Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,606)

Search Parameters:
Keywords = Sentinel-1A data

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 22588 KiB  
Article
Monitoring Dissolved Organic Carbon Concentration and Flux in the Qiantang Riverine System Using Sentinel-2 Satellite Images
by Yujia Yan, Xianqiang He, Yan Bai, Jinsong Liu, Palanisamy Shanmugame, Yaqi Zhao, Xuan Zhang, Zhihong Wang, Yifan Zhang and Fang Gong
Remote Sens. 2024, 16(22), 4254; https://doi.org/10.3390/rs16224254 (registering DOI) - 15 Nov 2024
Viewed by 116
Abstract
Real-time monitoring of riverine-dissolved organic carbon (DOC) and its controlling factors is critical for formulating strategies regarding the river basin and marginal seas pollution prevention and control. In this study, we established a linear regression formulation that relates the permanganate index (CODMn [...] Read more.
Real-time monitoring of riverine-dissolved organic carbon (DOC) and its controlling factors is critical for formulating strategies regarding the river basin and marginal seas pollution prevention and control. In this study, we established a linear regression formulation that relates the permanganate index (CODMn) to the DOC concentration based on in situ measurements collected on five field surveys in 2023–2024. This regression formulation was used on a large number of data collected from automatic monitoring stations in the Qiantang River area to construct a daily quasi-in situ database of DOC concentration. By combining the quasi-in situ DOC data and Sentinel-2 measurements, an enhanced algorithm for empirical DOC estimation was developed (R2 = 0.66) using the extreme gradient boosting (XGBoost) method and its spatial and temporal variations in the Qiantang River were analyzed from 2016 to 2023. Spatially, the main stream of the Qiantang River exhibited an overall decreasing and increasing trend influenced by population density, economic development, and pollutant discharge in the basin area, and the temporal distribution of DOC was controlled by meteorological conditions. The DOC contents had the highest in summer, primarily due to high rainfall and leaching. The inter-annual variation in DOC concentration was influenced by the total annual runoff volumes, with a minimum level of 2.24 mg L−1 in 2023 and a maximum level of 2.45 mg L−1 in 2019. The monthly DOC fluxes ranged from 6.3 to 13.8 × 104 t, with the highest values coinciding with the maximum river discharge volumes in June and July. The DOC levels in the Qiantang River remained relatively high in recent years (2016–2023). This study enables the concerned stakeholders and researchers to better understand carbon transportation and its dynamics in the Qiantang River and its coastal areas. Full article
Show Figures

Figure 1

23 pages, 2055 KiB  
Article
Automating the Derivation of Sugarcane Growth Stages from Earth Observation Time Series
by Neha Joshi, Daniel M. Simms and Paul J. Burgess
Remote Sens. 2024, 16(22), 4244; https://doi.org/10.3390/rs16224244 - 14 Nov 2024
Viewed by 295
Abstract
Sugarcane is a high-impact crop used in the majority of global sugar production, with India being the second largest global producer. Understanding the timing and length of sugarcane growth stages is critical to improving the sustainability of sugarcane management. Earth observation (EO) data [...] Read more.
Sugarcane is a high-impact crop used in the majority of global sugar production, with India being the second largest global producer. Understanding the timing and length of sugarcane growth stages is critical to improving the sustainability of sugarcane management. Earth observation (EO) data have been shown to be sensitive to the variation in sugarcane growth, but questions remain as to how to reliably extract sugarcane phenology over wide areas so that this information can be used for effective management. This study develops an automated approach to derive sugarcane growth stages using EO data from Landsat-8 and Sentinel-2 satellite data in the Indian state of Andhra Pradesh. The developed method is then evaluated in the State of Telangana. Normalised difference vegetation index (NDVI) EO data from Landsat-8 and Sentinel-2 were pre-processed to filter out clouds and to harmonise sensor response. Pixel-based cloud filtering was selected over filtering by scene in order to increase the temporal frequency of observations. Harmonising data from two different sensors further increased temporal resolution to 3–6 days (70% of sampled fields). To automate seasonal decomposition, harmonised signals were resampled at 14 days, and low-frequency components, related to seasonal growth, were extracted using a fast Fourier transform. The start and end of each season were extracted from the time series using difference of Gaussian and were compared to assessments based on visual observation for both Unit 1 (R2 = 0.72–0.84) and Unit 2 (R2 = 0.78–0.82). A trapezoidal growth model was then used to derive crop growth stages from satellite-measured phenology for better crop management information. Automated assessments of the start and the end of mid-season growth stages were compared to visual observations in Unit 1 (R2 = 0.56–0.72) and Unit 2 (R2 = 0.36–0.79). Outliers were found to result from cloud cover that was not removed by the initial screening as well as multiple crops or harvesting dates within a single field. These results demonstrate that EO time series can be used to automatically determine the growth stages of sugarcane in India over large areas, without the need for prior knowledge of planting and harvest dates, as a tool for improving sustainable production. Full article
Show Figures

Figure 1

17 pages, 12754 KiB  
Article
Study on the Extraction of Maize Phenological Stages Based on Multiple Spectral Index Time-Series Curves
by Minghao Qin, Ruren Li, Huichun Ye, Chaojia Nie and Yue Zhang
Agriculture 2024, 14(11), 2052; https://doi.org/10.3390/agriculture14112052 - 14 Nov 2024
Viewed by 195
Abstract
The advent of precision agriculture has highlighted the necessity for the careful determination of crop phenology at increasingly smaller scales. Although remote sensing technology is extensively employed for the monitoring of crop growth, the acquisition of high-precision phenological data continues to present a [...] Read more.
The advent of precision agriculture has highlighted the necessity for the careful determination of crop phenology at increasingly smaller scales. Although remote sensing technology is extensively employed for the monitoring of crop growth, the acquisition of high-precision phenological data continues to present a significant challenge. This study, conducted in Youyi County, Shuangyashan City, Heilongjiang Province, China, employed time-series spectral index data derived from Sentinel-2 remote sensing images to investigate methodologies for the extraction of pivotal phenological phases during the primary growth stages of maize. The data were subjected to Savitzky–Golay (S-G) filtering and cubic spline interpolation in order to denoise and smooth them. The combination of dynamic thresholding with slope characteristic node recognition enabled the successful extraction of the jointing and tasseling stages of maize. Furthermore, a comparison of the extraction of phenophases based on the time-series curves of the NDVI, EVI, GNDVI, OSAVI, and MSR was conducted. The results showed that maize exhibited different sensitivities to the spectral indices during the jointing and tasseling stages: the OSAVI demonstrated the highest accuracy for the jointing stage, with a mean absolute error of 3.91 days, representing a 24.8% improvement over the commonly used NDVI. For the tasseling stage, the MSR was the most accurate, achieving an absolute error of 4.87 days, with an 8.6% improvement compared to the NDVI. In this study, further analysis was conducted based on maize cultivation data from Youyi County (2021–2023). The results showed that the maize phenology in Youyi County in 2021 was more advanced compared to 2022 and 2023, primarily due to the higher average temperatures in 2021. This study provides valuable support for the development of precision agriculture and maize phenology monitoring and also provides a useful data reference for future agricultural management. Full article
Show Figures

Figure 1

34 pages, 41034 KiB  
Article
The Dynamics of Air Pollution in the Southwestern Part of the Caspian Sea Basin (Based on the Analysis of Sentinel-5 Satellite Data Utilizing the Google Earth Engine Cloud-Computing Platform)
by Vladimir Tabunshchik, Aleksandra Nikiforova, Nastasia Lineva, Polina Drygval, Roman Gorbunov, Tatiana Gorbunova, Ibragim Kerimov, Cam Nhung Pham, Nikolai Bratanov and Mariia Kiseleva
Atmosphere 2024, 15(11), 1371; https://doi.org/10.3390/atmos15111371 - 14 Nov 2024
Viewed by 209
Abstract
The Caspian region represents a complex and unique system of terrestrial, coastal, and aquatic environments, marked by an exceptional landscape and biological diversity. This diversity, however, is increasingly threatened by substantial anthropogenic pressures. One notable impact of this human influence is the rising [...] Read more.
The Caspian region represents a complex and unique system of terrestrial, coastal, and aquatic environments, marked by an exceptional landscape and biological diversity. This diversity, however, is increasingly threatened by substantial anthropogenic pressures. One notable impact of this human influence is the rising concentration of pollutants atypical for the atmosphere. Advances in science and technology now make it possible to detect certain atmospheric pollutants using remote Earth observation techniques, specifically through data from the Sentinel-5 satellite, which provides continuous insights into atmospheric contamination. This article investigates the dynamics of atmospheric pollution in the southwestern part of the Caspian Sea basin using Sentinel-5P satellite data and the cloud-computing capabilities of the Google Earth Engine (GEE) platform. The study encompasses an analysis of concentrations of seven key pollutants: nitrogen dioxide (NO2), formaldehyde (HCHO), carbon monoxide (CO), ozone (O3), sulfur dioxide (SO2), methane (CH4), and the Aerosol Index (AI). Spatial and temporal variations in pollution fields were examined for the Caspian region and the basins of the seven rivers (key areas) flowing into the Caspian Sea: Sunzha, Sulak, Ulluchay, Karachay, Atachay, Haraz, and Gorgan. The research methodology is based on the use of data from the Sentinel-5 satellite, SRTM DEM data on absolute elevations, surface temperature data, and population density data. Data processing is performed using the Google Earth Engine cloud-computing platform and the ArcGIS software suite. The main aim of this study is to evaluate the spatiotemporal variability of pollutant concentration fields in these regions from 2018 to 2023 and to identify the primary factors influencing pollution distribution. The study’s findings reveal that the Heraz and Gorgan River basins have the highest concentrations of nitrogen dioxide and Aerosol Index levels, marking these basins as the most vulnerable to atmospheric pollution among those assessed. Additionally, the Gorgan basin exhibited elevated carbon monoxide levels, while the highest ozone concentrations were detected in the Sunzha basin. Our temporal analysis demonstrated a substantial influence of the COVID-19 pandemic on pollutant dispersion patterns. Our correlation analysis identified absolute elevation as a key factor affecting pollutant distribution, particularly for carbon monoxide, ozone, and aerosol indices. Population density showed the strongest correlation with nitrogen dioxide distribution. Other pollutants exhibited more complex distribution patterns, influenced by diverse mechanisms associated with local emission sources and atmospheric dynamics. Full article
(This article belongs to the Special Issue Study of Air Pollution Based on Remote Sensing (2nd Edition))
Show Figures

Figure 1

21 pages, 10234 KiB  
Article
Three Years of Google Earth Engine-Based Archaeological Surveys in Iraqi Kurdistan: Results from the Ground
by Riccardo Valente, Eleonora Maset and Marco Iamoni
Remote Sens. 2024, 16(22), 4229; https://doi.org/10.3390/rs16224229 - 13 Nov 2024
Viewed by 324
Abstract
This paper presents the results of a three-year survey (2021–2023), conducted in an area of approximately 356 km2 in Iraqi Kurdistan with the aim of identifying previously undetected archaeological sites. Thanks to the development of a multi-temporal approach based on open multispectral [...] Read more.
This paper presents the results of a three-year survey (2021–2023), conducted in an area of approximately 356 km2 in Iraqi Kurdistan with the aim of identifying previously undetected archaeological sites. Thanks to the development of a multi-temporal approach based on open multispectral satellite data, greater effectiveness was achieved for the recognition of archaeological sites when compared to the use of single archival or freely accessible satellite images, which are typically employed in archaeological research. In particular, the Google Earth Engine services allowed for the efficient utilization of cloud computing resources to handle hundreds of remote sensing images. Using different datasets, namely Landsat 5, Landsat 7 and Sentinel-2, several products were obtained by processing entire stacks of images acquired at different epochs, thus minimizing the adverse effects on site visibility caused by vegetation, crops and cloud coverage and permitting an effective visual inspection and site recognition. Furthermore, spectral signature analysis of every potential site complemented the method. The developed approach was tested on areas that belong to the Land of Nineveh Archaeological Project (LoNAP) and the Upper Greater Zab Archaeological Reconnaissance (UGZAR) project, which had been intensively surveyed in the recent past. This represented an additional challenge to the method, as the most visible and extensive sites (tells) had already been detected. Three years of direct ground-truthing in the field enabled assessment of the outcomes of the remote sensing-based analysis, discovering more than 60 previously undetected sites and confirming the utility of the method for archaeological research in the area of Northern Mesopotamia. Full article
Show Figures

Figure 1

20 pages, 6877 KiB  
Article
Improved Prototypical Network Model for Classification of Farmland Shelterbelt Using Sentinel-2 Imagery
by Yueting Wang, Qiangzi Li, Hongyan Wang, Yuan Zhang, Xin Du, Yunqi Shen and Yong Dong
Forests 2024, 15(11), 1995; https://doi.org/10.3390/f15111995 - 12 Nov 2024
Viewed by 331
Abstract
Farmland shelterbelt plays an important role in protecting farmland and ensuring stable crop yields, and it is mainly distributed in the form of bands and patches; different forms of distribution have different impacts on farmland, which is an important factor affecting crop yields. [...] Read more.
Farmland shelterbelt plays an important role in protecting farmland and ensuring stable crop yields, and it is mainly distributed in the form of bands and patches; different forms of distribution have different impacts on farmland, which is an important factor affecting crop yields. Therefore, high-precision classification of banded and patch farmland shelterbelt is a prerequisite for analyzing its impact on crop yield. In this study, we explored the effectiveness and transferability of an improved Prototypical Network model incorporating data augmentation and a convolutional block attention module for extracting banded and patch farmland shelterbelt in Northeast China, and we analyzed the potential of applying it to the production of large-scale farmland shelterbelt products. Firstly, we classified banded and patch farmland shelterbelt under different sample window sizes using the improved Prototypical Network in the source domain study area to obtain the optimal sample window size and the optimal classification model. Secondly, fine-tuning transfer learning and learning from scratch directly were used to classify the banded and patch farmland shelterbelt in the target domain study area, respectively, to evaluate the extraction model’s migratability. The results showed that classification of farmland shelterbelt using the improved Prototypical Network is very effective, with the highest extraction accuracy under the 5 × 5 sample window; the accuracies of the banded and patch farmland shelterbelt are 92.16% and 90.91%, respectively. Using the fine-tuning transfer learning method in the target domain can classify the banded and patch farmland shelterbelt with high accuracy, above 95% and 89%, respectively. The proposed approach can provide new insight into farmland shelterbelt classification and farmland shelterbelt products obtained from freely accessible Sentinel-2 multispectral images. Full article
Show Figures

Figure 1

18 pages, 5155 KiB  
Article
Impact of Arable Land Abandonment on Crop Production Losses in Ukraine During the Armed Conflict
by Kaixuan Dai, Changxiu Cheng, Siyi Kan, Yaoming Li, Kunran Liu and Xudong Wu
Remote Sens. 2024, 16(22), 4207; https://doi.org/10.3390/rs16224207 - 12 Nov 2024
Viewed by 372
Abstract
The outbreak of Russia-Ukraine conflict casted an impact on the global food market, which was believed to be attributed to that Ukraine has suffered significant production losses due to cropland abandonment. Nevertheless, recent outbreaks of farmer protests against Ukraine’s grain exports demonstrated that [...] Read more.
The outbreak of Russia-Ukraine conflict casted an impact on the global food market, which was believed to be attributed to that Ukraine has suffered significant production losses due to cropland abandonment. Nevertheless, recent outbreaks of farmer protests against Ukraine’s grain exports demonstrated that the production losses might not be as severe as previous estimates. By utilizing the adaptive threshold segmentation method to extract abandoned cropland from the Sentinel-2 high-resolution imagery and calibrating the spatial production allocation model’s gridded crop production data from Ukraine’s statistical data, this study explicitly evaluated Ukraine’s crop-specific production losses and the spatial heterogeneity. The results demonstrated that the estimated area of abandoned cropland in Ukraine ranges from 2.34 to 2.40 million hectares, constituting 7.14% to 7.30% of the total cropland. In Ukrainian-controlled zones, this area spans 1.44 to 1.48 million hectares, whereas in Russian-occupied areas, it varies from 0.90 to 0.92 million hectares. Additionally, the total production losses for wheat, maize, barley, and sunflower amount to 1.92, 1.67, 0.70, and 0.99 million tons, respectively, with corresponding loss ratios of 9.10%, 7.48%, 9.54%, and 8.67%. Furthermore, production losses of wheat, barley, and sunflower emerged in both the eastern and southern states adjacent to the conflict frontlines, while maize losses were concentrated in the western states. The findings imply that Ukraine ought to streamline the food transportation channels and maintain stable agricultural activities in regions with high crop production. Full article
Show Figures

Figure 1

21 pages, 3939 KiB  
Article
Combining LiDAR, SAR, and DEM Data for Estimating Understory Terrain Using Machine Learning-Based Methods
by Jiapeng Huang, Yue Zhang and Jianhuang Ding
Forests 2024, 15(11), 1992; https://doi.org/10.3390/f15111992 - 11 Nov 2024
Viewed by 409
Abstract
Currently, precise estimation of understory terrain faces numerous technical obstacles and challenges that are difficult to overcome. To address this problem, this paper combines LiDAR, SAR, and DEM data to estimate understory terrain. The high multivariable-precision spaceborne LiDAR ICESat-2 data, validated by the [...] Read more.
Currently, precise estimation of understory terrain faces numerous technical obstacles and challenges that are difficult to overcome. To address this problem, this paper combines LiDAR, SAR, and DEM data to estimate understory terrain. The high multivariable-precision spaceborne LiDAR ICESat-2 data, validated by the NEON, are divided into training and validation sets. The training dataset is used as a dependent variable, the SRTM DEM and Sentinel-1 SAR data are regarded as independent variables, a total of 13 feature parameters with high contributions are extracted to construct a Multiple Linear Regression model (MLR), BAGGING model, Random Forest model (RF), and Long Short-Term Memory model (LSTM). The results indicate that the RF model exhibits the highest accuracy among the four models, with R2 = 0.999, RMSE = 0.701 m, and MAE = 0.249 m. Then, based on the RF model, the understory terrain at the regional scale is generated, and an accuracy assessment is performed using the validation dataset, yielding R2 = 0.999, RMSE = 0.847 m, and MAE = 0.517 m. Furthermore, this paper quantitatively analyzes the effects of slope, vegetation coverage, and canopy height on the estimation accuracy of understory terrain. The results show that as slope, and canopy height increase, the estimation accuracy of the RF model for understory terrain gradually decreases. The accuracy of the understory terrain estimated by the RF model is relatively stable and not easily affected by slope, vegetation coverage, and canopy height. The research on the estimation of understory terrain holds significant practical implications for forest resource management, ecological conservation, and biodiversity protection, as well as natural disaster prevention. Full article
Show Figures

Figure 1

29 pages, 4900 KiB  
Article
Forest Fire Severity and Koala Habitat Recovery Assessment Using Pre- and Post-Burn Multitemporal Sentinel-2 Msi Data
by Derek Campbell Johnson, Sanjeev Kumar Srivastava and Alison Shapcott
Forests 2024, 15(11), 1991; https://doi.org/10.3390/f15111991 - 11 Nov 2024
Viewed by 319
Abstract
Habitat loss due to wildfire is an increasing problem internationally for threatened animal species, particularly tree-dependent and arboreal animals. The koala (Phascolartos cinereus) is endangered in most of its range, and large areas of forest were burnt by widespread wildfires in [...] Read more.
Habitat loss due to wildfire is an increasing problem internationally for threatened animal species, particularly tree-dependent and arboreal animals. The koala (Phascolartos cinereus) is endangered in most of its range, and large areas of forest were burnt by widespread wildfires in Australia in 2019/2020, mostly areas dominated by eucalypts, which provide koala habitats. We studied the impact of fire and three subsequent years of recovery on a property in South-East Queensland, Australia. A classified Differenced Normalised Burn Ratio (dNBR) calculated from pre- and post-burn Sentinel-2 scenes encompassing the local study area was used to assess regional impact of fire on koala-habitat forest types. The geometrically structured composite burn index (GeoCBI), a field-based assessment, was used to classify fire severity impact. To detect lower levels of forest recovery, a manual classification of the multitemporal dNBR was used, enabling the direct comparison of images between recovery years. In our regional study area, the most suitable koala habitat occupied only about 2%, and about 10% of that was burnt by wildfire. From the five koala habitat forest types studied, one upland type was burnt more severely and extensively than the others but recovered vigorously after the first year, reaching the same extent of recovery as the other forest types. The two alluvial forest types showed a negligible fire impact, likely due to their sheltered locations. In the second year, all the impacted forest types studied showed further, almost equal, recovery. In the third year of recovery, there was almost no detectable change and therefore no more notable vegetative growth. Our field data revealed that the dNBR can probably only measure the general vegetation present and not tree recovery via epicormic shooting and coppicing. Eucalypt foliage growth is a critical resource for the koala, so field verification seems necessary unless more-accurate remote sensing methods such as hyperspectral imagery can be implemented. Full article
Show Figures

Graphical abstract

30 pages, 1419 KiB  
Review
Review of Recent Advances in Remote Sensing and Machine Learning Methods for Lake Water Quality Management
by Ying Deng, Yue Zhang, Daiwei Pan, Simon X. Yang and Bahram Gharabaghi
Remote Sens. 2024, 16(22), 4196; https://doi.org/10.3390/rs16224196 - 11 Nov 2024
Viewed by 741
Abstract
This review examines the integration of remote sensing technologies and machine learning models for efficient monitoring and management of lake water quality. It critically evaluates the performance of various satellite platforms, including Landsat, Sentinel-2, MODIS, RapidEye, and Hyperion, in assessing key water quality [...] Read more.
This review examines the integration of remote sensing technologies and machine learning models for efficient monitoring and management of lake water quality. It critically evaluates the performance of various satellite platforms, including Landsat, Sentinel-2, MODIS, RapidEye, and Hyperion, in assessing key water quality parameters including chlorophyll-a (Chl-a), turbidity, and colored dissolved organic matter (CDOM). This review highlights the specific advantages of each satellite platform, considering factors like spatial and temporal resolution, spectral coverage, and the suitability of these platforms for different lake sizes and characteristics. In addition to remote sensing platforms, this paper explores the application of a wide range of machine learning models, from traditional linear and tree-based methods to more advanced deep learning techniques like convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial networks (GANs). These models are analyzed for their ability to handle the complexities inherent in remote sensing data, including high dimensionality, non-linear relationships, and the integration of multispectral and hyperspectral data. This review also discusses the effectiveness of these models in predicting various water quality parameters, offering insights into the most appropriate model–satellite combinations for different monitoring scenarios. Moreover, this paper identifies and discusses the key challenges associated with data quality, model interpretability, and integrating remote sensing imagery with machine learning models. It emphasizes the need for advancements in data fusion techniques, improved model generalizability, and the developing robust frameworks for integrating multi-source data. This review concludes by offering targeted recommendations for future research, highlighting the potential of interdisciplinary collaborations to enhance the application of these technologies in sustainable lake water quality management. Full article
(This article belongs to the Special Issue Remote Sensing Band Ratios for the Assessment of Water Quality)
Show Figures

Figure 1

25 pages, 24547 KiB  
Article
A Radio Frequency Interference Screening Framework—From Quick-Look Detection Using Statistics-Assisted Network to Raw Echo Tracing
by Jiayuan Shen, Bing Han, Yang Li, Zongxu Pan, Di Yin, Yugang Feng and Guangzuo Li
Remote Sens. 2024, 16(22), 4195; https://doi.org/10.3390/rs16224195 - 11 Nov 2024
Viewed by 295
Abstract
Synthetic aperture radar (SAR) is often affected by other high-power electromagnetic devices during ground observation, which causes unintentional radio frequency interference (RFI) with the acquired echo, bringing adverse effects into data processing and image interpretation. When faced with the task of screening massive [...] Read more.
Synthetic aperture radar (SAR) is often affected by other high-power electromagnetic devices during ground observation, which causes unintentional radio frequency interference (RFI) with the acquired echo, bringing adverse effects into data processing and image interpretation. When faced with the task of screening massive SAR data, there is an urgent need for the global perception and detection of interference. The existing RFI detection method usually only uses a single type of data for detection, ignoring the information association between the data at all levels of the real SAR product, resulting in some computational redundancy. Meanwhile, current deep learning-based algorithms are often unable to locate the range of RFI coverage in the azimuth direction. Therefore, a novel RFI processing framework from quick-looks to single-look complex (SLC) data and then to raw echo is proposed. We take the data of Sentinel-1 terrain observation with progressive scan (TOPS) mode as an example. By combining the statistics-assisted network with the sliding-window algorithm and the error-tolerant training strategy, it is possible to accurately detect and locate RFI in the quick looks of an SLC product. Then, through the analysis of the TOPSAR imaging principle, the position of the RFI in the SLC image is preliminarily confirmed. The possible distribution of the RFI in the corresponding raw echo is further inferred, which is one of the first attempts to use spaceborne SAR data to elucidate the RFI location mapping relationship between image data and raw echo. Compared with directly detecting all of the SLC data, the time for the proposed framework to determine the RFI distribution in the SLC data can be shortened by 53.526%. All the research in this paper is conducted on Sentinel-1 real data, which verify the feasibility and effectiveness of the proposed framework for radio frequency signals monitoring in advanced spaceborne SAR systems. Full article
Show Figures

Figure 1

24 pages, 18522 KiB  
Article
Comparative Study of Random Forest and Support Vector Machine for Land Cover Classification and Post-Wildfire Change Detection
by Yan-Cheng Tan, Lia Duarte and Ana Cláudia Teodoro
Land 2024, 13(11), 1878; https://doi.org/10.3390/land13111878 - 10 Nov 2024
Viewed by 541
Abstract
The land use land cover (LULC) map is extensively employed for different purposes. Machine learning (ML) algorithms applied in remote sensing (RS) data have been proven effective in image classification, object detection, and semantic segmentation. Previous studies have shown that random forest (RF) [...] Read more.
The land use land cover (LULC) map is extensively employed for different purposes. Machine learning (ML) algorithms applied in remote sensing (RS) data have been proven effective in image classification, object detection, and semantic segmentation. Previous studies have shown that random forest (RF) and support vector machine (SVM) consistently achieve high accuracy for land classification. Considering the important role of Portugal’s Serra da Estrela Natural Park (PNSE) in biodiversity and nature conversation at an international scale, the availability of timely data on the PNSE for emergency evaluation and periodic assessment is crucial. In this study, the application of RF and SVM classifiers, and object-based (OBIA) and pixel-based (PBIA) approaches, with Sentinel-2A imagery was evaluated using Google Earth Engine (GEE) platform for the land cover classification of a burnt area in the PNSE. This aimed to detect the land cover change and closely observe the burnt area and vegetation recovery after the 2022 wildfire. The combination of RF and OBIA achieved the highest accuracy in all evaluation metrics. At the same time, a comparison with the Normalized Difference Vegetation Index (NDVI) map and Conjunctural Land Occupation Map (COSc) of 2023 year indicated that the SVM and PBIA map resembled the maps better. Full article
Show Figures

Figure 1

27 pages, 21954 KiB  
Article
Long-Term Ground Deformation Monitoring and Quantitative Interpretation in Shanghai Using Multi-Platform TS-InSAR, PCA, and K-Means Clustering
by Yahui Chong and Qiming Zeng
Remote Sens. 2024, 16(22), 4188; https://doi.org/10.3390/rs16224188 - 10 Nov 2024
Viewed by 495
Abstract
Ground subsidence in urban areas is mainly due to natural or anthropogenic activities, and it seriously threatens the healthy and sustainable development of the city and the security of individuals’ lives and assets. Shanghai is a megacity of China, and it has a [...] Read more.
Ground subsidence in urban areas is mainly due to natural or anthropogenic activities, and it seriously threatens the healthy and sustainable development of the city and the security of individuals’ lives and assets. Shanghai is a megacity of China, and it has a long history of ground subsidence due to the overexploitation of groundwater and urban expansion. Time Series Synthetic Aperture Radar Interferometry (TS-InSAR) is a highly effective and widely used approach for monitoring urban ground deformation. However, it is difficult to obtain long-term (such as over 10 years) deformation results using single-platform SAR satellite in general. To acquire long-term surface deformation monitoring results, it is necessary to integrate data from multi-platform SAR satellites. Furthermore, the deformations are the result of multiple factors that are superimposed, and relevant studies that quantitatively separate the contributions from different driving factors to subsidence are rare. Moreover, the time series cumulative deformation results of massive measurement points also bring difficulties to the deformation interpretation. In this study, we have proposed a long-term surface deformation monitoring and quantitative interpretation method that integrates multi-platform TS-InSAR, PCA, and K-means clustering. SAR images from three SAR datasets, i.e., 19 L-band ALOS-1 PALSAR, 22 C-band ENVISAT ASAR, and 20 C-band Sentinel-1A, were used to retrieve annual deformation rates and time series deformations in Shanghai from 2007 to 2018. The monitoring results indicate that there is serious uneven settlement in Shanghai, with a spatial pattern of stability in the northwest and settlement in the southeast of the study area. Then, we selected Pudong International Airport as the area of interest and quantitatively analyzed the driving factors of land subsidence in this area by using PCA results, combining groundwater exploitation and groundwater level change, precipitation, temperature, and engineering geological and human activities. Finally, the study area was divided into four sub-regions with similar time series deformation patterns using the K-means clustering. This study helps to understand the spatiotemporal evolution of surface deformation and its driving factors in Shanghai, and provides a scientific basis for the formulation and implementation of precise prevention and control strategies for land subsidence disasters, and it can also provide reference for monitoring in other urban areas. Full article
Show Figures

Figure 1

29 pages, 5844 KiB  
Article
Early Modeling of the Upcoming Landsat Next Constellation for Soybean Yield Prediction Under Varying Levels of Water Availability
by Luís Guilherme Teixeira Crusiol, Marcos Rafael Nanni, Rubson Natal Ribeiro Sibaldelli, Liang Sun, Renato Herrig Furlanetto, Sergio Luiz Gonçalves, Norman Neumaier and José Renato Bouças Farias
Remote Sens. 2024, 16(22), 4184; https://doi.org/10.3390/rs16224184 - 9 Nov 2024
Viewed by 816
Abstract
The upcoming Landsat Next will provide more frequent land surface observations at higher spatial and spectral resolutions that will greatly benefit the agricultural sector. Early modeling of the upcoming Landsat Next products for soybean yield prediction is essential for long-term satellite monitoring strategies. [...] Read more.
The upcoming Landsat Next will provide more frequent land surface observations at higher spatial and spectral resolutions that will greatly benefit the agricultural sector. Early modeling of the upcoming Landsat Next products for soybean yield prediction is essential for long-term satellite monitoring strategies. In this context, this article evaluates the contribution of Landsat Next’s improved spectral resolution for soybean yield prediction under varying levels of water availability. Ground-based hyperspectral data collected over five cropping seasons at the Brazilian Agricultural Research Corporation were resampled to Landsat Next spectral resolution. The spectral dataset (n = 384) was divided into calibration and external validation datasets and investigated using three strategies for soybean yield prediction: (1) using the reflectance from each spectral band; (2) using existing and new vegetation indices developed based on three general equations: Normalized Difference Vegetation Index (NDVI-like), Band Ratio Vegetation Index (RVI-like), and Band Difference Vegetation Index (DVI-like), replacing the traditional spectral bands by all possible combinations between two bands for index calculation; and (3) using a partial least squares regression (PLSR) model composed of all Landsat Next spectral bands, in comparison to PLSR models using Landsat OLI and Sentienel-2 MSI bands. The results show the distribution of the new spectral bands over the most prominent changes in leaf reflectance due to water deficit, particularly in the visible and shortwave infrared spectrum. (1) Band 18 (centered at 1610 nm) had the highest correlation with yield (R2 = 0.34). (2) A new vegetation index, called Normalized Difference Shortwave Vegetation Index (NDSWVI), is proposed and calculated from bands 19 and 20 (centered at 2028 and 2108 nm). NDSWVI showed the best performance (R2 = 0.37) compared to traditional existing and new vegetation indices. (3) The PLSR model gave the best results (R2 = 0.65), outperforming the Landsat OLI and Sentinel-2 MSI sensors. The improved spectral resolution of Landsat Next is expected to contribute to improved crop monitoring, especially for soybean crops in Brazil, increasing the sustainability of the production systems and strengthening food security in Brazil and globally. Full article
Show Figures

Figure 1

24 pages, 2680 KiB  
Review
Remote Sensing Techniques for Assessing Snow Avalanche Formation Factors and Building Hazard Monitoring Systems
by Natalya Denissova, Serik Nurakynov, Olga Petrova, Daniker Chepashev, Gulzhan Daumova and Alena Yelisseyeva
Atmosphere 2024, 15(11), 1343; https://doi.org/10.3390/atmos15111343 - 9 Nov 2024
Viewed by 479
Abstract
Snow avalanches, one of the most severe natural hazards in mountainous regions, pose significant risks to human lives, infrastructure, and ecosystems. As climate change accelerates shifts in snowfall and temperature patterns, it is increasingly important to improve our ability to monitor and predict [...] Read more.
Snow avalanches, one of the most severe natural hazards in mountainous regions, pose significant risks to human lives, infrastructure, and ecosystems. As climate change accelerates shifts in snowfall and temperature patterns, it is increasingly important to improve our ability to monitor and predict avalanches. This review explores the use of remote sensing technologies in understanding key geomorphological, geobotanical, and meteorological factors that contribute to avalanche formation. The primary objective is to assess how remote sensing can enhance avalanche risk assessment and monitoring systems. A systematic literature review was conducted, focusing on studies published between 2010 and 2025. The analysis involved screening relevant studies on remote sensing, avalanche dynamics, and data processing techniques. Key data sources included satellite platforms such as Sentinel-1, Sentinel-2, TerraSAR-X, and Landsat-8, combined with machine learning, data fusion, and change detection algorithms to process and interpret the data. The review found that remote sensing significantly improves avalanche monitoring by providing continuous, large-scale coverage of snowpack stability and terrain features. Optical and radar imagery enable the detection of crucial parameters like snow cover, slope, and vegetation that influence avalanche risks. However, challenges such as limitations in spatial and temporal resolution and real-time monitoring were identified. Emerging technologies, including microsatellites and hyperspectral imaging, offer potential solutions to these issues. The practical implications of these findings underscore the importance of integrating remote sensing data with ground-based observations for more robust avalanche forecasting. Enhanced real-time monitoring and data fusion techniques will improve disaster management, allowing for quicker response times and more effective policymaking to mitigate risks in avalanche-prone regions. Full article
Show Figures

Figure 1

Back to TopTop