Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,228)

Search Parameters:
Keywords = Src

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 11475 KiB  
Article
Evaluating the Future Effectiveness of Cooling Strategies in Subtropical Terrace Houses Under Climate Change
by Chang Lin and Jun Huang
Buildings 2024, 14(11), 3619; https://doi.org/10.3390/buildings14113619 (registering DOI) - 14 Nov 2024
Abstract
Due to increasing overheating risk from the global warming, it is crucial to evaluate building performance, especially that of a subtropical terrace house with limited façade exposure, to ensure its future livability. The effectiveness of current cooling strategies has not yet been thoroughly [...] Read more.
Due to increasing overheating risk from the global warming, it is crucial to evaluate building performance, especially that of a subtropical terrace house with limited façade exposure, to ensure its future livability. The effectiveness of current cooling strategies has not yet been thoroughly analyzed by considering specific zone position in a terrace house and varying future weather scenarios in existing studies. This study quantifies livability of six typical zones in two types of terrace houses employing two cooling strategies during summer under historical and future weather scenarios. It considers two key outputs: annual heat discomfort hours and cooling Energy Use Intensity (EUI). Additionally, a global sensitivity analysis using Standard Regression Coefficients (SRCs) identifies the key variables. The results indicate that the future annual cooling EUI is projected to increase by around 150 kWh/m2, with discomfort hours reaching 80% during summertime. Furthermore, window-to-wall ratio, total length, and solar heat gain coefficients (SHGCs) of windows significantly reduce cooling EUI by 50–165 kWh/m2. However, most input variables have a minimal impact on heat discomfort hours, resulting only in a 0.7–7.2% reduction. This study provides an analytical framework for assessing the future livability and sustainability of subtropical terrace houses, facilitating the development of robust strategies during the early design stage. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

29 pages, 6571 KiB  
Article
Clitoria ternatea L. (Butterfly Pea) Flower Against Endometrial Pain: Integrating Preliminary In Vivo and In Vitro Experimentations Supported by Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation Studies
by Najneen Ahmed, Nazifa Tabassum, Parisa Tamannur Rashid, Basrat Jahan Deea, Fahmida Tasnim Richi, Anshuman Chandra, Shilpi Agarwal, Saima Mollick, Kaushik Zaman Dipto, Sadia Afrin Mim and Safaet Alam
Life 2024, 14(11), 1473; https://doi.org/10.3390/life14111473 - 13 Nov 2024
Viewed by 219
Abstract
Clitoria ternatea L. (CT) is a perennial herbaceous plant with deep blue flowers native to tropical Asia. This work explores the endometrial pain (EP) regulation of CT flower through a multifaceted approach. Phytochemical screening unveiled the presence of alkaloids, steroids, flavonoids, glycosides, and [...] Read more.
Clitoria ternatea L. (CT) is a perennial herbaceous plant with deep blue flowers native to tropical Asia. This work explores the endometrial pain (EP) regulation of CT flower through a multifaceted approach. Phytochemical screening unveiled the presence of alkaloids, steroids, flavonoids, glycosides, and tannins in CT flower methanolic extract (ME). In the in vitro membrane stabilizing experiment, the ME demonstrated 91.47% suppression of heat-induced hemolysis. Upon carrageenan-induced paw edema assay conducted on male Swiss albino mice at doses of 200 mg/kg and 400 mg/kg, 65.28% and 81.89% inhibition rates, respectively, of paw edema were reported. For the same doses, upon acetic acid-induced-writhing assay, 75.6% and 76.78% inhibition rates, respectively, were observed. For network pharmacology analyses, a protein–protein interaction network was constructed for 92 overlapping gene targets of CT and EP, followed by GO and KEGG pathway enrichment analyses. Network pharmacology-based investigation identified the anti-EP activity of CT to be mostly regulated by the proteins SRC homology, ESR1, and PI3KR1. Physicochemical, pharmacokinetic, and toxicity property predictions for the compounds with stable ligand–target interactions and a molecular dynamics simulation for the highest interacting complex further validated these findings. This work affirmed the anti-EP role of CT flower against EP, suggesting a probable molecular mechanism involved. Full article
(This article belongs to the Special Issue Advances in the Biomedical Applications of Plants and Plant Extracts)
Show Figures

Figure 1

15 pages, 3249 KiB  
Article
Antimicrobial Peptide Pro10-1D Exhibits Anti-Allergic Activity: A Promising Therapeutic Candidate
by Min Yeong Choi, Min Geun Jo, Keun Young Min, Byeongkwon Kim, Yangmee Kim and Wahn Soo Choi
Int. J. Mol. Sci. 2024, 25(22), 12138; https://doi.org/10.3390/ijms252212138 - 12 Nov 2024
Viewed by 243
Abstract
Although antimicrobial peptides (AMPs) exhibit a range of biological functions, reports on AMPs with therapeutic effects in allergic disorders are limited. In this study, we investigated the anti-allergic effects of Pro10-1D, a 10-meric AMP derived from insect defensin protaetiamycine. Our findings demonstrate that [...] Read more.
Although antimicrobial peptides (AMPs) exhibit a range of biological functions, reports on AMPs with therapeutic effects in allergic disorders are limited. In this study, we investigated the anti-allergic effects of Pro10-1D, a 10-meric AMP derived from insect defensin protaetiamycine. Our findings demonstrate that Pro10-1D effectively inhibits antigen-induced degranulation of mast cells (MCs) with IC50 values of approximately 11.6 μM for RBL-2H3 cells and 2.7 μM for bone marrow-derived MCs. Furthermore, Pro10-1D suppressed the secretion of cytokines with IC50 values of approximately 2.8 μM for IL-4 and approximately 8.6 μM for TNF-α. Mechanistically, Pro10-1D inhibited the Syk-LAT-PLCγ1 signaling pathway in MCs and decreased the activation of mitogen-activated protein kinases (MAPKs). Pro10-1D demonstrated a dose-dependent reduction in IgE-mediated passive cutaneous anaphylaxis in mice with an ED50 value of approximately 7.6 mg/kg. Further investigation revealed that Pro10-1D significantly reduced the activity of key kinases Fyn and Lyn, which are critical in the initial phase of the FcεRI-mediated signaling pathway, with IC50 values of approximately 22.6 μM for Fyn and approximately 1.5 μM for Lyn. Collectively, these findings suggest that Pro10-1D represents a novel therapeutic candidate for the treatment of IgE-mediated allergic disorders by targeting the Lyn/Fyn Src family kinases in MCs. Full article
(This article belongs to the Collection Feature Papers in Molecular Pharmacology)
Show Figures

Graphical abstract

19 pages, 4753 KiB  
Article
Halloysite Nanotube-Based Delivery of Pyrazolo[3,4-d]pyrimidine Derivatives for Prostate and Bladder Cancer Treatment
by Marina Massaro, Rebecca Ciani, Giancarlo Grossi, Gianfranco Cavallaro, Raquel de Melo Barbosa, Marta Falesiedi, Cosimo G. Fortuna, Anna Carbone, Silvia Schenone, Rita Sánchez-Espejo, César Viseras, Riccardo Vago and Serena Riela
Pharmaceutics 2024, 16(11), 1428; https://doi.org/10.3390/pharmaceutics16111428 - 9 Nov 2024
Viewed by 376
Abstract
Background/Objectives: The development of therapies targeting unregulated Src signaling through selective kinase inhibition using small-molecule inhibitors presents a significant challenge for the scientific community. Among these inhibitors, pyrazolo[3,4-d]pyrimidine heterocycles have emerged as potent agents; however, their clinical application is hindered by [...] Read more.
Background/Objectives: The development of therapies targeting unregulated Src signaling through selective kinase inhibition using small-molecule inhibitors presents a significant challenge for the scientific community. Among these inhibitors, pyrazolo[3,4-d]pyrimidine heterocycles have emerged as potent agents; however, their clinical application is hindered by low solubility in water. To overcome this limitation, some carrier systems, such as halloysite nanotubes (HNTs), can be used. Methods: Herein, we report the development of HNT-based nanomaterials as carriers for pyrazolo[3,4-d]pyrimidine molecules. To achieve this objective, the clay was modified by two different approaches: supramolecular loading into the HNT lumen and covalent grafting onto the HNT external surface. The resulting nanomaterials were extensively characterized, and their morphology was imaged by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). In addition, the kinetic release of the molecules supramolecularly loaded into the HNTs was also evaluated. QSAR studies were conducted to elucidate the physicochemical and pharmacokinetic properties of these inhibitors, and structure-based virtual screening (SBVS) was performed to analyze their binding poses in protein kinases implicated in cancer. Results: The characterization methods demonstrate successful encapsulation of the drugs and the release properties under physiological conditions. Furthermore, QSAR studies and SBVS provide valuable insights into the physicochemical, pharmacokinetic, and binding properties of these inhibitors, reinforcing their potential efficacy. Conclusions: The cytotoxicity of these halloysite-based nanomaterials, and of pure molecules for comparison, was tested on RT112, UMUC3, and PC3 cancer cell lines, demonstrating their potential as effective agents for prostate and bladder cancer treatment. Full article
(This article belongs to the Special Issue Applications of Nanomaterials in Drug Delivery and Drug Release)
Show Figures

Figure 1

24 pages, 6414 KiB  
Article
Robust Driving Control Design for Precise Positional Motions of Permanent Magnet Synchronous Motor Driven Rotary Machines with Position-Dependent Periodic Disturbances
by Syh-Shiuh Yeh and Zhi-Hong Liu
Machines 2024, 12(11), 771; https://doi.org/10.3390/machines12110771 - 1 Nov 2024
Viewed by 536
Abstract
Position-dependent periodic disturbances often limit the accuracy and smoothness of the positional motion of permanent magnet synchronous motor (PMSM)-driven rotary machines. Because the period of these disturbances varies with the motion velocity of the rotary machine, spatial domain control methods such as spatial [...] Read more.
Position-dependent periodic disturbances often limit the accuracy and smoothness of the positional motion of permanent magnet synchronous motor (PMSM)-driven rotary machines. Because the period of these disturbances varies with the motion velocity of the rotary machine, spatial domain control methods such as spatial iterative learning control (SILC) and spatial repetitive control (SRC) have been proposed and applied to improve rotary machine motion control designs. However, problems with learning period convergence and rotary machine dynamics significantly affect transient motion, further constraining the overall motion performance. To address these challenges, this study developed a robust driving control (RDC) that integrates a robust control design with position-dependent periodic disturbance feedforward compensation, rotary machine dynamics compensation, and proportional–proportional integral feedback control. A position-dependent periodic disturbance model was developed using multiple position–sinusoidal signals and identified using a spatial fast Fourier transform. RDC compensates for disturbances and dynamics and considers the effects of model parameter uncertainty and modeling error on the stability of the control system. Several motion control experiments were conducted on a PMSM test bench to compare the RDC, SILC, and SRC. The experimental results demonstrated that although both SILC and SRC can effectively suppress position-dependent periodic disturbances, SILC provides slower position error convergence owing to the learning process, and SILC and SRC result in significant position errors because of the influence of the PMSM-driven rotary machine dynamics. RDC not only suppresses position-dependent periodic disturbances, but also significantly reduces position errors with a reduction rate of 90%. Therefore, the RDC developed in this study effectively suppressed position-dependent periodic disturbances and significantly improved both the transient-state and steady-state position-tracking performances of the PMSM-driven rotary machine. Full article
Show Figures

Figure 1

19 pages, 2390 KiB  
Article
Advanced Extraction Techniques and Physicochemical Properties of Carrageenan from a Novel Kappaphycus alvarezii Cultivar
by Madalena Mendes, João Cotas, Irene B. Gutiérrez, Ana M. M. Gonçalves, Alan T. Critchley, Lourie Ann R. Hinaloc, Michael Y. Roleda and Leonel Pereira
Mar. Drugs 2024, 22(11), 491; https://doi.org/10.3390/md22110491 - 31 Oct 2024
Viewed by 1023
Abstract
Carrageenans are valuable marine polysaccharides derived from specific species of red seaweed (Rhodophyta) widely used as thickening and stabilizing agents across various industries. Kappaphycus alvarezii, predominantly cultivated in tropical countries, is the primary source of kappa-carrageenan. Traditional industrial extraction methods involve alkaline [...] Read more.
Carrageenans are valuable marine polysaccharides derived from specific species of red seaweed (Rhodophyta) widely used as thickening and stabilizing agents across various industries. Kappaphycus alvarezii, predominantly cultivated in tropical countries, is the primary source of kappa-carrageenan. Traditional industrial extraction methods involve alkaline treatment for up to three hours followed by heating, which is inefficient and generates substantial waste. Thus, developing improved extraction techniques would be helpful for enhancing efficiency and reducing environmental impacts, solvent costs, energy consumption, and the required processing time. In this study, we explored innovative extraction methods, such as ultrasound-assisted extraction (UAE) and supercritical water extraction (SFE), together with other extraction methods to produce kappa-carrageenan from a new strain of K. alvarezii from the Philippines. FTIR-ATR spectroscopy was employed to characterize the structure of the different carrageenan fractions. We also examined the physicochemical properties of isolated phycocolloids, including viscosity, and the content of fatty acids, proteins, and carbohydrates. For refined carrageenan (RC), both the traditional extraction method and the UAE method used 1 M NaOH. Additionally, UAE (8% KOH) was employed to produce semi-refined carrageenan (SRC). UAE (8% KOH) produced a high yield of carrageenan, in half the extraction time (extraction yield: 76.70 ± 1.44), and improved carrageenan viscosity (658.7 cP), making this technique highly promising for industrial scaling up. On the other hand, SFE also yielded a significant amount of carrageenan, but the resulting product had the lowest viscosity and an acidic pH, posing safety concerns as classified by the EFSA’s re-evaluation of carrageenan as a food additive. Full article
Show Figures

Graphical abstract

14 pages, 8731 KiB  
Article
Kinin Receptors B1 and B2 Mediate Breast Cancer Cell Migration and Invasion by Activating the FAK-Src Axis
by Felipe González-Turén, Lorena Lobos-González, Alexander Riquelme-Herrera, Andrés Ibacache, Luis Meza Ulloa, Alexandra Droguett, Camila Alveal, Bastián Carrillo, Javiera Gutiérrez, Pamela Ehrenfeld and Areli Cárdenas-Oyarzo
Int. J. Mol. Sci. 2024, 25(21), 11709; https://doi.org/10.3390/ijms252111709 - 31 Oct 2024
Viewed by 368
Abstract
Kinin receptors B1 and B2 are involved in migration and invasion in gastric, glioma, and cervical cancer cells, among others. However, the role of kinin receptors in breast cancer cells has been poorly studied. We aimed to reveal the impact of B1 and [...] Read more.
Kinin receptors B1 and B2 are involved in migration and invasion in gastric, glioma, and cervical cancer cells, among others. However, the role of kinin receptors in breast cancer cells has been poorly studied. We aimed to reveal the impact of B1 and B2 receptors on migration and invasion in breast cancer cells and demonstrate their capacity to modulate in vivo tumor growth. MDA-MB-231, MCF-7, and T47D cells treated with Lys-des[Arg9]bradykinin (LDBK) or bradykinin (BK) were used to evaluate migration and invasion. Des-[Arg9]-Leu8-BK and HOE-140 were used as antagonists for the B1 and B2 receptors. MDA-MB-231 cells incubated or not with antagonists were subcutaneously inoculated in BALBc NOD/SCID mice to evaluate tumor growth. LDBK and BK treatment significantly increased migration and invasion in breast cancer cells, effects that were negated when antagonists were used. The use of antagonists in vivo inhibited tumor growth. Moreover, the migration and invasion induced by kinins in breast cancer cells were inhibited when focal adhesion kinase (FAK) and Src inhibitors were used. The novelty revealed in our work is that B1 and B2 receptors activated by LDBK and BK induce migration and invasion in breast cancer cells via a mechanism that involves the FAK–Src signaling pathway, and the antagonism of both receptors in vivo impairs breast tumor growth. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

15 pages, 5854 KiB  
Article
Mechanism of Marinobufagenin-Induced Hyperpermeability of Human Brain Microvascular Endothelial Cell Monolayer: A Potential Pathogenesis of Seizure in Preeclampsia
by Ahmed F. Pantho, Manisha Singh, Syeda H. Afroze, Kelsey R. Kelso, Jessica C. Ehrig, Niraj Vora, Thomas J. Kuehl, Steven R. Lindheim and Mohammad N. Uddin
Cells 2024, 13(21), 1800; https://doi.org/10.3390/cells13211800 - 30 Oct 2024
Viewed by 425
Abstract
Preeclampsia (preE) is a hypertensive disorder in pregnancies. It is the third leading cause of mortality among pregnant women and fetuses worldwide, and there is much we have yet to learn about its pathophysiology. One complication includes cerebral edema, which causes a breach [...] Read more.
Preeclampsia (preE) is a hypertensive disorder in pregnancies. It is the third leading cause of mortality among pregnant women and fetuses worldwide, and there is much we have yet to learn about its pathophysiology. One complication includes cerebral edema, which causes a breach of the blood–brain barrier (BBB). Urinary marinobufagenin (MBG) is elevated in a preE rat model prior to developing hypertension and proteinuria. We investigated what effect MBG has on the endothelial cell permeability of the BBB. Human brain microvascular endothelial cells (HBMECs) were utilized to examine the permeability caused by MBG. The phosphorylation of ERK1/2, Jnk, p38, and Src was evaluated after the treatment with MBG. Apoptosis was evaluated by examining caspase 3/7. MBG ≥ 1 nM inhibited the proliferation of HBMECs by 46–50%. MBG induced monolayer permeability, causing a decrease in the phosphorylation of ERK1/2 and the activated phosphorylation of Jnk, p38, and Src. MBG increased the caspase 3/7 expression, indicating the activation of apoptosis. Apoptotic signaling or the disruption of endothelia tight junction proteins was not observed when using the p38 inhibitor as a pretreatment in MBG-treated cells. The MBG-induced enhancement of the HBMEC monolayer permeability occurs by the downregulation of ERK1/2, the activation of Jnk, p38, Src, and apoptosis, resulting in the cleavage of tight junction proteins, and are attenuated by p38 inhibition. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

16 pages, 8316 KiB  
Article
Experiments and FE Modeling on the Seismic Behavior of Partially Precast Steel-Reinforced Concrete Squat Walls
by Yunlong Yu, Yuntao Liu, Bin Tan, Yaping Liu and Yicong Xue
Buildings 2024, 14(11), 3441; https://doi.org/10.3390/buildings14113441 - 29 Oct 2024
Viewed by 419
Abstract
This paper proposed an innovative precast steel-reinforced concrete (PPSRC) squat wall to simplify on-site construction. In PPSRC squat shear walls, the hollowly precast RC wall panel can be assembled on-site through the pre-erected steel shapes, and the boundary cores will be filled using [...] Read more.
This paper proposed an innovative precast steel-reinforced concrete (PPSRC) squat wall to simplify on-site construction. In PPSRC squat shear walls, the hollowly precast RC wall panel can be assembled on-site through the pre-erected steel shapes, and the boundary cores will be filled using fresh concrete together with the slab system. The seismic performance of PPSRC squat walls, influenced by different construction techniques (cast-in-place vs. precast) and steel ratios, was examined through pseudo-static experiments on three specimens. Some key performance indicators, including hysteretic behavior, skeleton curves, stiffness degradation, energy dissipation, and load-carrying capacity, were analyzed in detail. The test results indicated that all the PPSRC squat walls failed in typical shear failure, and no significant slippage between the precast and fresh concrete sections was observed during the loading process, indicating that the composite action could be fully achieved via the novel throat connectors. In addition, the PPSRC squat walls could achieve comparable seismic performance compared with that of cast-in-place SRC shear walls (the peak load of the PPSRC squat wall only increased by 0.26% compared with the control specimen), and the load-carrying capacity and deformability could be enhanced by increasing the steel ratio in the boundary elements. Finally, an elaborate finite element model was developed and validated using ABAQUS software. The parametric analysis of the concrete strengths of precast and cast-in-place parts and the axial load was conducted further to investigate the seismic performance of PPSRC squat walls. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

14 pages, 2397 KiB  
Article
Dynamic Characteristics of Soil Respiration in Park Green Spaces in Qingdao City
by Furong Wang, Tianci Zhang, Jiacheng Zhang and Shimei Li
Sustainability 2024, 16(21), 9336; https://doi.org/10.3390/su16219336 - 27 Oct 2024
Viewed by 778
Abstract
Urban green spaces play an essential role in maintaining the carbon cycle and mitigating climate change in urban ecosystems. In order to gain more carbon sinks from urban green ecosystems, it is essential to determine the carbon sequestration statuses and soil respiration rates [...] Read more.
Urban green spaces play an essential role in maintaining the carbon cycle and mitigating climate change in urban ecosystems. In order to gain more carbon sinks from urban green ecosystems, it is essential to determine the carbon sequestration statuses and soil respiration rates of dominant green spaces, especially park green spaces. However, in comparison to natural ecosystems, the dynamic characteristics of soil respiration in artificial park green spaces remain unclear. This study investigated the soil respiration rates for three forest communities (dominated by Prunus serrulata var. lannesiana, Cedrus deodara, Ginkgo biloba, respectively), a shrub community (dominated by Aucuba japonica var. variegata) and a lawn community (dominated by Poa pratensis) in the Qingdao Olympic Sculpture and Culture Park. We used the CRIAS-3 portable photosynthesis system in combination with the SRC-1 soil respiration chamber to measure the soil respiration rate from July 2022 to June 2023 and analyzed the dynamic variations in the soil respiration rate for these specific plant communities. Our results showed that the diurnal variation in soil respiration presented a unimodal curve for the five plant communities, and it peaked at midday or in the early afternoon. They also exhibited a significant seasonal difference in the soil respiration rate, which was characterized by higher rates in summer and lower rates in winter. The lawn community exhibited significantly higher soil respiration rates compared to the woody plant community. The mean annual soil respiration rate (RS) was, respectively, 2.88 ± 0.49 µmol·m−2·s−1, 1.94 ± 0.31 µmol·m−2·s−1, 1.43 ± 0.21 µmol·m−2·s−1, 1.24 ± 0.14 µmol·m−2·s−1 and 1.05 ± 0.11 µmol·m−2·s−1 for the lawn community, Ginkgo biloba community, Prunus serrulata var. lannesiana community, shrub community and Cedrus deodara community. The soil temperature at a 10 cm depth (T10) accounted for 67.39–86.76% of the variation in the soil respiration rate, while the soil volumetric water content at a 5 cm depth (W5) accounted for 9.29–44.01% of the variation for the five plant communities. The explained variance for both T10 and W5 ranged from 67.8% to 87.6% for the five plant communities. The Q10 values for the five different communities ranged from 1.97 to 2.75. Based on these findings, this paper concludes that the factors influencing the soil respiration process in urban green spaces are more complicated in comparison to natural ecosystems, and it is essential to comprehensively analyze these driving factors and key controlling factors of soil respiration across urban green spaces in future studies. Full article
Show Figures

Figure 1

19 pages, 6539 KiB  
Article
In Silico Analysis of Non-Conventional Oxidative Stress-Related Enzymes and Their Potential Relationship with Carcinogenesis
by Fábio Rodrigues Ferreira Seiva, Maria Luisa Gonçalves Agneis, Matheus Ribas de Almeida, Wesley Ladeira Caputo, Milena Cremer de Souza, Karoliny Alves das Neves, Érika Novais Oliveira, Luis Antônio Justulin and Luiz Gustavo de Almeida Chuffa
Antioxidants 2024, 13(11), 1279; https://doi.org/10.3390/antiox13111279 - 23 Oct 2024
Viewed by 513
Abstract
Carcinogenesis is driven by complex molecular events, often involving key enzymes that regulate oxidative stress (OS). While classical enzymes such as SOD, catalase, and GPx have been extensively studied, other, non-classical oxidative stress-related enzymes (OSRE) may play critical roles in cancer progression. We [...] Read more.
Carcinogenesis is driven by complex molecular events, often involving key enzymes that regulate oxidative stress (OS). While classical enzymes such as SOD, catalase, and GPx have been extensively studied, other, non-classical oxidative stress-related enzymes (OSRE) may play critical roles in cancer progression. We aimed to explore the role of OSRE involved in an OS scenario and to assess their potential contribution to carcinogenesis in some of the most prevalent cancer types. Through data mining and bioinformatic analysis of gene and protein expression and mutation data, we identified OSRE with altered expression and mutations across cancer types. Functional pathways involving EGFR, MT-ND, GST, PLCG2, PRDX6, SRC, and JAK2 were investigated. Our findings reveal that enzymes traditionally considered peripheral to OS play significant roles in tumor progression. Those OSRE may contribute to cancer initiation and progression, as well as be involved with cancer hallmarks, such as EMT and invasion, proliferation, and ROS production. In addition, enzymes like SRC and JAK2 were found to have dual roles in both promoting ROS generation and being modulated by OS. OSRE also interact with key oncogenic signaling pathways, including Wnt/β-catenin and JAK2/STAT3, linking them to cancer aggressiveness and therapeutic resistance. Future research should focus on translating these findings into clinical applications, including the development of novel inhibitors or drugs targeting these non-classical enzymes. Full article
Show Figures

Figure 1

12 pages, 2627 KiB  
Article
HEV in Blood Donors in Switzerland: The Route to Safe Blood Products
by Mauro Serricchio, Peter Gowland, Nadja Widmer, Martin Stolz and Christoph Niederhauser
Pathogens 2024, 13(10), 911; https://doi.org/10.3390/pathogens13100911 - 18 Oct 2024
Viewed by 624
Abstract
The hepatitis E virus (HEV) is an emerging infectious disease with zoonotic potential, causing acute hepatitis in humans. Infections in healthy individuals are often acute, self-limiting and asymptomatic, thus leading to the underdiagnosis of HEV infections. Asymptomatic HEV infections pose a problem for [...] Read more.
The hepatitis E virus (HEV) is an emerging infectious disease with zoonotic potential, causing acute hepatitis in humans. Infections in healthy individuals are often acute, self-limiting and asymptomatic, thus leading to the underdiagnosis of HEV infections. Asymptomatic HEV infections pose a problem for blood transfusion safety by increasing the risk for transfusion-transmitted HEV infections. Here, we describe the journey from determining the HEV seroprevalence among blood donors to the implementation of routine HEV RNA testing of all blood products in Switzerland in 2018 and summarise the HEV cases detected since. In total, 290 HEV-positive blood donations were detected by mini-pool nucleic acid testing (NAT) in Switzerland in the period of October 2018–December 2023, equal to an incidence of 20.7 per 100,000 donations. Thanks to the implemented scheme, no transfusion-transmitted infections occurred in this period. Furthermore, blood donation monitoring has proven to be an effective means of detecting HEV outbreaks in the general population. HEV cases in Swiss blood donors are caused by two major genotypes, the Swiss-endemic subtypes 3h3 and 3c. Interestingly, 11 HEV cases (5%) were of genotype 3ra, a variant found in wild and farmed rabbits. Our results indicate that mini-pool NAT is an efficient method to reduce the risk of transfusion-transmitted HEV infections. Full article
(This article belongs to the Special Issue Transfusion-Transmitted Infections)
Show Figures

Figure 1

17 pages, 2866 KiB  
Article
Metabolomic Profiling and Network Toxicology: Mechanistic Insights into Effect of Gossypol Acetate Isomers in Uterine Fibroids and Liver Injury
by Zishuo Liu, Hui Zhang and Jun Yao
Pharmaceuticals 2024, 17(10), 1363; https://doi.org/10.3390/ph17101363 - 12 Oct 2024
Viewed by 840
Abstract
Objective: Gossypol is a natural polyphenolic dialdehyde product that is primarily isolated from cottonseed. It is a racemized mixture of (−)-gossypol and (+)-gossypol that has anti-infection, antimalarial, antiviral, antifertility, antitumor and antioxidant activities, among others. Gossypol optical isomers have been reported to differ [...] Read more.
Objective: Gossypol is a natural polyphenolic dialdehyde product that is primarily isolated from cottonseed. It is a racemized mixture of (−)-gossypol and (+)-gossypol that has anti-infection, antimalarial, antiviral, antifertility, antitumor and antioxidant activities, among others. Gossypol optical isomers have been reported to differ in their biological activities and toxic effects. Method: In this study, we performed a metabolomics analysis of rat serum using 1H-NMR technology to investigate gossypol optical isomers’ mechanism of action on uterine fibroids. Network toxicology was used to explore the mechanism of the liver injury caused by gossypol optical isomers. SD rats were randomly divided into a normal control group; model control group; a drug-positive group (compound gossypol acetate tablets); high-, medium- and low-dose (−)-gossypol acetate groups; and high-, medium- and low-dose (+)-gossypol acetate groups. Result: Serum metabolomics showed that gossypol optical isomers’ pharmacodynamic effect on rats’ uterine fibroids affected their lactic acid, cholesterol, leucine, alanine, glutamate, glutamine, arginine, proline, glucose, etc. According to network toxicology, the targets of the liver injury caused by gossypol optical isomers included HSP90AA1, SRC, MAPK1, AKT1, EGFR, BCL2, CASP3, etc. KEGG enrichment showed that the toxicity mechanism may be related to pathways active in cancer, such as the PPAR signaling pathway, glycolysis/glycolysis gluconeogenesis, Th17 cell differentiation, and 91 other closely related signaling pathways. Conclusions: (−)-gossypol acetate and (+)-gossypol acetate play positive roles in the treatment and prevention of uterine fibroids. Gossypol optical isomers cause liver damage through multiple targets and pathways. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

23 pages, 2275 KiB  
Article
A Post-Disaster Fault Recovery Model for Distribution Networks Considering Road Damage and Dual Repair Teams
by Wei Liu, Qingshan Xu, Minglei Qin and Yongbiao Yang
Energies 2024, 17(20), 5020; https://doi.org/10.3390/en17205020 - 10 Oct 2024
Viewed by 418
Abstract
Extreme weather, such as rainstorms, often triggers faults in the distribution network, and power outages occur. Some serious faults cannot be repaired by one team alone and may require equipment replacement or engineering construction crews to work together. Rainstorms can also lead to [...] Read more.
Extreme weather, such as rainstorms, often triggers faults in the distribution network, and power outages occur. Some serious faults cannot be repaired by one team alone and may require equipment replacement or engineering construction crews to work together. Rainstorms can also lead to road damage or severe waterlogging, making some road sections impassable. Based on this, this paper first establishes a road network model to describe the dynamic changes in access performance and road damage. It provides the shortest time-consuming route suggestions for the traffic access of mobile class resources in the post-disaster recovery task of power distribution networks. Then, the model proposes a joint repair model with general repair crew (GRC) and senior repair crew (SRC) collaboration. Different types of faults match different functions of repair crews (RCs). Finally, the proposed scheme is simulated and analyzed in a road network and power grid extreme post-disaster recovery model, including a mobile energy storage system (MESS) and distributed power sources. The simulation finds that considering road damage and severe failures produces a significant difference in the progress and load loss of the recovery task. The model proposed in this paper is more suitable for the actual scenario requirements, and the simulation results and loss assessment obtained are more accurate and informative. Full article
Show Figures

Figure 1

17 pages, 2062 KiB  
Article
Assessing the Impact of Arabinoxylans on Dough Mixing Properties and Noodle-Making Performance through Xylanase Treatment
by Eunbin Ha and Meera Kweon
Foods 2024, 13(19), 3158; https://doi.org/10.3390/foods13193158 - 3 Oct 2024
Viewed by 604
Abstract
This study examined the impact of xylanases, focusing on the hydrolysis of water-extractable (WE-AX) and water-unextractable arabinoxylans (WU-AX) and on the quality and noodle-making performance of flours with varying gluten strengths. Flours categorized as strong (S), medium (M), and weak (W) were treated [...] Read more.
This study examined the impact of xylanases, focusing on the hydrolysis of water-extractable (WE-AX) and water-unextractable arabinoxylans (WU-AX) and on the quality and noodle-making performance of flours with varying gluten strengths. Flours categorized as strong (S), medium (M), and weak (W) were treated with two xylanases (WE and WU) at concentrations ranging from 0.01% to 0.2%. Parameters such as solvent retention capacity (SRC), SDS sedimentation volume, dough mixing properties, and noodle characteristics were measured. The SRC revealed that flour S had the highest water-holding capacity, gluten strength, and arabinoxylan content. Xylanase treatment reduced water SRC values in flour S and increased the SDS sedimentation volume, with a greater effect from xylanase WU, indicating the potential enhancement of gluten strength. The impact of xylanases was pronounced at higher enzyme concentrations, with differences in dough mixing properties, resistance, and extensibility of fresh noodles, producing softer and stretchable noodles. Cooked noodles made from flours treated with xylanase were softer and had decreased firmness and chewiness, especially those made from flours S and M. This study concludes that WE-AX and WU-AX influence noodle texture; therefore, controlling their degradation with xylanases can produce noodles with varied textures, depending on the gluten strength of the flour. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

Back to TopTop