Deveci, Ahmet Harmankaya, Fatma Hazan Gül, Necip Atar and Mehmet Lütfi Yola
Biosensors 2024, 14(7), 329; https://doi.org/10.3390/bios14070329 - 3 Jul 2024
Viewed by 446
Abstract
In this work, a new surface plasmon resonance (SPR) sensor based on sulphur-doped titanium dioxide (S-TiO2) nanostructures and molecularly imprinted polymer (MIP) was presented for thiram (THI) determination in milk samples. Firstly, the S-TiO2 nanomaterial with a high product yield [...] Read more.
In this work, a new surface plasmon resonance (SPR) sensor based on sulphur-doped titanium dioxide (S-TiO2) nanostructures and molecularly imprinted polymer (MIP) was presented for thiram (THI) determination in milk samples. Firstly, the S-TiO2 nanomaterial with a high product yield was prepared by using a facile sol-gel hydrolysis technique with a high product yield. After that, UV polymerization was carried out for the preparation of the THI-imprinted SPR chip based on S-TiO2 using a mixture including ethylene glycol dimethacrylate (EGDMA) as the cross-linker, N,N′-azobisisobutyronitrile (AIBN) as the initiator, and methacryloylamidoglutamicacid (MAGA) as the monomer. The reliability of the sensor preparation procedure has been successfully proven by characterization studies of the prepared nanomaterials and SPR chip surfaces through spectroscopic, microscopic, and electrochemical methods. As a result, the prepared SPR sensor showed linearity in the range of 1.0 × 10−9–1.0 × 10−7 M with a detection limit (LOD) of 3.3 × 10−10 M in the real samples, and a sensor technique for THI determination with high sensitivity, repeatability, and selectivity can be included in the literature. Full article
(This article belongs to the Special Issue Advances in Plasmonic Biosensing Technology)
Show Figures

Figure 1

10 pages, 2856 KiB  
Article
Real-Time Plasmonic Strain Sensors Based on Surface Relief Diffraction Gratings
by Yazan Bdour and Ribal Georges Sabat
Micromachines 2024, 15(7), 863; https://doi.org/10.3390/mi15070863 - 30 Jun 2024
Viewed by 381
Abstract
Large-scale diffraction gratings were fabricated in surface relief on azobenzene thin films and transferred to flexible PDMS substrates using soft lift-off lithography. The PDMS gratings were strained along the grating vector axis and the resulting surface topography was analyzed using diffraction angle measurements, [...] Read more.
Large-scale diffraction gratings were fabricated in surface relief on azobenzene thin films and transferred to flexible PDMS substrates using soft lift-off lithography. The PDMS gratings were strained along the grating vector axis and the resulting surface topography was analyzed using diffraction angle measurements, AFM imagery and surface plasmon resonance (SPR) spectra. All measurement methods exhibited a linear response in strain indicating the useability of these sensors in real-world applications. For SPR-based strain sensing, an increasing pitch and a decreasing modulation depth were observed with increasing strain. The SPR peak shifted by ~1.0 nm wavelength and the SPR intensity decreased by ~0.3 a.u. per percentage of applied strain. The tested PDMS samples retained their integrity even after multiple cycles of stretching and relaxation, making them a suitable strain sensor. Full article
(This article belongs to the Special Issue Plasmonic Sensors and Their Applications)
Show Figures

Graphical abstract

19 pages, 5036 KiB  
Article
Artificial Intelligence-Powered Molecular Docking and Steered Molecular Dynamics for Accurate scFv Selection of Anti-CD30 Chimeric Antigen Receptors
by Nico Martarelli, Michela Capurro, Gizem Mansour, Ramina Vossoughi Jahromi, Arianna Stella, Roberta Rossi, Emanuele Longetti, Barbara Bigerna, Marco Gentili, Ariele Rosseto, Riccardo Rossi, Chiara Cencini, Carla Emiliani, Sabata Martino, Marten Beeg, Marco Gobbi, Enrico Tiacci, Brunangelo Falini, Francesco Morena and Vincenzo Maria Perriello
Int. J. Mol. Sci. 2024, 25(13), 7231; https://doi.org/10.3390/ijms25137231 - 30 Jun 2024
Viewed by 541
Abstract
Chimeric antigen receptor (CAR) T cells represent a revolutionary immunotherapy that allows specific tumor recognition by a unique single-chain fragment variable (scFv) derived from monoclonal antibodies (mAbs). scFv selection is consequently a fundamental step for CAR construction, to ensure accurate and effective CAR [...] Read more.
Chimeric antigen receptor (CAR) T cells represent a revolutionary immunotherapy that allows specific tumor recognition by a unique single-chain fragment variable (scFv) derived from monoclonal antibodies (mAbs). scFv selection is consequently a fundamental step for CAR construction, to ensure accurate and effective CAR signaling toward tumor antigen binding. However, conventional in vitro and in vivo biological approaches to compare different scFv-derived CARs are expensive and labor-intensive. With the aim to predict the finest scFv binding before CAR-T cell engineering, we performed artificial intelligence (AI)-guided molecular docking and steered molecular dynamics analysis of different anti-CD30 mAb clones. Virtual computational scFv screening showed comparable results to surface plasmon resonance (SPR) and functional CAR-T cell in vitro and in vivo assays, respectively, in terms of binding capacity and anti-tumor efficacy. The proposed fast and low-cost in silico analysis has the potential to advance the development of novel CAR constructs, with a substantial impact on reducing time, costs, and the need for laboratory animal use. Full article
Show Figures

Figure 1

Back to TopTop