Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,233)

Search Parameters:
Keywords = SiC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 5631 KiB  
Article
Plastic Workability and Rheological Stress Model Based on an Artificial Neural Network of SiCp/Al-7.75Fe-1.04V-1.95Si Composites
by Pinming Feng, Shuang Chen, Jie Tang, Haiyang Liu, Dingfa Fu, Jie Teng and Fulin Jiang
Materials 2024, 17(21), 5317; https://doi.org/10.3390/ma17215317 (registering DOI) - 31 Oct 2024
Abstract
SiCp/Al-Fe-V-Si composites exhibit complex deformation behaviors at both room and high temperatures because of the presence of SiC reinforcement particles and numerous fine dispersed Al12(Fe, V)3Si heat-resistant phases. In this work, an artificial neural network (ANN) constitutive [...] Read more.
SiCp/Al-Fe-V-Si composites exhibit complex deformation behaviors at both room and high temperatures because of the presence of SiC reinforcement particles and numerous fine dispersed Al12(Fe, V)3Si heat-resistant phases. In this work, an artificial neural network (ANN) constitutive model was established to study the deformation behavior of SiCp/Al-7.75Fe-1.04V-1.95Si composites over a wide temperature range based on uniaxial compression. Then, microstructural observation, finite element analysis, and processing maps were utilized to investigate the plastic workability. The results showed that the ANN model fit the experimental stress–strain curves with high accuracy, achieving an R2 value of 0.999. The ANN model was embedded into finite element software to study plastic deformation behaviors, which indicated that this model could accurately compute the plastic and mechanical response during the compressing process. Finally, a thermomechanical processing diagram was developed, revealing that the optimal processing parameters of the SiCp/Al-7.75Fe-1.04V-1.95Si composites were a deformation temperature of 450–500 °C and a deformation rate of 0.1–0.2 s1. Full article
Show Figures

Figure 1

12 pages, 8249 KiB  
Article
Characteristics of a 1200 V Hybrid Power Switch Comprising a Si IGBT and a SiC MOSFET
by Alireza Sheikhan and E. M. Sankara Narayanan
Micromachines 2024, 15(11), 1337; https://doi.org/10.3390/mi15111337 (registering DOI) - 31 Oct 2024
Viewed by 11
Abstract
Hybrid Power Switches (HPS) combine the advantages of SiC unipolar and Si bipolar devices and therefore can bridge the gap between these technologies. In this paper, the performance of a hybrid power switch configuration based on the latest SiC MOSFET and Si IGBT [...] Read more.
Hybrid Power Switches (HPS) combine the advantages of SiC unipolar and Si bipolar devices and therefore can bridge the gap between these technologies. In this paper, the performance of a hybrid power switch configuration based on the latest SiC MOSFET and Si IGBT technologies is presented. The device is evaluated through experimental measurements of its characteristics under various conditions. The results show the HPS can achieve switching losses as low as a SiC MOSFET while offering the high current capability of the IGBT without significant increase in costs. Full article
(This article belongs to the Special Issue Insulated Gate Bipolar Transistor (IGBT) Modules)
Show Figures

Figure 1

14 pages, 11202 KiB  
Article
Fabrication, Microstructural Evolution, and Mechanical Properties of SiC/(Hf0.25Ta0.25Zr0.25Nb0.25)C/C Nanocomposites
by Zhenyue Wang, Tianci Zhou, Xiantao Yang, Yuenong Liu, Qingbo Wen and Zhaoju Yu
Materials 2024, 17(21), 5294; https://doi.org/10.3390/ma17215294 (registering DOI) - 31 Oct 2024
Viewed by 139
Abstract
A dense monolithic SiC/(Hf0.25Ta0.25Zr0.25Nb0.25)C/C high-entropy ceramic nanocomposite was prepared using a polymer-derived ceramic (PDC) method combined with spark plasma sintering (SPS). The microstructural evolution and mechanical properties of the obtained nanocomposites were characterized by X-ray [...] Read more.
A dense monolithic SiC/(Hf0.25Ta0.25Zr0.25Nb0.25)C/C high-entropy ceramic nanocomposite was prepared using a polymer-derived ceramic (PDC) method combined with spark plasma sintering (SPS). The microstructural evolution and mechanical properties of the obtained nanocomposites were characterized by X-ray diffractometer (XRD), transmission electron microscope (TEM), scanning-electron microscope (SEM), and nanoindentation. The results indicate that the phase composition of SiC/(Hf0.25Ta0.25Zr0.25Nb0.25)C/C can be adjusted by modifying the metal content of the single-source precursor (SSP) through molecular design. The resulting precursor exhibits an exceptionally high ceramic yield, with mass retention of over 90% at 1100 °C, which guarantees the densification of the final SiC/(Hf0.25Ta0.25Zr0.25Nb0.25)C/C composites. The PDC route facilitates the in situ formation of a high-entropy phase within the ceramic matrix under low temperature pyrolysis conditions. Combined with SPS, a dense monolithic SiC/(Hf0.25Ta0.25Zr0.25Nb0.25)C/C nanocomposite was obtained, exhibiting an open porosity of 0.41 vol%, nano-hardness of 27.47 ± 0.46 GPa, elastic modulus of 324.00 ± 13.60 GPa, and fracture toughness of 3.59 ± 0.24 MPa·m0.5, demonstrating excellent mechanical properties. Full article
(This article belongs to the Special Issue Carbon Nanomaterials for Multifunctional Applications)
Show Figures

Figure 1

21 pages, 3831 KiB  
Article
Green Synthesis, Characterization and Pharmaceutical Applications of Biocompatible Zinc Oxide Nanoparticles Using Heliotropium rariflorum Stocks
by Noor Ul Uza, Ghulam Dastagir, Syed Tanveer Shah, Elitsa Pavlova, Aftab Jamal, Mahmoud F. Seleiman and Jakub Černý
Pharmaceuticals 2024, 17(11), 1457; https://doi.org/10.3390/ph17111457 (registering DOI) - 31 Oct 2024
Viewed by 242
Abstract
Background: Zinc oxide nanoparticles are safe, non-toxic, and biocompatible. These NPs are used in food packaging materials, self-cleaning glass, ceramics, deodorants, sunscreens, paints, coatings, ointments, lotions, and as preservatives. This study explored the biological potential of ZnO nanoparticles synthesized using H. rariflorum. [...] Read more.
Background: Zinc oxide nanoparticles are safe, non-toxic, and biocompatible. These NPs are used in food packaging materials, self-cleaning glass, ceramics, deodorants, sunscreens, paints, coatings, ointments, lotions, and as preservatives. This study explored the biological potential of ZnO nanoparticles synthesized using H. rariflorum. Methods: In vitro antibacterial and antifungal activities against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Candida albicans, Penicillium notatum, Aspergillus flavus, Aspergillus niger and Aspergillus solani were determined. Antioxidant activity was explored using the DPPH radical scavenging method. In vivo analgesic, antipyretic and sedative potential of synthesized nanoparticles was investigated using a mouse model. Results: SEM with various magnification powers showed that some particles were spherical while some were aggregated, flake-shaped, and hexagonal with rough and irregular surfaces. The EDX analysis revealed Zn (12.63%), O (22.83%) and C (63.11%) with trace quantities of Si (0.40%), Ca (0.54%) and P (0.49%). The XRD pattern indicated an amorphous state, with no peaks observed throughout the spectrum. The UV–visible spectrophotometry revealed a characteristic absorption peak at 375 nm, indicating the presence of ZnO nanoparticles. Fourier Transform Infrared Spectroscopy (FTIR) displayed several small peaks between 1793 and 2370 cm−1, providing evidence of the presence of different kinds of organic compounds with different functional groups. ZnO-NPs showed dose-dependent antibacterial and antifungal potential against all strains. Staphylococcus aureus and Candida albicans were the most susceptible strains. The nanoparticles exhibited a maximum antioxidant effect of 85.28% at 100 μg/mL. In this study, the acute toxicity test showed no mortality, and normal behavior was observed in mice at ZnO-NP doses of 5, 10, and 20 mg/kg. For analgesic and antipyretic activities, a two-way ANOVA revealed that dose, time, and the interaction between dose and time were significant. In contrast, the samples had a non-significant effect on sedative activity. Conclusions: This innovative study suggests a potential use of plant resources for managing microbes and treating various diseases, providing a scientific basis for the traditional use of H. rariflorum. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

18 pages, 622 KiB  
Article
Modeling and Performance Evaluation of a Cellular Network with OMA and NOMA Users with Batch Arrivals by Means of an M[X]/M/S/0 Model
by Luis Alberto Vásquez-Toledo, Carlos González-Flores, Miguel Lopez-Guerrero, Alfonso Prieto-Guerrero, José Alfredo Tirado-Méndez, Ricardo Marcelín-Jiménez, Enrique Rodriguez-Colina, Michael Pascoe-Chalke and Francisco R. Castillo-Soria
Mathematics 2024, 12(21), 3400; https://doi.org/10.3390/math12213400 (registering DOI) - 30 Oct 2024
Viewed by 224
Abstract
Nowadays, efficient spectrum usage is one of the most important design principles to take into account in wireless communications due to the exponential growth of mobile devices. In that sense, solutions such as Non-Orthogonal Multiple Access (NOMA) and cognitive radio (CR) have been [...] Read more.
Nowadays, efficient spectrum usage is one of the most important design principles to take into account in wireless communications due to the exponential growth of mobile devices. In that sense, solutions such as Non-Orthogonal Multiple Access (NOMA) and cognitive radio (CR) have been proposed. In essence, NOMA allows some interference level by using non-orthogonal resource allocation with a tolerable increase in receiver complexity employing successive interference cancellation (SIC). In this work, a novel mathematical model of teletraffic for users performing accessment, simultaneously, by means of Orthogonal Multiple Access (OMA) and NOMA, is developed using a Markovian process that considers bursts of arrivals to model the access schemes. This novel procedure implies a closed-form solution of the proposed system compared to other works where these parameters are estimated assuming the moment generating function obtained with approximation models. The model is validated with a discrete event simulator, considering different scenarios and simulation conditions. The simulation results are in agreement with the mathematical solution proposed. Full article
(This article belongs to the Special Issue Stochastic Processes: Theory, Simulation and Applications)
Show Figures

Figure 1

10 pages, 2849 KiB  
Article
Effects of 10 keV Electron Irradiation on the Performance Degradation of SiC Schottky Diode Radiation Detectors
by Jinlu Ruan, Liang Chen, Leidang Zhou, Xue Du, Fangbao Wang, Yapeng Zhang, Penghui Zhao and Xiaoping Ouyang
Micromachines 2024, 15(11), 1331; https://doi.org/10.3390/mi15111331 (registering DOI) - 30 Oct 2024
Viewed by 193
Abstract
The silicon carbide (SiC) Schottky diode (SBD) detector in a SiC hybrid photomultiplier tube (HPMT) generates signals by receiving photocathode electrons with an energy of 10 keV. So, the performance of the SiC SBD under electron irradiation with an energy of 10 keV [...] Read more.
The silicon carbide (SiC) Schottky diode (SBD) detector in a SiC hybrid photomultiplier tube (HPMT) generates signals by receiving photocathode electrons with an energy of 10 keV. So, the performance of the SiC SBD under electron irradiation with an energy of 10 keV has an important significance for the application of the SiC-HPMT. However, studies on 10 keV radiation effects on the SiC SBDs were rarely reported. In this paper, the performance degradation of the SiC SBDs irradiated by 10 keV electrons at different fluences was investigated. After the irradiation, the forward current of the SiC SBDs increased, and the turn-on voltage decreased with the irradiation fluences until 1.6 × 1016 cm−2. According to the capacitance–voltage (C-V) curves, the effective doping concentration increased slightly after the irradiation, and an obvious discrepancy of C-V curves occurred below 5 V. Moreover, as a radiation detector, the peak position of the α-particles’ amplitude spectrum changed slightly, and the energy resolution was also slightly reduced after the irradiation due to the high collection charge efficiency (CCE) still being larger than 99.5%. In addition, the time response of the SiC SBD to the 50 ns pulsed X-ray was almost not affected by the irradiation. The results indicated that the performance degradation of the SiC SBD irradiated at the fluence of 1.5 × 1017 cm−2 would not result in a deterioration of the properties of the SiC-HPMT and showed an important significance for the supplement of the radiation resistance of the SiC SBD radiation detector. Full article
Show Figures

Figure 1

19 pages, 11328 KiB  
Article
Assessment of the Risk of Crack Formation at a Hybrid Bonding Interface Using Numerical Analysis
by Xuan-Bach Le and Sung-Hoon Choa
Micromachines 2024, 15(11), 1332; https://doi.org/10.3390/mi15111332 (registering DOI) - 30 Oct 2024
Viewed by 228
Abstract
Hybrid bonding technology has recently emerged as a promising solution for advanced semiconductor packaging technologies. However, several reliability issues still pose challenges for commercialization. In this study, we investigated the possibility of crack formation caused by chemical mechanical polishing (CMP) defects and the [...] Read more.
Hybrid bonding technology has recently emerged as a promising solution for advanced semiconductor packaging technologies. However, several reliability issues still pose challenges for commercialization. In this study, we investigated the possibility of crack formation caused by chemical mechanical polishing (CMP) defects and the misalignment of the hybrid bonding structure. Crack formation and thermomechanical stress were analyzed for two common hybrid bonding structures with misalignment using a numerical simulation. The effects of annealing temperature and dishing value on changes in the non-bonding area and peeling stress were systematically analyzed. The calculated peeling stresses were compared to the bonding strength of each bonding interface to find vulnerable regions prone to cracking. The non-bonding area in the bonding structure increased with a decreasing annealing temperature and an increasing dishing value. To achieve a sufficient bonding area of more than 90%, the annealing temperature should be greater than 200 °C. During the heating period of the annealing process, the SiCN-to-SiCN bonding interface was the most vulnerable cracking site with the highest peeling stress. An annealing temperature of 350 °C carries a significant risk of cracking. On the other hand, an annealing temperature lower than 250 °C will minimize the chance of cracking. The SiCN-to-SiO2 bonding interface, which has the lowest adhesion energy and a large coefficient of thermal expansion (CTE) mismatch, was expected to be another possible cracking site. During cooling, the SiCN-to-Cu bonding interface was the most vulnerable site with the highest stress. However, the simulated peeling stresses were lower than the adhesion strength of the bonded interface, indicating that the chance of cracking during the cooling process was very low. This study provides insights into minimizing the non-bonding area and preventing crack formation, thereby enhancing the reliability of hybrid bonding structures. Full article
Show Figures

Figure 1

21 pages, 5577 KiB  
Article
Calcium Silicate Promoting the Upcycling Potential of Polysulfone Medical Waste in Load-Bearing Applications
by Chi-Nan Chang, Jia-Jia Chung, Huei-Yu Jiang and Shinn-Jyh Ding
J. Funct. Biomater. 2024, 15(11), 323; https://doi.org/10.3390/jfb15110323 (registering DOI) - 30 Oct 2024
Viewed by 156
Abstract
Polysulfone (PSF) medical waste can be effectively repurposed due to its excellent mechanical properties. Due to the increasing need for load-bearing bone implants, it is crucial to prioritize the development of biocompatible polymer–matrix composites. Calcium silicate (CaSi), known for its osteogenesis and antibacterial [...] Read more.
Polysulfone (PSF) medical waste can be effectively repurposed due to its excellent mechanical properties. Due to the increasing need for load-bearing bone implants, it is crucial to prioritize the development of biocompatible polymer–matrix composites. Calcium silicate (CaSi), known for its osteogenesis and antibacterial properties, is widely used in medical applications. In this study, recycled PSF plastics in fiber or nanoparticle forms and commercial PSF products were used to create PSF-based composites filled with three different amounts (10, 20, and 30 vol%) of CaSi. The green compact was heat-treated at various temperatures. Experimental results showed that the mechanical interlocking of the PSF matrix and CaSi filler occurred due to the liquefaction of PSF fibers or nanoparticles during heat treatment. When the composite contained 20% CaSi, the obtained three-point bending strength exceeded 60 MPa, falling within the reported strength of compact bone. There was a concurrent improvement in the biocompatibility and antibacterial activity of the PSF-based composites with the increasing amount of CaSi. Considering their mechanical properties and antibacterial activity, the 20% CaSi-containing PSF-based composites treated at 240 °C emerged as a promising candidate for bone implant applications. This study demonstrated the feasibility of upcycling medical waste such as PSF as a matrix, opening doors for its potential usage in the medical field. Full article
(This article belongs to the Special Issue Functional Composites for Bone Implants and Osseointegration)
Show Figures

Figure 1

15 pages, 2918 KiB  
Communication
Monodentate Ligands in X-Cu(I)-Y Complexes—Structural Aspects
by Milan Melník, Veronika Mikušová and Peter Mikuš
Inorganics 2024, 12(11), 279; https://doi.org/10.3390/inorganics12110279 - 30 Oct 2024
Viewed by 180
Abstract
This structural study examines over 102 coordinate Cu(I) complexes with compositions such as C-Cu-Y (Y=HL, OL, NL, SL, SiL, BL, PL, Cl, Br, I, AlL, or SnL), N-Cu-Y (Y=OL, Cl), S-Cu-Y (Y=Cl, Br, I), P-Cu-Y (Y=Cl, I), and Se-Cu-Y (Y=Br, I). These complexes [...] Read more.
This structural study examines over 102 coordinate Cu(I) complexes with compositions such as C-Cu-Y (Y=HL, OL, NL, SL, SiL, BL, PL, Cl, Br, I, AlL, or SnL), N-Cu-Y (Y=OL, Cl), S-Cu-Y (Y=Cl, Br, I), P-Cu-Y (Y=Cl, I), and Se-Cu-Y (Y=Br, I). These complexes crystallize into three different crystal classes: monoclinic (seventy-two instances), triclinic (twenty-eight instances), and orthorhombic (eight instances). The Cu-L bond length increases with the covalent radius of the ligating atom. There are two possible geometries for coordination number two: linear and bent. A total of 21 varieties of inner coordination spheres exist, categorized into two hetero-types (C-Cu-Y, i.e., organometallic compounds and X-Cu-Y, i.e., coordination compounds). The structural parameters of hetero Cu(I) complexes were compared with trans-X-Cu (I)-X (homo) complexes and analyzed. The maximum deviations from linearity (180.0°) are, on average, 10.3° for Br-Cu(I)-Br, 16.6° for C-Cu(I)-Sn, and 35.5° for P-Cu(I)-I. These results indicate that ligand properties influence deviation from linearity, increasing in the order of hard < borderline < soft. Full article
(This article belongs to the Special Issue Feature Papers in Organometallic Chemistry 2024)
Show Figures

Figure 1

16 pages, 11277 KiB  
Article
Microstructural and Oxidation Effects of Nb Additions to U3Si2
by Geronimo Robles, Joshua T. White, Scarlett Widgeon Paisner and Elizabeth S. Sooby
Metals 2024, 14(11), 1239; https://doi.org/10.3390/met14111239 - 30 Oct 2024
Viewed by 207
Abstract
U3Si2 is a long term, accident-tolerant nuclear fuel candidate for light-water reactors because of its superior thermal conductivity and increased uranium density when compared to traditional uranium dioxide (UO2). While reducing internal thermal stresses and increasing efficiency, U [...] Read more.
U3Si2 is a long term, accident-tolerant nuclear fuel candidate for light-water reactors because of its superior thermal conductivity and increased uranium density when compared to traditional uranium dioxide (UO2). While reducing internal thermal stresses and increasing efficiency, U3Si2 exhibits energetic oxidation during certain off-normal and accident scenarios, which include coolant or steam exposure. To mitigate this, Nb is investigated as an alloy constituent to enhance corrosion resistance and increase mechanical strength. The work presented investigates the response of Nb-alloyed U3Si2 to steam atmospheres. A thermogravimetric analysis is conducted in flowing steam to T > 1000 °C to assess oxidation resistance. The phase characterization of as-melted, thermally annealed and post-oxidation compositions with up to 12 vol% Nb by powder X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy is reported. Full article
Show Figures

Figure 1

15 pages, 2743 KiB  
Article
Reducing Successive Interference Cancellation Iterations in Hybrid Beamforming Multiuser Massive Multiple Input Multiple Output Systems Through Grouping Users with Symmetry Channels
by Hashem Khaled Rehab, Eugeniy Rogozhnikov, Kirill Savenko, Semen Mukhamadiev, Yakov Kryukov and Dmitriy Pokamestov
Symmetry 2024, 16(11), 1437; https://doi.org/10.3390/sym16111437 - 29 Oct 2024
Viewed by 463
Abstract
This paper presents a comprehensive exploration of advanced beamforming techniques tailored for millimeter-wave (mm-Wave) communication systems. In response to the burgeoning demand for higher data rates, coupled with the constraints of power consumption and hardware complexity, this study focuses on developing a hybrid [...] Read more.
This paper presents a comprehensive exploration of advanced beamforming techniques tailored for millimeter-wave (mm-Wave) communication systems. In response to the burgeoning demand for higher data rates, coupled with the constraints of power consumption and hardware complexity, this study focuses on developing a hybrid beamforming framework optimized for downlink scenarios, specifically targeting groups of users based on the approximate symmetry of their channels. The primary innovation of this research lies in leveraging the symmetry of channels among near users to develop a group-based successive interference cancellation (SIC) algorithm. Unlike traditional approaches that address interference on a per-user basis, this algorithm utilizes channel symmetry within clusters of users to reduce computational complexity and improve the efficiency of SIC. By grouping users with symmetrical channel characteristics, the algorithm simplifies the interference management process while maintaining system performance. The proposed system demonstrates notable advantages over existing non-linear algorithms through extensive simulations and performance evaluations, particularly in terms of spectral efficiency and computational complexity. In this study, we further emphasize the importance of balancing spectral efficiency improvements with reduced computational demands, offering a nuanced trade-off that accommodates various operational requirements. The flexible optimization framework provided showcases the system’s adaptability to diverse deployment scenarios and network configurations. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

21 pages, 3275 KiB  
Article
One-Dimensional Photonic Crystals Comprising Two Different Types of Metamaterials for the Simple Detection of Fat Concentrations in Milk Samples
by Mai Medhat, Cherstina Malek, Mehdi Tlija, Mostafa R. Abukhadra, Stefano Bellucci, Hussein A. Elsayed and Ahmed Mehaney
Nanomaterials 2024, 14(21), 1734; https://doi.org/10.3390/nano14211734 - 29 Oct 2024
Viewed by 363
Abstract
In this study, we demonstrate the reflectance spectrum of one-dimensional photonic crystals comprising two different types of metamaterials. In this regard, the designed structure can act as a simple and efficient detector for fat concentrations in milk samples. Here, the hyperbolic and gyroidal [...] Read more.
In this study, we demonstrate the reflectance spectrum of one-dimensional photonic crystals comprising two different types of metamaterials. In this regard, the designed structure can act as a simple and efficient detector for fat concentrations in milk samples. Here, the hyperbolic and gyroidal metamaterials represent the two types of metamaterials that are stacked together to construct the candidate structure; meanwhile, the designed 1D PCs can be simply configured as [G(ED)m]S. Here, G refers to the gyroidal metamaterial layers in which Ag is designed in a gyroidal configuration form inside a hosting medium of TiO2. In contrast, (ED) defines a single unit cell of the hyperbolic metamaterials in which two layers of porous SiC (E) and Ag (D) are combined together. It is worth noting that our theoretical and simulation methodology is essentially based on the effective medium theory, characteristic matrix method, Drude model, Bruggeman’s approximation, and Sellmeier formula. Accordingly, the numerical findings demonstrate the emergence of three resonant peaks at a specified wavelength between 0.8 μm and 3.5 μm. In this context, the first peak located at 1.025 μm represents the optimal one regarding the detection of fat concentrations in milk samples due to its low reflectivity and narrow full bandwidth. Accordingly, the candidate detector could provide a relatively high sensitivity of 3864 nm/RIU based on the optimal values of the different parameters. Finally, we believe that the proposed sensor may be more efficient compared to other counterparts in monitoring different concentrations of liquid, similar to fats in milk. Full article
Show Figures

Figure 1

19 pages, 19095 KiB  
Article
Reactive Spark Plasma Sintering and Oxidation of ZrB2-SiC and ZrB2-HfB2-SiC Ceramic Materials
by Elizaveta P. Simonenko, Eugeniy K. Papynov, Oleg O. Shichalin, Anton A. Belov, Ilya A. Nagornov, Tatiana L. Simonenko, Philipp Yu. Gorobtsov, Maria A. Teplonogova, Artem S. Mokrushin, Nikolay P. Simonenko and Nikolay T. Kuznetsov
Ceramics 2024, 7(4), 1566-1583; https://doi.org/10.3390/ceramics7040101 - 29 Oct 2024
Viewed by 280
Abstract
This study presents the fabrication possibilities of ultra-high-temperature ceramics of ZrB2-30 vol.%SiC and (ZrB2-HfB2)-30 vol.% SiC composition using the reaction spark plasma sintering of composite powders ZrB2(HfB2)-(SiO2-C) under two-stage heating conditions. [...] Read more.
This study presents the fabrication possibilities of ultra-high-temperature ceramics of ZrB2-30 vol.%SiC and (ZrB2-HfB2)-30 vol.% SiC composition using the reaction spark plasma sintering of composite powders ZrB2(HfB2)-(SiO2-C) under two-stage heating conditions. The phase composition and microstructure of the obtained ceramic materials have been subjected to detailed analysis, their electrical conductivity has been evaluated using the four-contact method, and the electron work function has been determined using Kelvin probe force microscopy. The thermal analysis in the air, as well as the calcination of the samples at temperatures of 800, 1000, and 1200 °C in the air, demonstrated a comparable behavior of the materials in general. However, based on the XRD data and mapping of the distribution of elements on the oxidized surface (EDX), a slightly higher oxidation resistance of the ceramics (ZrB2-HfB2)-30 vol.% SiC was observed. The I-V curves of the sample surfaces recorded with atomic force microscopy demonstrated that following oxidation in the air at 1200 °C, the surfaces of the materials exhibited a marked reduction in current conductivity due to the formation of a dielectric layer. However, data obtained from Kelvin probe force microscopy indicated that (ZrB2-HfB2)-30 vol.% SiC ceramics also demonstrated enhanced resistance to oxidation. Full article
Show Figures

Figure 1

16 pages, 5103 KiB  
Article
Rural Poultry Farming: Leveraging Higher Poultry Input Costs to Grow Zambia’s Indigenous Chicken Sector
by Christopher Manchishi Kanyama, Mathews Ngosa, Terence Z. Sibanda, Amy F. Moss and Tamsyn M. Crowley
Poultry 2024, 3(4), 383-398; https://doi.org/10.3390/poultry3040029 - 29 Oct 2024
Viewed by 328
Abstract
(a) Introduction: Zambia’s poultry industry comprises commercial chickens and small-scale producers of indigenous chickens (Gallus domesticus) (ICs). Large, integrated entities run the commercial chicken sector, while the indigenous chicken sector (IC sector) is predominantly run by small-scale farmers (SSFs). Increased costs [...] Read more.
(a) Introduction: Zambia’s poultry industry comprises commercial chickens and small-scale producers of indigenous chickens (Gallus domesticus) (ICs). Large, integrated entities run the commercial chicken sector, while the indigenous chicken sector (IC sector) is predominantly run by small-scale farmers (SSFs). Increased costs and low access to formal markets for commercial chickens have motivated SSFs to enter the IC sector under the free-range system (FRS) and semi-intensive system (SIS). (b) Objective: This study aimed to highlight the price changes in poultry inputs and outputs and demonstrate that the IC sector has more potential to contribute to farm income than commercial chickens under family poultry production systems. (c) Method: We analysed the prices for inputs and outputs for Zambia’s poultry industry for the first quarter of 2016 to 2023 using data from the Poultry Association of Zambia (PAZ). We also analysed data from the 2021 Qualtrics survey to investigate the crops grown and crops used as feed and feed ingredients, the sources of feed, and the use of minerals and vitamins by SSFs for chickens. The gross profit (GP) and benefit–cost ratio (BCR) were analysed to compare the viability and profitability of ICs and broilers under SSFs. (d) Results: Our study shows that prices for day-old chicks (DOCs) and point-of-lay (POL) pullets increased by 57–125%, broiler and layer feeds increased by 67–96%, and soybean meal (SBM) and fishmeal rose by 143–229%. Prices for live ICs, commercial broilers, and ex-layers increased by 150%, 79%, and 71%, respectively. Egg prices rose by 100–124%. Farmers tried to look for local feed sources. Over 21% of the crops grown was maize, and nearly 43% was used for feed. (e) Conclusion: Our analysis and comparison between the ICs and broilers demonstrated that SSFs could achieve more farm income by producing ICs than commercial broilers. Full article
Show Figures

Figure 1

16 pages, 4858 KiB  
Article
Feasibility of Exceeding 20% Efficiency for Kesterite/c-Silicon Tandem Solar Cells Using an Alternative Buffer Layer: Optical and Electrical Analysis
by Naoufal Ennouhi, Safae Aazou, Abdeljalile Er-rafyg, Zakaria Laghfour and Zouheir Sekkat
Nanomaterials 2024, 14(21), 1722; https://doi.org/10.3390/nano14211722 - 29 Oct 2024
Viewed by 325
Abstract
Tandem solar cells have the potential to be more efficient than the Shockley–Queisser limit imposed on single junction cells. In this study, optical and electrical modeling based on experimental data were used to investigate the possibility of boosting the performance of kesterite/c-Si tandem [...] Read more.
Tandem solar cells have the potential to be more efficient than the Shockley–Queisser limit imposed on single junction cells. In this study, optical and electrical modeling based on experimental data were used to investigate the possibility of boosting the performance of kesterite/c-Si tandem solar cells by inserting an alternative nontoxic TiO2 buffer layer into the kesterite top subcell. First, with SCAPS-1D simulation, we determined the data reported for the best kesterite (CZTS (Eg = 1.5 eV)) device in the experiments to be used as a simulation baseline. After obtaining metric parameters close to those reported, the influence on the optoelectronic characteristics of replacing CdS with a TiO2 buffer layer was studied and analyzed. Different top subcell absorbers (CZTS0.8Se0.2 (Eg = 1.4 eV), CZTS (Eg = 1.5 eV), CZTS (Eg = 1.6 eV), and CZT0.6Ge0.4S (Eg = 1.7 eV)) with different thicknesses were investigated under AM1.5 illumination. Then, to achieve current matching conditions, the c-Si bottom subcell, with an efficiency at the level of commercially available subcells (19%), was simulated using various top subcells transmitting light calculated using the transfer matrix method (TMM) for optical modeling. Adding TiO2 significantly enhanced the electrical and optical performance of the kesterite top subcell due to the decrease in parasitic light absorption and heterojunction interface recombination. The best tandem device with a TiO2 buffer layer for the top subcell with an optimum bandgap equal to 1.7 eV (CZT0.6Ge0.4S4) and a thickness of 0.8 µm achieved an efficiency of approximately 20%. These findings revealed that using a TiO2 buffer layer is a promising way to improve the performance of kesterite/Si tandem solar cells in the future. However, important optical and electrical breakthroughs are needed to make kesterite materials viable for tandem applications. Full article
Show Figures

Figure 1

Back to TopTop