Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = SURFRAD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5769 KiB  
Article
Downscaling Land Surface Temperature Derived from Microwave Observations with the Super-Resolution Reconstruction Method: A Case Study in the CONUS
by Yu Li, Donglian Sun, Xiwu Zhan, Paul Houser, Chaowei Yang and John J. Qu
Remote Sens. 2024, 16(5), 739; https://doi.org/10.3390/rs16050739 - 20 Feb 2024
Viewed by 1029
Abstract
Optical sensors cannot penetrate clouds and can cause serious missing data problems in optical-based Land Surface Temperature (LST) products. Under cloudy conditions, microwave observations are usually utilized to derive the land surface temperature. However, microwave sensors usually have coarse spatial resolutions. High-Resolution (HR) [...] Read more.
Optical sensors cannot penetrate clouds and can cause serious missing data problems in optical-based Land Surface Temperature (LST) products. Under cloudy conditions, microwave observations are usually utilized to derive the land surface temperature. However, microwave sensors usually have coarse spatial resolutions. High-Resolution (HR) LST data products are usually desired for many applications. Instead of developing and launching new high-resolution satellite sensors for LST observations, a more economical and practical way is to develop proper methodologies to derive high-resolution LSTs from available Low-Resolution (LR) datasets. This study explores different algorithms to downscale low-resolution LST data to a high resolution. The existing regression-based downscaling methods usually require simultaneous observations and ancillary data. The Super-Resolution Reconstruction (SRR) method developed for traditional image enhancement can be applicable to high-resolution LST generation. For the first time, we adapted the SRR method for LST data. We specifically built a unique database of LSTs for the example-based SRR method. After deriving the LST data from the coarse-resolution passive microwave observations, the AMSR-E at 25 km and/or AMSR-2 at 10 km, we developed an algorithm to downscale them to a 1 km spatial resolution with the SRR method. The SRR downscaling algorithm can be implemented to obtain high-resolution LSTs without auxiliary data or any concurrent observations. The high-resolution LSTs are validated and evaluated with the ground measurements from the Surface Radiation (SURFRAD) Budget Network. The results demonstrate that the downscaled microwave LSTs have a high correlation coefficient of over 0.92, a small bias of less than 0.5 K, but a large Root Mean Square Error (RMSE) of about 4 K, which is similar to the original microwave LST, so the errors in the downscaled LST could have been inherited from the original microwave LSTs. The validation results also indicate that the example-based method shows a better performance than the self-similarity-based algorithm. Full article
(This article belongs to the Special Issue Big Earth Data for Climate Studies)
Show Figures

Figure 1

21 pages, 3848 KiB  
Article
Ten Years of VIIRS Land Surface Temperature Product Validation
by Yuling Liu, Peng Yu, Heshun Wang, Jingjing Peng and Yunyue Yu
Remote Sens. 2022, 14(12), 2863; https://doi.org/10.3390/rs14122863 - 15 Jun 2022
Cited by 4 | Viewed by 2134
Abstract
The Visible Infrared Imaging Radiometer Suite (VIIRS) Land Surface Temperature (LST) has been operationally produced for a decade since the Suomi National Polar-orbiting Partnership (SNPP) launched in October 2011. A comprehensive evaluation of its accuracy and precision will be helpful for product users [...] Read more.
The Visible Infrared Imaging Radiometer Suite (VIIRS) Land Surface Temperature (LST) has been operationally produced for a decade since the Suomi National Polar-orbiting Partnership (SNPP) launched in October 2011. A comprehensive evaluation of its accuracy and precision will be helpful for product users in climate studies and atmospheric models. In this study, the VIIRS LST is validated with ground observations from multiple high-quality radiation networks, including six stations from the Surface Radiation budget (SURFRAD) network, two stations from the Baseline Surface Radiation Network (BSRN), and 13 stations from the Atmospheric Radiation Measurement (ARM) network, to evaluate its performance over various land-cover types. The VNP21A1 LST was validated against the same ground observations as a reference. The results yield a close agreement between the SNPP VIIRS LST and ground LSTs with a bias of −0.4 K and a RMSE of 1.96 K over six SURFRAD sites; a bias of −0.2 K and a RMSE of 1.93 K over two BSRN sites; and a bias of −0.1 K and a RMSE of 1.7 K over the 13 ARM sites. The time series of the LST errors over individual sites indicate seasonal cycles. The data anomaly over the BSRN site in Cabauw and the SURFRAD site in Desert Rock is revealed and discussed in this study. In addition, a method using Landsat-8 data is applied to quantify the heterogeneity level of each ground station and the results provide promising insights. The validation results demonstrate the maturity of the JPSS VIIRS LST products and their readiness for various application studies. Full article
(This article belongs to the Special Issue VIIRS 2011–2021: Ten Years of Success in Earth Observations)
Show Figures

Figure 1

14 pages, 3842 KiB  
Article
Extension of PAR Models under Local All-Sky Conditions to Different Climatic Zones
by Ana García-Rodríguez, Sol García-Rodríguez, Diego Granados-López, Montserrat Díez-Mediavilla and Cristina Alonso-Tristán
Appl. Sci. 2022, 12(5), 2372; https://doi.org/10.3390/app12052372 - 24 Feb 2022
Cited by 5 | Viewed by 1514
Abstract
Four models for predicting Photosynthetically Active Radiation (PAR) were obtained through MultiLinear Regression (MLR) and an Artificial Neural Network (ANN) based on 10 meteorological indices previously selected from a feature selection algorithm. One model was developed for all sky conditions and the other [...] Read more.
Four models for predicting Photosynthetically Active Radiation (PAR) were obtained through MultiLinear Regression (MLR) and an Artificial Neural Network (ANN) based on 10 meteorological indices previously selected from a feature selection algorithm. One model was developed for all sky conditions and the other three for clear, partial, and overcast skies, using a sky classification based on the clearness index (kt). The experimental data were recorded in Burgos (Spain) at ten-minute intervals over 23 months between 2019 and 2021. Fits above 0.97 and Root Mean Square Error (RMSE) values below 7.5% were observed. The models developed for clear and overcast sky conditions yielded better results. Application of the models to the seven experimental ground stations that constitute the Surface Radiation Budget Network (SURFRAD) located in different Köppen climatic zones of the USA yielded fitted values higher than 0.98 and RMSE values less than 11% in all cases regardless of the sky type. Full article
Show Figures

Figure 1

29 pages, 22131 KiB  
Article
Estimation of 1-km Resolution All-Sky Instantaneous Erythemal UV-B with MODIS Data Based on a Deep Learning Method
by Ruixue Zhao and Tao He
Remote Sens. 2022, 14(2), 384; https://doi.org/10.3390/rs14020384 - 14 Jan 2022
Cited by 2 | Viewed by 3044
Abstract
Although ultraviolet-B (UV-B) radiation reaching the ground represents a tiny fraction of the total solar radiant energy, it significantly affects human health and global ecosystems. Therefore, erythemal UV-B monitoring has recently attracted significant attention. However, traditional UV-B retrieval methods rely on empirical modeling [...] Read more.
Although ultraviolet-B (UV-B) radiation reaching the ground represents a tiny fraction of the total solar radiant energy, it significantly affects human health and global ecosystems. Therefore, erythemal UV-B monitoring has recently attracted significant attention. However, traditional UV-B retrieval methods rely on empirical modeling and handcrafted features, which require expertise and fail to generalize to new environments. Furthermore, most traditional products have low spatial resolution. To address this, we propose a deep learning framework for retrieving all-sky, kilometer-level erythemal UV-B from Moderate Resolution Imaging Spectroradiometer (MODIS) data. We designed a deep neural network with a residual structure to cascade high-level representations from raw MODIS inputs, eliminating handcrafted features. We used an external random forest classifier to perform the final prediction based on refined deep features extracted from the residual network. Compared with basic parameters, extracted deep features more accurately bridge the semantic gap between the raw MODIS inputs, improving retrieval accuracy. We established a dataset from 7 Surface Radiation Budget Network (SURFRAD) stations and 1 from 30 UV-B Monitoring and Research Program (UVMRP) stations with MODIS top-of-atmosphere reflectance, solar and view zenith angle, surface reflectance, altitude, and ozone observations. A partial SURFRAD dataset from 2007–2016 trained the model, achieving an R2 of 0.9887, a mean bias error (MBE) of 0.19 mW/m2, and a root mean square error (RMSE) of 7.42 mW/m2. The model evaluated on 2017 SURFRAD data shows an R2 of 0.9376, an MBE of 1.24 mW/m2, and an RMSE of 17.45 mW/m2, indicating the proposed model accurately generalizes the temporal dimension. We evaluated the model at 30 UVMRP stations with different land cover from those of SURFRAD and found most stations had a relative RMSE of 25% and an MBE within ±5%, demonstrating generalization in the spatial dimension. This study demonstrates the potential of using MODIS data to accurately estimate all-sky erythemal UV-B with the proposed algorithm. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

24 pages, 9560 KiB  
Article
An Algorithm for the Retrieval of High Temporal-Spatial Resolution Shortwave Albedo from Landsat-8 Surface Reflectance and MODIS BRDF
by Gang Yang, Jiyan Wang, Junnan Xiong, Zhiwei Yong, Chongchong Ye, Huaizhang Sun, Jun Liu, Yu Duan, Yufeng He and Wen He
Remote Sens. 2021, 13(20), 4150; https://doi.org/10.3390/rs13204150 - 16 Oct 2021
Cited by 3 | Viewed by 2312
Abstract
Variations in surface physicochemical properties and spatial structures can prominently transform surface albedo which conversely influence surface energy balances and global climate, making it crucial to continuously monitor and quantify surface dynamics at fine scales. Here, we made two improvements to propose an [...] Read more.
Variations in surface physicochemical properties and spatial structures can prominently transform surface albedo which conversely influence surface energy balances and global climate, making it crucial to continuously monitor and quantify surface dynamics at fine scales. Here, we made two improvements to propose an algorithm for the simultaneous retrieval of 30-m Landsat albedo, based on the coupling of Landsat-8 and MODIS BRDF. First, two kinds of prior knowledge were added to disaggregate BRDF, including the Anisotropic Flat Index (AFX) and the Albedo-to-Nadir reflectance ratio (AN ratio), from MODIS scales into Landsat scales. Second, a simplified data fusion method was used to simulate albedo for the same, subsequent, or antecedent dates. Finally, we validated the reliability and correlations of the algorithm at six sites of the Surface Radiation (SURFRAD) budget network and intercompared the results with another algorithm called the ‘concurrent approach’. The results showed that the proposed algorithm had favorable usability and robustness, with a root mean square error (RMSE) of 0.015 (8%) and a mean bias of −0.005; while the concurrent approach had a RMSE of 0.026 (14%) and a mean bias of −0.018. The results emphasized that the proposed algorithm has captured subtle changes in albedo over a 16-day period. Full article
Show Figures

Graphical abstract

30 pages, 6983 KiB  
Article
Estimation of Long-Term Surface Downward Longwave Radiation over the Global Land from 2000 to 2018
by Chunjie Feng, Xiaotong Zhang, Yu Wei, Weiyu Zhang, Ning Hou, Jiawen Xu, Shuyue Yang, Xianhong Xie and Bo Jiang
Remote Sens. 2021, 13(9), 1848; https://doi.org/10.3390/rs13091848 - 9 May 2021
Cited by 9 | Viewed by 3305
Abstract
It is of great importance for climate change studies to construct a worldwide, long-term surface downward longwave radiation (Ld, 4–100 μm) dataset. Although a number of global Ld datasets are available, their low accuracies and coarse spatial resolutions limit [...] Read more.
It is of great importance for climate change studies to construct a worldwide, long-term surface downward longwave radiation (Ld, 4–100 μm) dataset. Although a number of global Ld datasets are available, their low accuracies and coarse spatial resolutions limit their applications. This study generated a daily Ld dataset with a 5-km spatial resolution over the global land surface from 2000 to 2018 using atmospheric parameters, which include 2-m air temperature (Ta), relative humidity (RH) at 1000 hPa, total column water vapor (TCWV), surface downward shortwave radiation (Sd), and elevation, based on the gradient boosting regression tree (GBRT) method. The generated Ld dataset was evaluated using ground measurements collected from AmeriFlux, AsiaFlux, baseline surface radiation network (BSRN), surface radiation budget network (SURFRAD), and FLUXNET networks. The validation results showed that the root mean square error (RMSE), mean bias error (MBE), and correlation coefficient (R) values of the generated daily Ld dataset were 17.78 W m−2, 0.99 W m−2, and 0.96 (p < 0.01). Comparisons with other global land surface radiation products indicated that the generated Ld dataset performed better than the clouds and earth’s radiant energy system synoptic (CERES-SYN) edition 4.1 dataset and ERA5 reanalysis product at the selected sites. In addition, the analysis of the spatiotemporal characteristics for the generated Ld dataset showed an increasing trend of 1.8 W m−2 per decade (p < 0.01) from 2003 to 2018, which was closely related to Ta and water vapor pressure. In general, the generated Ld dataset has a higher spatial resolution and accuracy, which can contribute to perfect the existing radiation products. Full article
(This article belongs to the Special Issue Advances on Land–Ocean Heat Fluxes Using Remote Sensing)
Show Figures

Graphical abstract

23 pages, 6216 KiB  
Article
Estimation of Land Surface Incident and Net Shortwave Radiation from Visible Infrared Imaging Radiometer Suite (VIIRS) Using an Optimization Method
by Yi Zhang, Shunlin Liang, Tao He, Dongdong Wang and Yunyue Yu
Remote Sens. 2020, 12(24), 4153; https://doi.org/10.3390/rs12244153 - 18 Dec 2020
Cited by 3 | Viewed by 2295
Abstract
Incident surface shortwave radiation (ISR) is a key parameter in Earth’s surface radiation budget. Many reanalysis and satellite-based ISR products have been developed, but they often have insufficient accuracy and resolution for many applications. In this study, we extended our optimization method developed [...] Read more.
Incident surface shortwave radiation (ISR) is a key parameter in Earth’s surface radiation budget. Many reanalysis and satellite-based ISR products have been developed, but they often have insufficient accuracy and resolution for many applications. In this study, we extended our optimization method developed earlier for the MODIS data with several major improvements for estimating instantaneous and daily ISR and net shortwave radiation (NSR) from Visible Infrared Imaging Radiometer Suite observations (VIIRS), including (1) an integrated framework that combines look-up table and parameter optimization; (2) enabling the calculation of net shortwave radiation (NSR) as well as daily values; and (3) extensive global validation. We validated the estimated ISR values using measurements at seven Surface Radiation Budget Network (SURFRAD) sites and 33 Baseline Surface Radiation Network (BSRN) sites during 2013. The root mean square errors (RMSE) over SURFRAD sites for instantaneous ISR and NSR were 83.76 W/m2 and 66.80 W/m2, respectively. The corresponding daily RMSE values were 27.78 W/m2 and 23.51 W/m2. The RMSE at BSRN sites was 105.87 W/m2 for instantaneous ISR and 32.76 W/m2 for daily ISR. The accuracy is similar to the estimation from MODIS data at SURFRAD sites but the computational efficiency has improved by approximately 50%. We also produced global maps that demonstrate the potential of this algorithms to generate global ISR and NSR products from the VIIRS data. Full article
Show Figures

Graphical abstract

18 pages, 3783 KiB  
Article
Estimation of Land Surface Albedo from MODIS and VIIRS Data: A Multi-Sensor Strategy Based on the Direct Estimation Algorithm and Statistical-Based Temporal Filter
by Mengsi Wang, Xianlei Fan, Xijia Li, Qiang Liu and Ying Qu
Remote Sens. 2020, 12(24), 4131; https://doi.org/10.3390/rs12244131 - 17 Dec 2020
Cited by 6 | Viewed by 2578
Abstract
Land surface albedo is an important variable for Earth’s radiation and energy budget. Over the past decades, many surface albedo products have been derived from a variety of remote sensing data. However, the estimation accuracy, temporal resolution, and temporal continuity of these datasets [...] Read more.
Land surface albedo is an important variable for Earth’s radiation and energy budget. Over the past decades, many surface albedo products have been derived from a variety of remote sensing data. However, the estimation accuracy, temporal resolution, and temporal continuity of these datasets still need to be improved. We developed a multi-sensor strategy (MSS) based on the direct-estimation algorithm (DEA) and Statistical-Based Temporal Filter (STF) to improve the quality of land surface albedo datasets. The moderate-resolution imaging spectroradiometer (MODIS) data onboard Terra and Aqua and the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi-National Polar-orbiting Partnership (NPP) were used as multi-sensor data. The MCD43A3 product and in situ measurements from the Surface Radiation Budget Network (SURFRAD) and FLUXNET sites were employed for validation and comparison. The results showed that the proposed MSS method significantly improved the temporal continuity and estimation accuracy during the snow-covered period, which was more consistent with the measurements of SURFRAD (R = 0.9498, root mean square error (RMSE) = 0.0387, and bias = −0.0017) and FLUXNET (R = 0.9421, RMSE = 0.0330, and bias = 0.0002) sites. Moreover, this is a promising method to generate long-term, spatiotemporal continuous land surface albedo datasets with high temporal resolution. Full article
Show Figures

Figure 1

22 pages, 4205 KiB  
Article
Artificial Neural Networks to Retrieve Land and Sea Skin Temperature from IASI
by Sarah Safieddine, Ana Claudia Parracho, Maya George, Filipe Aires, Victor Pellet, Lieven Clarisse, Simon Whitburn, Olivier Lezeaux, Jean-Noël Thépaut, Hans Hersbach, Gabor Radnoti, Frank Goettsche, Maria Martin, Marie Doutriaux-Boucher, Dorothée Coppens, Thomas August, Daniel K. Zhou and Cathy Clerbaux
Remote Sens. 2020, 12(17), 2777; https://doi.org/10.3390/rs12172777 - 26 Aug 2020
Cited by 11 | Viewed by 3947
Abstract
Surface skin temperature (Tskin) derived from infrared remote sensors mounted on board satellites provides a continuous observation of Earth’s surface and allows the monitoring of global temperature change relevant to climate trends. In this study, we present a fast retrieval method [...] Read more.
Surface skin temperature (Tskin) derived from infrared remote sensors mounted on board satellites provides a continuous observation of Earth’s surface and allows the monitoring of global temperature change relevant to climate trends. In this study, we present a fast retrieval method for retrieving Tskin based on an artificial neural network (ANN) from a set of spectral channels selected from the Infrared Atmospheric Sounding Interferometer (IASI) using the information theory/entropy reduction technique. Our IASI Tskin product (i.e., TANN) is evaluated against Tskin from EUMETSAT Level 2 product, ECMWF Reanalysis (ERA5), SEVIRI observations, and ground in situ measurements. Good correlations between IASI TANN and the Tskin from other datasets are shown by their statistic data, such as a mean bias and standard deviation (i.e., [bias, STDE]) of [0.55, 1.86 °C], [0.19, 2.10 °C], [−1.5, 3.56 °C], from EUMETSAT IASI L-2 product, ERA5, and SEVIRI. When compared to ground station data, we found that all datasets did not achieve the needed accuracy at several months of the year, and better results were achieved at nighttime. Therefore, comparison with ground-based measurements should be done with care to achieve the ±2 °C accuracy needed, by choosing, for example, a validation site near the station location. On average, this accuracy is achieved, in particular at night, leading to the ability to construct a robust Tskin dataset suitable for Tskin long-term spatio-temporal variability and trend analysis. Full article
(This article belongs to the Special Issue Artificial Intelligence for Weather and Climate)
Show Figures

Figure 1

27 pages, 4771 KiB  
Article
Sensitivity Analysis and Validation of Daytime and Nighttime Land Surface Temperature Retrievals from Landsat 8 Using Different Algorithms and Emissivity Models
by Aliihsan Sekertekin and Stefania Bonafoni
Remote Sens. 2020, 12(17), 2776; https://doi.org/10.3390/rs12172776 - 26 Aug 2020
Cited by 40 | Viewed by 5062
Abstract
Land Surface Temperature (LST) is a substantial element indicating the relationship between the atmosphere and the land. This study aims to examine the efficiency of different LST algorithms, namely, Single Channel Algorithm (SCA), Mono Window Algorithm (MWA), and Radiative Transfer Equation (RTE), using [...] Read more.
Land Surface Temperature (LST) is a substantial element indicating the relationship between the atmosphere and the land. This study aims to examine the efficiency of different LST algorithms, namely, Single Channel Algorithm (SCA), Mono Window Algorithm (MWA), and Radiative Transfer Equation (RTE), using both daytime and nighttime Landsat 8 data and in-situ measurements. Although many researchers conducted validation studies of daytime LST retrieved from Landsat 8 data, none of them considered nighttime LST retrieval and validation because of the lack of Land Surface Emissivity (LSE) data in the nighttime. Thus, in this paper, we propose using a daytime LSE image, whose acquisition is close to nighttime Thermal Infrared (TIR) data (the difference ranges from one day to four days), as an input in the algorithm for the nighttime LST retrieval. In addition to evaluating the three LST methods, we also investigated the effect of six Normalized Difference Vegetation Index (NDVI)-based LSE models in this study. Furthermore, sensitivity analyses were carried out for both in-situ measurements and LST methods for satellite data. Simultaneous ground-based LST measurements were collected from Atmospheric Radiation Measurement (ARM) and Surface Radiation Budget Network (SURFRAD) stations, located at different rural environments of the United States. Concerning the in-situ sensitivity results, the effect on LST of the uncertainty of the downwelling and upwelling radiance was almost identical in daytime and nighttime. Instead, the uncertainty effect of the broadband emissivity in the nighttime was half of the daytime. Concerning the satellite observations, the sensitivity of the LST methods to LSE proved that the variation of the LST error was smaller than daytime. The accuracy of the LST retrieval methods for daytime Landsat 8 data varied between 2.17 K Root Mean Square Error (RMSE) and 5.47 K RMSE considering all LST methods and LSE models. MWA with two different LSE models presented the best results for the daytime. Concerning the nighttime accuracy of the LST retrieval, the RMSE value ranged from 0.94 K to 3.34 K. SCA showed the best results, but MWA and RTE also provided very high accuracy. Compared to daytime, all LST retrieval methods applied to nighttime data provided highly accurate results with the different LSE models and a lower bias with respect to in-situ measurements. Full article
(This article belongs to the Special Issue Remote Sensing Monitoring of Land Surface Temperature (LST))
Show Figures

Graphical abstract

24 pages, 4721 KiB  
Article
Evaluation of Six High-Spatial Resolution Clear-Sky Surface Upward Longwave Radiation Estimation Methods with MODIS
by Boxiong Qin, Biao Cao, Hua Li, Zunjian Bian, Tian Hu, Yongming Du, Yingpin Yang, Qing Xiao and Qinhuo Liu
Remote Sens. 2020, 12(11), 1834; https://doi.org/10.3390/rs12111834 - 5 Jun 2020
Cited by 16 | Viewed by 2416
Abstract
Surface upward longwave radiation (SULR) is a critical component in the calculation of the Earth’s surface radiation budget. Multiple clear-sky SULR estimation methods have been developed for high-spatial resolution satellite observations. Here, we comprehensively evaluated six SULR estimation methods, including the temperature-emissivity physical [...] Read more.
Surface upward longwave radiation (SULR) is a critical component in the calculation of the Earth’s surface radiation budget. Multiple clear-sky SULR estimation methods have been developed for high-spatial resolution satellite observations. Here, we comprehensively evaluated six SULR estimation methods, including the temperature-emissivity physical methods with the input of the MYD11/MYD21 (TE-MYD11/TE-MYD21), the hybrid methods with top-of-atmosphere (TOA) linear/nonlinear/artificial neural network regressions (TOA-LIN/TOA-NLIN/TOA-ANN), and the hybrid method with bottom-of-atmosphere (BOA) linear regression (BOA-LIN). The recently released MYD21 product and the BOA-LIN—a newly developed method that considers the spatial heterogeneity of the atmosphere—is used initially to estimate SULR. In addition, the four hybrid methods were compared with simulated datasets. All the six methods were evaluated using the Moderate Resolution Imaging Spectroradiometer (MODIS) products and the Surface Radiation Budget Network (SURFRAD) in situ measurements. Simulation analysis shows that the BOA-LIN is the best one among four hybrid methods with accurate atmospheric profiles as input. Comparison of all the six methods shows that the TE-MYD21 performed the best, with a root mean square error (RMSE) and mean bias error (MBE) of 14.0 and −0.2 W/m2, respectively. The RMSE of BOA-LIN, TOA-NLIN, TOA-LIN, TOA-ANN, and TE-MYD11 are equal to 15.2, 16.1, 17.2, 21.2, and 18.5 W/m2, respectively. TE-MYD21 has a much better accuracy than the TE-MYD11 over barren surfaces (NDVI < 0.3) and a similar accuracy over non-barren surfaces (NDVI ≥ 0.3). BOA-LIN is more stable over varying water vapor conditions, compared to other hybrid methods. We conclude that this study provides a valuable reference for choosing the suitable estimation method in the SULR product generation. Full article
Show Figures

Graphical abstract

21 pages, 5191 KiB  
Article
Evaluation of Land Surface Temperature Retrieval from Landsat 8/TIRS Images before and after Stray Light Correction Using the SURFRAD Dataset
by Jinxin Guo, Huazhong Ren, Yitong Zheng, Shangzong Lu and Jiaji Dong
Remote Sens. 2020, 12(6), 1023; https://doi.org/10.3390/rs12061023 - 22 Mar 2020
Cited by 37 | Viewed by 5187
Abstract
Landsat 8/thermal infrared sensor (TIRS) is suffering from the problem of stray light that makes an inaccurate radiance for two thermal infrared (TIR) bands and the latest correction was conducted in 2017. This paper focused on evaluation of land surface temperature (LST) retrieval [...] Read more.
Landsat 8/thermal infrared sensor (TIRS) is suffering from the problem of stray light that makes an inaccurate radiance for two thermal infrared (TIR) bands and the latest correction was conducted in 2017. This paper focused on evaluation of land surface temperature (LST) retrieval from Landsat 8 before and after the correction using ground-measured LST from five surface radiation budget network (SURFRAD) sites. Results indicated that the correction increased the band radiance at the top of the atmosphere for low temperature but decreased such radiance for high temperature. The root-mean-square error (RMSE) of LST retrieval decreased by 0.27 K for Band 10 and 0.78 K for Band 11 using the single-channel algorithm. For the site with high temperature, the LST retrieval RMSE of the single-channel algorithm for Band 11 even reduced by 1.4 K. However, the accuracy of two of three split-window algorithms adopted in this paper decreased. After correction, the single-channel algorithm for Band 10 and the linear split-window algorithm had the least RMSE (approximately 2.5 K) among five adopted algorithms. Moreover, besides SURFRAD sites, it is necessary to validate using more robust and homogeneous ground-measured datasets to help solely clarify the effect of the correction on LST retrieval. Full article
(This article belongs to the Special Issue Remote Sensing Monitoring of Land Surface Temperature (LST))
Show Figures

Figure 1

13 pages, 2472 KiB  
Article
Low-Cost Radiometer for Landsat Land Surface Temperature Validation
by Jonathan Miller, Aaron Gerace, Rehman Eon, Matthew Montanaro, Robert Kremens and Jarrett Wehle
Remote Sens. 2020, 12(3), 416; https://doi.org/10.3390/rs12030416 - 28 Jan 2020
Cited by 4 | Viewed by 2738
Abstract
Land Surface Temperature (ST) represents the radiative temperature of the Earth’s surface and is used as input to hydrological, agricultural, and meteorological science applications. Due to the synoptic nature of satellite imaging systems, ST products derived from space-borne platforms are invaluable for estimating [...] Read more.
Land Surface Temperature (ST) represents the radiative temperature of the Earth’s surface and is used as input to hydrological, agricultural, and meteorological science applications. Due to the synoptic nature of satellite imaging systems, ST products derived from space-borne platforms are invaluable for estimating ST at the local, regional, and global scale. In the past two decades, an emphasis has been placed on the need to develop algorithms necessary to deliver accurate surface temperature products to support the needs of science users. However, corresponding efforts to validate these products are hindered by the availability of quality ground-based reference measurements. The NOAA Surface Radiation Budget (SURFRAD) network is commonly used to support ST validation efforts, but their instrumentation is broadband (4–50 μ m) and several of their sites lack spatial uniformity. To address the apparent deficiencies within existing validation networks, this work discusses a prototype radiometer that was developed to provide surface temperature estimates to support validation efforts for spaceborne thermal instruments. Specifically, a prototype radiometer was designed, built, and calibrated to acquire ground reference data to be used to validate ST product(s) derived from Landsat 8 image data. Lab-based efforts indicate that these prototype instruments are accurate to within 1.28 K and initial field measurements demonstrate agreement to Landsat-derived ST products to within 1.37 K. Full article
Show Figures

Graphical abstract

32 pages, 2140 KiB  
Article
Land Surface Temperature Retrieval from Landsat 5, 7, and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation
by Aliihsan Sekertekin and Stefania Bonafoni
Remote Sens. 2020, 12(2), 294; https://doi.org/10.3390/rs12020294 - 16 Jan 2020
Cited by 270 | Viewed by 19396
Abstract
Land Surface Temperature (LST) is an important parameter for many scientific disciplines since it affects the interaction between the land and the atmosphere. Many LST retrieval algorithms based on remotely sensed images have been introduced so far, where the Land Surface Emissivity (LSE) [...] Read more.
Land Surface Temperature (LST) is an important parameter for many scientific disciplines since it affects the interaction between the land and the atmosphere. Many LST retrieval algorithms based on remotely sensed images have been introduced so far, where the Land Surface Emissivity (LSE) is one of the main factors affecting the accuracy of the LST estimation. The aim of this study is to evaluate the performance of LST retrieval methods using different LSE models and data of old and current Landsat missions. Mono Window Algorithm (MWA), Radiative Transfer Equation (RTE) method, Single Channel Algorithm (SCA) and Split Window Algorithm (SWA) were assessed as LST retrieval methods processing data of Landsat missions (Landsat 5, 7 and 8) over rural pixels. Considering the LSE models introduced in the literature, different Normalized Difference Vegetation Index (NDVI)-based LSE models were investigated in this study. Specifically, three LSE models were considered for the LST estimation from Landsat 5 Thematic Mapper (TM) and seven Enhanced Thematic Mapper Plus (ETM+), and six for Landsat 8. For the accurate evaluation of the estimated LST, in-situ LST data were obtained from the Surface Radiation Budget Network (SURFRAD) stations. In total, forty-five daytime Landsat images; fifteen images for each Landsat mission, acquired in the Spring-Summer-Autumn period in the mid-latitude region in the Northern Hemisphere were acquired over five SURFRAD rural sites. After determining the best LSE model for the study case, firstly, the LST retrieval accuracy was evaluated considering the sensor type: when using Landsat 5 TM, 7 ETM+, and 8 Operational Land Imager (OLI), and Thermal Infrared Sensor (TIRS) data separately, RTE, MWA, and MWA presented the best results, respectively. Then, the performance was evaluated independently of the sensor types. In this case, all LST methods provided satisfying results, with MWA having a slightly better accuracy with a Root Mean Square Error (RMSE) equals to 2.39 K and a lower bias error. In addition, the spatio-temporal and seasonal analyses indicated that RTE and SCA presented similar results regardless of the season, while MWA differed from RTE and SCA for all seasons, especially in summer. To efficiently perform this work, an ArcGIS toolbox, including all the methods and models analyzed here, was implemented and provided as a user facility for the LST retrieval from Landsat data. Full article
Show Figures

Figure 1

23 pages, 13641 KiB  
Article
Retrieval of Global Orbit Drift Corrected Land Surface Temperature from Long-term AVHRR Data
by Xiangyang Liu, Bo-Hui Tang, Guangjian Yan, Zhao-Liang Li and Shunlin Liang
Remote Sens. 2019, 11(23), 2843; https://doi.org/10.3390/rs11232843 - 29 Nov 2019
Cited by 32 | Viewed by 3583
Abstract
Advanced Very High Resolution Radiometer (AVHRR) sensors provide a valuable data source for generating long-term global land surface temperature (LST). However, changes in the observation time that are caused by satellite orbit drift restrict their wide application. Here, a generalized split-window (GSW) algorithm [...] Read more.
Advanced Very High Resolution Radiometer (AVHRR) sensors provide a valuable data source for generating long-term global land surface temperature (LST). However, changes in the observation time that are caused by satellite orbit drift restrict their wide application. Here, a generalized split-window (GSW) algorithm was implemented to retrieve the LST from the time series AVHRR data. Afterwards, a novel orbit drift correction (ODC) algorithm, which was based on the diurnal temperature cycle (DTC) model and Bayesian optimization algorithm, was also proposed for normalizing the estimated LST to the same local time. This ODC algorithm is pixel-based and it only needs one observation every day. The resulting LSTs from the six-year National Oceanic and Atmospheric Administration (NOAA)-14 satellite data were validated while using Surface Radiation Budget Network (SURFRAD) in-situ measurements. The average accuracies for LST retrieval varied from −0.4 K to 2.0 K over six stations and they also depended on the viewing zenith angle and season. The simulated data illustrate that the proposed ODC method can improve the LST estimate at a similar magnitude to the accuracy of the LST retrieval, i.e., the root-mean-square errors (RMSEs) of the corrected LSTs were 1.3 K, 2.2 K, and 3.1 K for the LST with a retrieval RMSE of 1 K, 2 K, and 3 K, respectively. This method was less sensitive to the fractional vegetation cover (FVC), including the FVC retrieval error, size, and degree of change within a neighboring area, which suggested that it could be easily updated by applying other LST expression models. In addition, ground validation also showed an encouraging correction effect. The RMSE variations of LST estimation that were introduced by ODC were within ±0.5 K, and the correlation coefficients between the corrected LST errors and original LST errors could approach 0.91. Full article
(This article belongs to the Special Issue Remote Sensing of Land Surface Radiation Budget)
Show Figures

Graphical abstract

Back to TopTop