Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,291)

Search Parameters:
Keywords = SVM based

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1647 KiB  
Article
Discriminating Between Biotic and Abiotic Stress in Poplar Forests Using Hyperspectral and LiDAR Data
by Quan Zhou, Jinjia Kuang, Linfeng Yu, Xudong Zhang, Lili Ren and Youqing Luo
Remote Sens. 2024, 16(19), 3751; https://doi.org/10.3390/rs16193751 - 9 Oct 2024
Abstract
Sustainable forest management faces challenges from various biotic and abiotic stresses. The Asian longhorned beetle (ALB) and drought stress both induce water shortages in poplar trees, but require different management strategies. In northwestern China, ALB and drought stress caused massive mortality in poplar [...] Read more.
Sustainable forest management faces challenges from various biotic and abiotic stresses. The Asian longhorned beetle (ALB) and drought stress both induce water shortages in poplar trees, but require different management strategies. In northwestern China, ALB and drought stress caused massive mortality in poplar shelterbelts, which seriously affected the ecological functions of poplars. Developing a large-scale detection method for discriminating them is crucial for applying targeted management. This study integrated UAV-hyperspectral and LiDAR data to distinguish between ALB and drought stress in poplars of China’s Three-North Shelterbelt. These data were analyzed using a Partial Least Squares-Support Vector Machine (PLS-SVM). The results showed that the LiDAR metric (elev_sqrt_mean_sq) was key in detecting drought, while the hyperspectral band (R970) was key in ALB detection, underscoring the necessity of integrating both sensors. Detection of ALB in poplars improved when the poplars were well watered. The classification accuracy was 94.85% for distinguishing well-watered from water-deficient trees, and 80.81% for detecting ALB damage. Overall classification accuracy was 78.79% when classifying four stress types: healthy, only ALB affected, only drought affected, and combined stress of ALB and drought. The results demonstrate the effectiveness of UAV-hyperspectral and LiDAR data in distinguishing ALB and drought stress in poplar forests, which contribute to apply targeted treatments based on the specific stress in poplars in northwest China. Full article
14 pages, 1695 KiB  
Article
Combining Dielectric and Hyperspectral Data for Apple Core Browning Detection
by Hanchi Liu, Jinrong He, Yanxin Shi and Yingzhou Bi
Appl. Sci. 2024, 14(19), 9136; https://doi.org/10.3390/app14199136 - 9 Oct 2024
Abstract
Apple core browning not only affects the nutritional quality of apples, but also poses a health risk to consumers. Therefore, there is an urgent need to develop a fast and reliable non-destructive detection method for apple core browning. To deal with the challenges [...] Read more.
Apple core browning not only affects the nutritional quality of apples, but also poses a health risk to consumers. Therefore, there is an urgent need to develop a fast and reliable non-destructive detection method for apple core browning. To deal with the challenges of the long incubation period, strong infectivity, and difficulty in the prevention and control of apple core browning, a novel non-destructive detection method for apple core browning has been developed through combining hyperspectral imaging and dielectric techniques. To reduce the computational complexity of high-dimensional multi-view data, canonical correlation analysis is employed for feature dimensionality reduction. Then, the two low-dimensional vectors extracted from two different sensors are concatenated into one united feature vector; therefore, the information contained in the hyperspectral and dielectric data is fused to improve the detection accuracy of the non-destructive method. At last, five traditional classifiers, such as k-Nearest Neighbors, a support vector machine with radial basis function kernel and polynomial kernel, Decision Tree, and neural network, are trained on the fused feature vectors to discriminate apple core browning. The experimental results on our own constructed dataset have shown that the sensitivity, specificity, and precision of SVM with RBF kernel based on concatenated 70-dimensional feature vectors extracted via canonical correlation analysis reached 99.98%, 99.70%, and 99.70%, respectively, which achieved better results than other models. This study can provide theoretical assurance and technical support for further development of higher accuracy and lower-cost non-destructive detection devices for apple core browning. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

17 pages, 3242 KiB  
Article
Analysis of Handwriting for Recognition of Parkinson’s Disease: Current State and New Study
by Kamila Białek, Anna Potulska-Chromik, Jacek Jakubowski, Monika Nojszewska and Anna Kostera-Pruszczyk
Electronics 2024, 13(19), 3962; https://doi.org/10.3390/electronics13193962 - 9 Oct 2024
Viewed by 159
Abstract
One of the symptoms of Parkinson’s disease (PD) is abnormal handwriting caused by motor dysfunction. The development of tablet technology opens up opportunities for an effective analysis of the writing process of people suffering from Parkinson’s disease, aimed at supporting medical diagnosis using [...] Read more.
One of the symptoms of Parkinson’s disease (PD) is abnormal handwriting caused by motor dysfunction. The development of tablet technology opens up opportunities for an effective analysis of the writing process of people suffering from Parkinson’s disease, aimed at supporting medical diagnosis using machine learning methods. Several approaches have been used and presented in the literature that discuss the analysis and understanding of images created during the writing of single words or sentences. In this study, we propose an analysis based on a sequence of sentences, which allows us to assess the evolution of writing over time. The study material consisted of handwriting image samples acquired in a group of 24 patients with PD and 24 healthy controls. The parameterization of the handwriting image samples was carried out using domain knowledge. Using the exhaustive search method, we selected the relevant features for the SVM algorithm performing binary classification. The results obtained were assessed using quality measures, including overall accuracy, which was 91.67%. The results were compared with competitive works on the same subject and seem to be better (a higher level of accuracy with a much smaller number of features than those presented by others). Full article
(This article belongs to the Collection Image and Video Analysis and Understanding)
Show Figures

Figure 1

27 pages, 993 KiB  
Article
Evaluating the Performance of Topic Modeling Techniques with Human Validation to Support Qualitative Analysis
by Julian D. Romero, Miguel A. Feijoo-Garcia, Gaurav Nanda, Brittany Newell and Alejandra J. Magana
Big Data Cogn. Comput. 2024, 8(10), 132; https://doi.org/10.3390/bdcc8100132 - 8 Oct 2024
Viewed by 199
Abstract
Examining the effectiveness of machine learning techniques in analyzing engineering students’ decision-making processes through topic modeling during simulation-based design tasks is crucial for advancing educational methods and tools. Thus, this study presents a comparative analysis of different supervised and unsupervised machine learning techniques [...] Read more.
Examining the effectiveness of machine learning techniques in analyzing engineering students’ decision-making processes through topic modeling during simulation-based design tasks is crucial for advancing educational methods and tools. Thus, this study presents a comparative analysis of different supervised and unsupervised machine learning techniques for topic modeling, along with human validation. Hence, this manuscript contributes by evaluating the effectiveness of these techniques in identifying nuanced topics within the argumentation framework and improving computational methods for assessing students’ abilities and performance levels based on their informed decisions. This study examined the decision-making processes of engineering students as they participated in a simulation-based design challenge. During this task, students were prompted to use an argumentation framework to articulate their claims, evidence, and reasoning, by recording their informed design decisions in a design journal. This study combined qualitative and computational methods to analyze the students’ design journals and ensured the accuracy of the findings through the researchers’ review and interpretations of the results. Different machine learning models, including random forest, SVM, and K-nearest neighbors (KNNs), were tested for multilabel regression, using preprocessing techniques such as TF-IDF, GloVe, and BERT embeddings. Additionally, hyperparameter optimization and model interpretability were explored, along with models like RNNs with LSTM, XGBoost, and LightGBM. The results demonstrate that both supervised and unsupervised machine learning models effectively identified nuanced topics within the argumentation framework used during the design challenge of designing a zero-energy home for a Midwestern city using a CAD/CAE simulation platform. Notably, XGBoost exhibited superior predictive accuracy in estimating topic proportions, highlighting its potential for broader application in engineering education. Full article
Show Figures

Figure 1

38 pages, 2889 KiB  
Article
Utility of Certain AI Models in Climate-Induced Disasters
by Ritusnata Mishra, Sanjeev Kumar, Himangshu Sarkar and Chandra Shekhar Prasad Ojha
World 2024, 5(4), 865-902; https://doi.org/10.3390/world5040045 - 8 Oct 2024
Viewed by 209
Abstract
To address the current challenge of climate change at the local and global levels, this article discusses a few important water resources engineering topics, such as estimating the energy dissipation of flowing waters over hilly areas through the provision of regulated stepped channels, [...] Read more.
To address the current challenge of climate change at the local and global levels, this article discusses a few important water resources engineering topics, such as estimating the energy dissipation of flowing waters over hilly areas through the provision of regulated stepped channels, predicting the removal of silt deposition in the irrigation canal, and predicting groundwater level. Artificial intelligence (AI) in water resource engineering is now one of the most active study topics. As a result, multiple AI tools such as Random Forest (RF), Random Tree (RT), M5P (M5 model trees), M5Rules, Feed-Forward Neural Networks (FFNNs), Gradient Boosting Machine (GBM), Adaptive Boosting (AdaBoost), and Support Vector Machines kernel-based model (SVM-Pearson VII Universal Kernel, Radial Basis Function) are tested in the present study using various combinations of datasets. However, in various circumstances, including predicting energy dissipation of stepped channels and silt deposition in rivers, AI techniques outperformed the traditional approach in the literature. Out of all the models, the GBM model performed better than other AI tools in both the field of energy dissipation of stepped channels with a coefficient of determination (R2) of 0.998, root mean square error (RMSE) of 0.00182, and mean absolute error (MAE) of 0.0016 and sediment trapping efficiency of vortex tube ejector with an R2 of 0.997, RMSE of 0.769, and MAE of 0.531 during testing. On the other hand, the AI technique could not adequately understand the diversity in groundwater level datasets using field data from various stations. According to the current study, the AI tool works well in some fields of water resource engineering, but it has difficulty in other domains in capturing the diversity of datasets. Full article
23 pages, 4153 KiB  
Article
Analyzing Supervised Machine Learning Models for Classifying Astronomical Objects Using Gaia DR3 Spectral Features
by Orestes Javier Pérez Cruz, Cynthia Alejandra Martínez Pinto, Silvana Guadalupe Navarro Jiménez, Luis José Corral Escobedo and Minia Manteiga Outeiro
Appl. Sci. 2024, 14(19), 9058; https://doi.org/10.3390/app14199058 - 8 Oct 2024
Viewed by 428
Abstract
In this paper, we present an analysis of the effectiveness of various machine learning algorithms in classifying astronomical objects using data from the third release (DR3) of the Gaia space mission. The dataset used includes spectral information from the satellite’s red and blue [...] Read more.
In this paper, we present an analysis of the effectiveness of various machine learning algorithms in classifying astronomical objects using data from the third release (DR3) of the Gaia space mission. The dataset used includes spectral information from the satellite’s red and blue spectrophotometers. The primary goal is to achieve reliable classification with high confidence for symbiotic stars, planetary nebulae, and red giants. Symbiotic stars are binary systems formed by a high-temperature star (a white dwarf in most cases) and an evolved star (Mira type or red giant star); their spectra varies between the typical for these objects (depending on the orbital phase of the object) and present emission lines similar to those observed in PN spectra, which is the reason for this first selection. Several classification algorithms are evaluated, including Random Forest (RF), Support Vector Machine (SVM), Artificial Neural Networks (ANN), Gradient Boosting (GB), and Naive Bayes classifier. The evaluation is based on different metrics such as Precision, Recall, F1-Score, and the Kappa index. The study confirms the effectiveness of classifying the mentioned stars using only their spectral information. The models trained with Artificial Neural Networks and Random Forest demonstrated superior performance, surpassing an accuracy rate of 94.67%. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

16 pages, 8045 KiB  
Article
Deep Learning-Based Dust Detection on Solar Panels: A Low-Cost Sustainable Solution for Increased Solar Power Generation
by Aadel Mohammed Alatwi, Hani Albalawi, Abdul Wadood, Hafeez Anwar and Hazem M. El-Hageen
Sustainability 2024, 16(19), 8664; https://doi.org/10.3390/su16198664 - 7 Oct 2024
Viewed by 713
Abstract
The world is shifting towards renewable energy sources due to the harmful effects of fossils fuel-based power generation in the form of global warming and climate change. When it comes to renewable energy sources, solar-based power generation remains on top of the list [...] Read more.
The world is shifting towards renewable energy sources due to the harmful effects of fossils fuel-based power generation in the form of global warming and climate change. When it comes to renewable energy sources, solar-based power generation remains on top of the list as a clean and carbon cutting alternative to the fossil fuels. Naturally, the sites chosen for installing solar parks to generate electricity are the ones that get maximum solar radiance throughout the year. Consequently, such sites offer challenges for the solar panels such as increased temperature, humidity and high dust levels that negatively affect their power generation capability. In this work, we are more concerned with the detection of dust from the images of the solar panels so that the cleaning process can be done in time to avoid power loses due to dust accumulation on the surface of solar panels. To this end, we utilize state-of-art deep learning-based image classification models and evaluate them on a publicly available dataset to identify the one that gives maximum classification accuracy for dusty solar panel detection. We utilize pre-trained models of 20 deep learning models to encode the images that are then used to train and validate four variants of a support vector machine. Among the 20 models, we get the maximum classification of 86.79% when the images are encoded with the pre-trained model of DenseNet169 and then use these encodings with a linear SVM for image classification. Full article
(This article belongs to the Special Issue Secure, Sustainable Smart Cities and the IoT)
Show Figures

Figure 1

16 pages, 4048 KiB  
Article
Integrative Analysis of ATAC-Seq and RNA-Seq through Machine Learning Identifies 10 Signature Genes for Breast Cancer Intrinsic Subtypes
by Jeong-Woon Park and Je-Keun Rhee
Biology 2024, 13(10), 799; https://doi.org/10.3390/biology13100799 - 7 Oct 2024
Viewed by 461
Abstract
Breast cancer is a heterogeneous disease composed of various biologically distinct subtypes, each characterized by unique molecular features. Its formation and progression involve a complex, multistep process that includes the accumulation of numerous genetic and epigenetic alterations. Although integrating RNA-seq transcriptome data with [...] Read more.
Breast cancer is a heterogeneous disease composed of various biologically distinct subtypes, each characterized by unique molecular features. Its formation and progression involve a complex, multistep process that includes the accumulation of numerous genetic and epigenetic alterations. Although integrating RNA-seq transcriptome data with ATAC-seq epigenetic information provides a more comprehensive understanding of gene regulation and its impact across different conditions, no classification model has yet been developed for breast cancer intrinsic subtypes based on such integrative analyses. In this study, we employed machine learning algorithms to predict intrinsic subtypes through the integrative analysis of ATAC-seq and RNA-seq data. We identified 10 signature genes (CDH3, ERBB2, TYMS, GREB1, OSR1, MYBL2, FAM83D, ESR1, FOXC1, and NAT1) using recursive feature elimination with cross-validation (RFECV) and a support vector machine (SVM) based on SHAP (SHapley Additive exPlanations) feature importance. Furthermore, we found that these genes were primarily associated with immune responses, hormone signaling, cancer progression, and cellular proliferation. Full article
(This article belongs to the Special Issue Advances in Biological Breast Cancer Research)
Show Figures

Figure 1

30 pages, 585 KiB  
Article
Decoding Urban Intelligence: Clustering and Feature Importance in Smart Cities
by Enrico Barbierato and Alice Gatti
Future Internet 2024, 16(10), 362; https://doi.org/10.3390/fi16100362 - 5 Oct 2024
Viewed by 445
Abstract
The rapid urbanization trend underscores the need for effective management of city resources and services, making the concept of smart cities increasingly important. This study leverages the IMD Smart City Index (SCI) dataset to analyze and rank smart cities worldwide. Our research has [...] Read more.
The rapid urbanization trend underscores the need for effective management of city resources and services, making the concept of smart cities increasingly important. This study leverages the IMD Smart City Index (SCI) dataset to analyze and rank smart cities worldwide. Our research has a dual objective: first, we aim to apply a set of unsupervised learning models to cluster cities based on their smartness indices. Second, we aim to employ supervised learning models such as random forest, support vector machines (SVMs), and others to determine the importance of various features that contribute to a city’s smartness. Our findings reveal that while smart living was the most critical factor, with an importance of 0.259014. Smart mobility and smart environment also played significant roles, with the importance of 0.170147 and 0.163159, respectively, in determining a city’s smartness. While the clustering provides insights into the similarities and groupings among cities, the feature importance analysis elucidates the critical factors that drive these classifications. The integration of these two approaches aims to demonstrate that understanding the similarities between smart cities is of limited utility without a clear comprehension of the importance of the underlying features. This holistic approach provides a comprehensive understanding of what makes a city ’smart’ and offers a robust framework for policymakers to enhance urban living standards. Full article
(This article belongs to the Special Issue Machine Learning for Blockchain and IoT Systems in Smart City)
Show Figures

Figure 1

15 pages, 473 KiB  
Article
Applying Multi-CLASS Support Vector Machines: One-vs.-One vs. One-vs.-All on the UWF-ZeekDataFall22 Dataset
by Rocio Krebs, Sikha S. Bagui, Dustin Mink and Subhash C. Bagui
Electronics 2024, 13(19), 3916; https://doi.org/10.3390/electronics13193916 - 3 Oct 2024
Viewed by 338
Abstract
This study investigates the technical challenges of applying Support Vector Machines (SVM) for multi-class classification in network intrusion detection using the UWF-ZeekDataFall22 dataset, which is labeled based on the MITRE ATT&CK framework. A key challenge lies in handling imbalanced classes and complex attack [...] Read more.
This study investigates the technical challenges of applying Support Vector Machines (SVM) for multi-class classification in network intrusion detection using the UWF-ZeekDataFall22 dataset, which is labeled based on the MITRE ATT&CK framework. A key challenge lies in handling imbalanced classes and complex attack patterns, which are inherent in intrusion detection data. This work highlights the difficulties in implementing SVMs for multi-class classification, particularly with One-vs.-One (OvO) and One-vs.-All (OvA) methods, including scalability issues due to the large volume of network traffic logs and the tendency of SVMs to be sensitive to noisy data and class imbalances. SMOTE was used to address class imbalances, while preprocessing techniques were applied to improve feature selection and reduce noise in the data. The unique structure of network traffic data, with overlapping patterns between attack vectors, posed significant challenges in achieving accurate classification. Our model reached an accuracy of over 90% with OvO and over 80% with OvA, demonstrating that despite these challenges, multi-class SVMs can be effectively applied to complex intrusion detection tasks when combined with appropriate balancing and preprocessing techniques. Full article
(This article belongs to the Special Issue Machine Learning and Cybersecurity—Trends and Future Challenges)
Show Figures

Figure 1

20 pages, 1681 KiB  
Article
First-Trimester Preeclampsia-Induced Disturbance in Maternal Blood Serum Proteome: A Pilot Study
by Natalia Starodubtseva, Alisa Tokareva, Alexey Kononikhin, Alexander Brzhozovskiy, Anna Bugrova, Evgenii Kukaev, Kamilla Muminova, Alina Nakhabina, Vladimir E. Frankevich, Evgeny Nikolaev and Gennady Sukhikh
Int. J. Mol. Sci. 2024, 25(19), 10653; https://doi.org/10.3390/ijms251910653 - 3 Oct 2024
Viewed by 374
Abstract
Preeclampsia (PE) is a complex and multifaceted obstetric syndrome characterized by several distinct molecular subtypes. It complicates up to 5% of pregnancies and significantly contributes to maternal and newborn morbidity, thereby diminishing the long-term quality of life for affected women. Due to the [...] Read more.
Preeclampsia (PE) is a complex and multifaceted obstetric syndrome characterized by several distinct molecular subtypes. It complicates up to 5% of pregnancies and significantly contributes to maternal and newborn morbidity, thereby diminishing the long-term quality of life for affected women. Due to the widespread dissatisfaction with the effectiveness of existing approaches for assessing PE risk, there is a pressing need for ongoing research to identify newer, more accurate predictors. This study aimed to investigate early changes in the maternal serum proteome and associated signaling pathways. The levels of 125 maternal serum proteins at 11–13 weeks of gestation were quantified using liquid chromatography–multiple reaction monitoring mass spectrometry (LC-MRM MS) with the BAK-125 kit. Ten serum proteins emerged as potential early markers for PE: Apolipoprotein M (APOM), Complement C1q subcomponent subunit B (C1QB), Lysozyme (LYZ), Prothrombin (F2), Albumin (ALB), Zinc-alpha-2-glycoprotein (AZGP1), Tenascin-X (TNXB), Alpha-1-antitrypsin (SERPINA1), Attractin (ATRN), and Apolipoprotein A-IV (APOA4). Notably, nine of these proteins have previously been associated with PE in prior research, underscoring the consistency and reliability of our findings. These proteins play key roles in critical molecular processes, including complement and coagulation cascades, platelet activation, and insulin-like growth factor pathways. To improve the early prediction of PE, a highly effective Support Vector Machine (SVM) model was developed, analyzing 19 maternal serum proteins from the first trimester. This model achieved an area under the curve (AUC) of 0.91, with 87% sensitivity and 95% specificity, and a hazard ratio (HR) of 13.5 (4.6–40.8) with p < 0.001. These findings demonstrate that serum protein-based SVM models possess significantly higher predictive power compared to the routine first-trimester screening test, highlighting their superior utility in the early detection and risk stratification of PE. Full article
(This article belongs to the Special Issue Recent Molecular Research on Preeclampsia)
Show Figures

Figure 1

20 pages, 8952 KiB  
Article
Research on High-Frequency Torsional Oscillation Identification Using TSWOA-SVM Based on Downhole Parameters
by Tao Zhang, Wenjie Zhang, Zhuoran Meng, Jun Li and Miaorui Wang
Processes 2024, 12(10), 2153; https://doi.org/10.3390/pr12102153 - 2 Oct 2024
Viewed by 493
Abstract
The occurrence of downhole high-frequency torsional oscillations (HFTO) can lead to the significant damage of drilling tools and can adversely affect drilling efficiency. Therefore, establishing a reliable HFTO identification model is crucial. This paper proposes an improved whale algorithm optimization support vector machine [...] Read more.
The occurrence of downhole high-frequency torsional oscillations (HFTO) can lead to the significant damage of drilling tools and can adversely affect drilling efficiency. Therefore, establishing a reliable HFTO identification model is crucial. This paper proposes an improved whale algorithm optimization support vector machine (TSWOA-SVM) for accurate HFTO identification. Initially, the population is initialized using Fuch chaotic mapping and a reverse learning strategy to enhance population quality and accelerate the whale optimization algorithm (WOA) convergence. Subsequently, the hyperbolic tangent function is introduced to dynamically adjust the inertia weight coefficient, balancing the global search and local exploration capabilities of WOA. A simulated annealing strategy is incorporated to guide the population in accepting suboptimal solutions with a certain probability, based on the Metropolis criterion and temperature, ensuring the algorithm can escape local optima. Finally, the optimized whale optimization algorithm is applied to enhance the support vector machine, leading to the establishment of the HFTO identification model. Experimental results demonstrate that the TSWOA-SVM model significantly outperforms the genetic algorithm-SVM (GA-SVM), gray wolf algorithm-SVM (GWO-SVM), and whale optimization algorithm-SVM (WOA-SVM) models in HFTO identification, achieving a classification accuracy exceeding 97%. And the 5-fold crossover experiment showed that the TSWOA-SVM model had the highest average accuracy and the smallest accuracy variance. Overall, the non-parametric TSWOA-SVM algorithm effectively mitigates uncertainties introduced by modeling errors and enhances the accuracy and speed of HFTO identification. By integrating advanced optimization techniques, this method minimizes the influence of initial parameter values and balances global exploration with local exploitation. The findings of this study can serve as a practical guide for managing near-bit states and optimizing drilling parameters. Full article
(This article belongs to the Special Issue Condition Monitoring and the Safety of Industrial Processes)
Show Figures

Figure 1

24 pages, 3036 KiB  
Article
Comparing Machine Learning Models for Sentiment Analysis and Rating Prediction of Vegan and Vegetarian Restaurant Reviews
by Sanja Hanić, Marina Bagić Babac, Gordan Gledec and Marko Horvat
Computers 2024, 13(10), 248; https://doi.org/10.3390/computers13100248 - 1 Oct 2024
Viewed by 358
Abstract
The paper investigates the relationship between written reviews and numerical ratings of vegan and vegetarian restaurants, aiming to develop a predictive model that accurately determines numerical ratings based on review content. The dataset was obtained by scraping reviews from November 2022 until January [...] Read more.
The paper investigates the relationship between written reviews and numerical ratings of vegan and vegetarian restaurants, aiming to develop a predictive model that accurately determines numerical ratings based on review content. The dataset was obtained by scraping reviews from November 2022 until January 2023 from the TripAdvisor website. The study applies multidimensional scaling and clustering using the KNN algorithm to visually represent the textual data. Sentiment analysis and rating predictions are conducted using neural networks, support vector machines (SVM), random forest, Naïve Bayes, and BERT models. Text vectorization is accomplished through term frequency-inverse document frequency (TF-IDF) and global vectors (GloVe). The analysis identified three main topics related to vegan and vegetarian restaurant experiences: (1) restaurant ambiance, (2) personal feelings towards the experience, and (3) the food itself. The study processed a total of 33,439 reviews, identifying key aspects of the dining experience and testing various machine learning methods for sentiment and rating predictions. Among the models tested, BERT outperformed the others, and TF-IDF proved slightly more effective than GloVe for word representation. Full article
Show Figures

Figure 1

30 pages, 8057 KiB  
Article
Multi-Temporal Pixel-Based Compositing for Cloud Removal Based on Cloud Masks Developed Using Classification Techniques
by Tesfaye Adugna, Wenbo Xu, Jinlong Fan, Xin Luo and Haitao Jia
Remote Sens. 2024, 16(19), 3665; https://doi.org/10.3390/rs16193665 - 1 Oct 2024
Viewed by 677
Abstract
Cloud is a serious problem that affects the quality of remote-sensing (RS) images. Existing cloud removal techniques suffer from notable limitations, such as being specific to certain data types, cloud conditions, and spatial extents, as well as requiring auxiliary data, which hampers their [...] Read more.
Cloud is a serious problem that affects the quality of remote-sensing (RS) images. Existing cloud removal techniques suffer from notable limitations, such as being specific to certain data types, cloud conditions, and spatial extents, as well as requiring auxiliary data, which hampers their generalizability and flexibility. To address the issue, we propose a maximum-value compositing approach by generating cloud masks. We acquired 432 daily MOD09GA L2 MODIS imageries covering a vast region with persistent cloud cover and various climates and land-cover types. Labeled datasets for cloud, land, and no-data were collected from selected daily imageries. Subsequently, we trained and evaluated RF, SVM, and U-Net models to choose the best models. Accordingly, SVM and U-Net were chosen and employed to classify all the daily imageries. Then, the classified imageries were converted to two sets of mask layers to mask clouds and no-data pixels in the corresponding daily images by setting the masked pixels’ values to −0.999999. After masking, we employed the maximum-value technique to generate two sets of 16-day composite products, MaxComp-1 and MaxComp-2, corresponding to SVM and U-Net-derived cloud masks, respectively. Finally, we assessed the quality of our composite products by comparing them with the reference MOD13A1 16-day composite product. Based on the land-cover classification accuracy, our products yielded a significantly higher accuracy (5–28%) than the reference MODIS product across three classifiers (RF, SVM, and U-Net), indicating the quality of our products and the effectiveness of our techniques. In particular, MaxComp-1 yielded the best results, which further implies the superiority of SVM for cloud masking. In addition, our products appear to be more radiometrically and spectrally consistent and less noisy than MOD13A1, implying that our approach is more efficient in removing shadows and noises/artifacts. Our method yields high-quality products that are vital for investigating large regions with persistent clouds and studies requiring time-series data. Moreover, the proposed techniques can be adopted for higher-resolution RS imageries, regardless of the spatial extent, data volume, and type of clouds. Full article
Show Figures

Figure 1

13 pages, 3256 KiB  
Article
The Use of Ultra-Fast Gas Chromatography for Fingerprinting-Based Classification of Zweigelt and Rondo Wines with Regard to Grape Variety and Type of Malolactic Fermentation Combined with Greenness and Practicality Assessment
by Anna Stój, Wojciech Wojnowski, Justyna Płotka-Wasylka, Tomasz Czernecki and Ireneusz Tomasz Kapusta
Molecules 2024, 29(19), 4667; https://doi.org/10.3390/molecules29194667 - 1 Oct 2024
Viewed by 373
Abstract
In food authentication, it is important to compare different analytical procedures and select the best method. The aim of this study was to determine the fingerprints of Zweigelt and Rondo wines through headspace analysis using ultra-fast gas chromatography (ultra-fast GC) and to compare [...] Read more.
In food authentication, it is important to compare different analytical procedures and select the best method. The aim of this study was to determine the fingerprints of Zweigelt and Rondo wines through headspace analysis using ultra-fast gas chromatography (ultra-fast GC) and to compare the effectiveness of this approach at classifying wines based on grape variety and type of malolactic fermentation (MLF) as well as its greenness and practicality with three other chromatographic methods such as headspace solid-phase microextraction/gas chromatography-mass spectrometry with carboxen-polydimethylosiloxane fiber (SPME/GC-MS with CAR/PDMS fiber), headspace solid-phase microextraction/gas chromatography-mass spectrometry with polyacrylate fiber (SPME/GC-MS with PA fiber), and ultra performance liquid chromatography–photodiode array detector-tandem mass spectrometry (UPLC-PDA-MS/MS). Principal Component Analysis (PCA) revealed that fingerprints obtained using all four chromatographic methods were suitable for classification using machine learning (ML). Random Forest (RF) and Support Vector Machines (SVM) yielded accuracies of at least 99% in the varietal classification of Zweigelt and Rondo wines and therefore proved suitable for robust fingerprinting-based Quality Assurance/Quality Control (QA/QC) procedures. In the case of wine classification by the type of MLF, the classifiers performed slightly worse, with the poorest accuracy of 91% for SVM and SPME/GC-MS with CAR/PDMS fiber, and no less than 93% for the other methods. Ultra-fast GC is the greenest and UPLC-PDA-MS/MS is the most practical of the four chromatographic methods. Full article
(This article belongs to the Special Issue Chromatographic Methods for Monitoring Food Safety and Quality)
Show Figures

Figure 1

Back to TopTop