Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = TPU film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 8243 KiB  
Article
Graphene-Doped Thermoplastic Polyurethane Nanocomposite Film-Based Triboelectric Nanogenerator for Self-Powered Sport Sensor
by Shujie Yang, Tatiana Larionova, Ilya Kobykhno, Victor Klinkov, Svetlana Shalnova and Oleg Tolochko
Nanomaterials 2024, 14(19), 1549; https://doi.org/10.3390/nano14191549 - 25 Sep 2024
Viewed by 637
Abstract
Triboelectric nanogenerators (TENGs), as novel electronic devices for converting mechanical energy into electrical energy, are better suited as signal-testing sensors or as components within larger wearable Internet of Things (IoT) or Artificial Intelligence (AI) systems, where they handle small-device power supply and signal [...] Read more.
Triboelectric nanogenerators (TENGs), as novel electronic devices for converting mechanical energy into electrical energy, are better suited as signal-testing sensors or as components within larger wearable Internet of Things (IoT) or Artificial Intelligence (AI) systems, where they handle small-device power supply and signal acquisition. Consequently, TENGs hold promising applications in self-powered sensor technology. As global energy supplies become increasingly tight, research into self-powered sensors has become critical. This study presents a self-powered sport sensor system utilizing a triboelectric nanogenerator (TENG), which incorporates a thermoplastic polyurethane (TPU) film doped with graphene and polytetrafluoroethylene (PTFE) as friction materials. The graphene-doped TPU nanocomposite film-based TENG (GT-TENG) demonstrates excellent working durability. Furthermore, the GT-TENG not only consistently powers an LED but also supplies energy to a sports timer and an electronic watch. It serves additionally as a self-powered sensor for monitoring human movement. The design of this self-powered motion sensor system effectively harnesses human kinetic energy, integrating it seamlessly with sport sensing capabilities. Full article
(This article belongs to the Special Issue Self-Powered Flexible Sensors Based on Triboelectric Nanogenerators)
Show Figures

Figure 1

14 pages, 4427 KiB  
Article
Constructing Heterostructured MWCNT-BN Hybrid Fillers in Electrospun TPU Films to Achieve Superior Thermal Conductivity and Electrical Insulation Properties
by Yang Zhang, Shichang Wang, Hong Wu and Shaoyun Guo
Polymers 2024, 16(15), 2139; https://doi.org/10.3390/polym16152139 - 27 Jul 2024
Viewed by 766
Abstract
The development of thermally conductive polymer/boron nitride (BN) composites with excellent electrically insulating properties is urgently demanded for electronic devices. However, the method of constructing an efficient thermally conductive network is still challenging. In the present work, heterostructured multi-walled carbon nanotube-boron nitride (MWCNT-BN) [...] Read more.
The development of thermally conductive polymer/boron nitride (BN) composites with excellent electrically insulating properties is urgently demanded for electronic devices. However, the method of constructing an efficient thermally conductive network is still challenging. In the present work, heterostructured multi-walled carbon nanotube-boron nitride (MWCNT-BN) hybrids were easily prepared using an electrostatic self-assembly method. The thermally conductive network of the MWCNT-BN in the thermoplastic polyurethane (TPU) matrix was achieved by the electrospinning and stack-molding process. As a result, the in-plane thermal conductivity of TPU composite films reached 7.28 W m−1 K−1, an increase of 959.4% compared to pure TPU films. In addition, the Foygel model showed that the MWCNT-BN hybrid filler could largely decrease thermal resistance compared to that of BN filler and further reduce phonon scattering. Finally, the excellent electrically insulating properties (about 1012 Ω·cm) and superior flexibility of composite film make it a promising material in electronic equipment. This work offers a new idea for designing BN-based hybrids, which have broad prospects in preparing thermally conductive composites for further practical thermal management fields. Full article
(This article belongs to the Special Issue Advance in Polymer Composites: Fire Protection and Thermal Management)
Show Figures

Figure 1

13 pages, 2758 KiB  
Article
Construction of Fire Safe Thermoplastic Polyurethane/Reduced Graphene Oxide Hierarchical Composites with Electromagnetic Interference Shielding
by Yan Liu, Ansheng Yao, Libi Fu, Shiwei Xie, Yijie Zhang, Peihui Xu, Yuezhan Feng and Yongqian Shi
Molecules 2024, 29(13), 3108; https://doi.org/10.3390/molecules29133108 - 29 Jun 2024
Viewed by 768
Abstract
Incorporating outstanding flame retardancy and electromagnetic interference shielding effectiveness (EMI SE) into polymers is a pressing requirement for practical utilization. In this study, we first employed the principles of microencapsulation and electrostatic interaction-driven self-assembly to encapsulate polyethyleneimine (PEI) molecules and Ti3C [...] Read more.
Incorporating outstanding flame retardancy and electromagnetic interference shielding effectiveness (EMI SE) into polymers is a pressing requirement for practical utilization. In this study, we first employed the principles of microencapsulation and electrostatic interaction-driven self-assembly to encapsulate polyethyleneimine (PEI) molecules and Ti3C2Tx nanosheets on the surface of ammonium polyphosphate (APP), forming a double-layer-encapsulated structure of ammonium polyphosphate (APP@PEI@Ti3C2Tx). Subsequently, flame-retardant thermoplastic polyurethane (TPU) composites were fabricated by melting the flame-retardant agent with TPU. Afterwards, by using air-assisted thermocompression technology, we combined a reduced graphene oxide (rGO) film with flame-retardant TPU composites to fabricate hierarchical TPU/APP@PEI@Ti3C2Tx/rGO composites. We systematically studied the combustion behavior, flame retardancy, and smoke-suppression performance of these composite materials, as well as the flame-retardant mechanism of the expansion system. The results indicated a significant improvement in the interface interaction between APP@PEI@Ti3C2Tx and the TPU matrix. Compared to pure TPU, the TPU/10APP@PEI@1TC composite exhibited reductions of 84.1%, 43.2%, 62.4%, and 85.2% in peak heat release rate, total heat release, total smoke release, and total carbon dioxide yield, respectively. The averaged EMI SE of hierarchical TPU/5APP@PEI@1TC/rGO also reached 15.53 dB in the X-band. Full article
Show Figures

Figure 1

19 pages, 11350 KiB  
Article
Preparation of CNT/CNF/PDMS/TPU Nanofiber-Based Conductive Films Based on Centrifugal Spinning Method for Strain Sensors
by Shunqi Mei, Bin Xu, Jitao Wan and Jia Chen
Sensors 2024, 24(12), 4026; https://doi.org/10.3390/s24124026 - 20 Jun 2024
Cited by 3 | Viewed by 986
Abstract
Flexible conductive films are a key component of strain sensors, and their performance directly affects the overall quality of the sensor. However, existing flexible conductive films struggle to maintain high conductivity while simultaneously ensuring excellent flexibility, hydrophobicity, and corrosion resistance, thereby limiting their [...] Read more.
Flexible conductive films are a key component of strain sensors, and their performance directly affects the overall quality of the sensor. However, existing flexible conductive films struggle to maintain high conductivity while simultaneously ensuring excellent flexibility, hydrophobicity, and corrosion resistance, thereby limiting their use in harsh environments. In this paper, a novel method is proposed to fabricate flexible conductive films via centrifugal spinning to generate thermoplastic polyurethane (TPU) nanofiber substrates by employing carbon nanotubes (CNTs) and carbon nanofibers (CNFs) as conductive fillers. These fillers are anchored to the nanofibers through ultrasonic dispersion and impregnation techniques and subsequently modified with polydimethylsiloxane (PDMS). This study focuses on the effect of different ratios of CNTs to CNFs on the film properties. Research demonstrated that at a 1:1 ratio of CNTs to CNFs, with TPU at a 20% concentration and PDMS solution at 2 wt%, the conductive films crafted from these blended fillers exhibited outstanding performance, characterized by electrical conductivity (31.4 S/m), elongation at break (217.5%), and tensile cycling stability (800 cycles at 20% strain). Furthermore, the nanofiber-based conductive films were tested by attaching them to various human body parts. The tests demonstrated that these films effectively respond to motion changes at the wrist, elbow joints, and chest cavity, underscoring their potential as core components in strain sensors. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Figure 1

16 pages, 7443 KiB  
Article
Anti-Oxidized Self-Assembly of Multilayered F-Mene/MXene/TPU Composite with Improved Environmental Stability and Pressure Sensing Performances
by Zhong Zheng, Qian Yang, Shuyi Song, Yifan Pan, Huan Xue and Jing Li
Polymers 2024, 16(10), 1337; https://doi.org/10.3390/polym16101337 - 9 May 2024
Cited by 2 | Viewed by 1403
Abstract
MXenes, as emerging 2D sensing materials for next-generation electronics, have attracted tremendous attention owing to their extraordinary electrical conductivity, mechanical strength, and flexibility. However, challenges remain due to the weak stability in the oxygen environment and nonnegligible aggregation of layered MXenes, which severely [...] Read more.
MXenes, as emerging 2D sensing materials for next-generation electronics, have attracted tremendous attention owing to their extraordinary electrical conductivity, mechanical strength, and flexibility. However, challenges remain due to the weak stability in the oxygen environment and nonnegligible aggregation of layered MXenes, which severely affect the durability and sensing performances of the corresponding MXene-based pressure sensors, respectively. Here, in this work, we propose an easy-to-fabricate self-assembly strategy to prepare multilayered MXene composite films, where the first layer MXene is hydrogen-bond self-assembled on the electrospun thermoplastic urethane (TPU) fibers surface and the anti-oxidized functionalized-MXene (f-MXene) is subsequently adhered on the MXene layer by spontaneous electrostatic attraction. Remarkably, the f-MXene surface is functionalized with silanization reagents to form a hydrophobic protective layer, thus preventing the oxidation of the MXene-based pressure sensor during service. Simultaneously, the electrostatic self-assembled MXene and f-MXene successfully avoid the invalid stacking of MXene, leading to an improved pressure sensitivity. Moreover, the adopted electrospinning method can facilitate cyclic self-assembly and the formation of a hierarchical micro-nano porous structure of the multilayered f-MXene/MXene/TPU (M-fM2T) composite. The gradient pores can generate changes in the conductive pathways within a wide loading range, broadening the pressure detection range of the as-proposed multilayered f-MXene/MXene/TPU piezoresistive sensor (M-fM2TPS). Experimentally, these novel features endow our M-fM2TPS with an outstanding maximum sensitivity of 40.31 kPa−1 and an extensive sensing range of up to 120 kPa. Additionally, our M-fM2TPS exhibits excellent anti-oxidized properties for environmental stability and mechanical reliability for long-term use, which shows only ~0.8% fractional resistance changes after being placed in a natural environment for over 30 days and provides a reproducible loading–unloading pressure measurement for more than 1000 cycles. As a proof of concept, the M-fM2TPS is deployed to monitor human movements and radial artery pulse. Our anti-oxidized self-assembly strategy of multilayered MXene is expected to guide the future investigation of MXene-based advanced sensors with commercial values. Full article
Show Figures

Graphical abstract

15 pages, 3572 KiB  
Article
Surface Properties of a Biocompatible Thermoplastic Polyurethane and Its Anti-Adhesive Effect against E. coli and S. aureus
by Elisa Restivo, Emanuela Peluso, Nora Bloise, Giovanni Lo Bello, Giovanna Bruni, Marialaura Giannaccari, Roberto Raiteri, Lorenzo Fassina and Livia Visai
J. Funct. Biomater. 2024, 15(1), 24; https://doi.org/10.3390/jfb15010024 - 15 Jan 2024
Cited by 1 | Viewed by 2945
Abstract
Thermoplastic polyurethane (TPU) is a polymer used in a variety of fields, including medical applications. Here, we aimed to verify if the brush and bar coater deposition techniques did not alter TPU properties. The topography of the TPU-modified surfaces was studied via AFM [...] Read more.
Thermoplastic polyurethane (TPU) is a polymer used in a variety of fields, including medical applications. Here, we aimed to verify if the brush and bar coater deposition techniques did not alter TPU properties. The topography of the TPU-modified surfaces was studied via AFM demonstrating no significant differences between brush and bar coater-modified surfaces, compared to the un-modified TPU (TPU Film). The effect of the surfaces on planktonic bacteria, evaluated by MTT assay, demonstrated their anti-adhesive effect on E. coli, while the bar coater significantly reduced staphylococcal planktonic adhesion and both bacterial biofilms compared to other samples. Interestingly, Pearson’s R coefficient analysis showed that Ra roughness and Haralick’s correlation feature were trend predictors for planktonic bacterial cells adhesion. The surface adhesion property was evaluated against NIH-3T3 murine fibroblasts by MTT and against human fibrinogen and human platelet-rich plasma by ELISA and LDH assay, respectively. An indirect cytotoxicity experiment against NIH-3T3 confirmed the biocompatibility of the TPUs. Overall, the results indicated that the deposition techniques did not alter the antibacterial and anti-adhesive surface properties of modified TPU compared to un-modified TPU, nor its bio- and hemocompatibility, confirming the suitability of TPU brush and bar coater films in the biomedical and pharmaceutical fields. Full article
Show Figures

Graphical abstract

19 pages, 12908 KiB  
Article
A 3D-Printed Piezoelectric Microdevice for Human Energy Harvesting for Wearable Biosensors
by Ihor Sobianin, Sotiria D. Psoma and Antonios Tourlidakis
Micromachines 2024, 15(1), 118; https://doi.org/10.3390/mi15010118 - 10 Jan 2024
Cited by 3 | Viewed by 2048
Abstract
The human body is a source of multiple types of energy, such as mechanical, thermal and biochemical, which can be scavenged through appropriate technological means. Mechanical vibrations originating from contraction and expansion of the radial artery represent a reliable source of displacement to [...] Read more.
The human body is a source of multiple types of energy, such as mechanical, thermal and biochemical, which can be scavenged through appropriate technological means. Mechanical vibrations originating from contraction and expansion of the radial artery represent a reliable source of displacement to be picked up and exploited by a harvester. The continuous monitoring of physiological biomarkers is an essential part of the timely and accurate diagnosis of a disease with subsequent medical treatment, and wearable biosensors are increasingly utilized for biomedical data acquisition of important biomarkers. However, they rely on batteries and their replacement introduces a discontinuity in measured signals, which could be critical for the patients and also causes discomfort. In the present work, the research into a novel 3D-printed wearable energy harvesting platform for scavenging energy from arterial pulsations via a piezoelectric material is described. An elastic thermoplastic polyurethane (TPU) film, which forms an air chamber between the skin and the piezoelectric disc electrode, was introduced to provide better adsorption to the skin, prevent damage to the piezoelectric disc and electrically isolate components in the platform from the human body. Computational fluid dynamics in the framework of COMSOL Multiphysics 6.1 software was employed to perform a series of coupled time-varying simulations of the interaction among a number of associated physical phenomena. The mathematical model of the harvester was investigated computationally, and quantification of the output energy and power parameters was used for comparisons. A prototype wearable platform enclosure was designed and manufactured using fused filament fabrication (FFF). The influence of the piezoelectric disc material and its diameter on the electrical output were studied and various geometrical parameters of the enclosure and the TPU film were optimized based on theoretical and empirical data. Physiological data, such as interdependency between the harvester skin fit and voltage output, were obtained. Full article
Show Figures

Figure 1

9 pages, 34587 KiB  
Article
Development and Performance Evaluation of Stretchable Silver Pastes for Screen Printing on Thermoplastic Polyurethane Films
by Hyun J. Nam, Yu H. Hwangbo, Su Y. Nam and Hyun M. Nam
Coatings 2023, 13(9), 1499; https://doi.org/10.3390/coatings13091499 - 24 Aug 2023
Cited by 2 | Viewed by 1284
Abstract
Efficient, stretchable wiring electrodes are achieved when the resistance change during expansion and contraction is minimal. Herein, we prepared silver pastes specifically designed for screen printing on thermoplastic polyurethane films; they exhibit minimal resistance changes. The pastes were prepared using silver particles with [...] Read more.
Efficient, stretchable wiring electrodes are achieved when the resistance change during expansion and contraction is minimal. Herein, we prepared silver pastes specifically designed for screen printing on thermoplastic polyurethane films; they exhibit minimal resistance changes. The pastes were prepared using silver particles with sizes of 2 and 7 μm as well as a mixture of 2 and 7 μm silver particles (50:50 wt%). These pastes were analyzed using methods such as rheological measurements, thermogravimetric analysis, printability tests, tensile and torsion tests, and light-emitting diode (LED) tests. The most promising results were obtained when exclusively using 2 μm silver flake particles. The pastes demonstrated a viscosity of 24,880 cps, a thixotropic index value of 2.82, excellent printability, and consistent resistance measurements even after 100% stretch, thus indicating exceptional tensile properties. Moreover, the pastes exhibited substantial stability, with no change in brightness after the attachment of seven LEDs at 20% tension. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

14 pages, 3628 KiB  
Article
Flexible Sensors Array Based on Frosted Microstructured Ecoflex Film and TPU Nanofibers for Epidermal Pulse Wave Monitoring
by Xue Wang, Zhiping Feng, Gaoqiang Zhang, Luna Wang, Liang Chen, Jin Yang and Zhonglin Wang
Sensors 2023, 23(7), 3717; https://doi.org/10.3390/s23073717 - 3 Apr 2023
Cited by 5 | Viewed by 3126
Abstract
Recent advances in flexible pressure sensors have fueled increasing attention as promising technologies with which to realize human epidermal pulse wave monitoring for the early diagnosis and prevention of cardiovascular diseases. However, strict requirements of a single sensor on the arterial position make [...] Read more.
Recent advances in flexible pressure sensors have fueled increasing attention as promising technologies with which to realize human epidermal pulse wave monitoring for the early diagnosis and prevention of cardiovascular diseases. However, strict requirements of a single sensor on the arterial position make it difficult to meet the practical application scenarios. Herein, based on three single-electrode sensors with small area, a 3 × 1 flexible pressure sensor array was developed to enable measurement of epidermal pulse waves at different local positions of radial artery. The designed single sensor holds an area of 6 × 6 mm2, which mainly consists of frosted microstructured Ecoflex film and thermoplastic polyurethane (TPU) nanofibers. The Ecoflex film was formed by spinning Ecoflex solution onto a sandpaper surface. Micropatterned TPU nanofibers were prepared on a fluorinated ethylene propylene (FEP) film surface using the electrospinning method. The combination of frosted microstructure and nanofibers provides an increase in the contact separation of the tribopair, which is of great benefit for improving sensor performance. Due to this structure design, the single small-area sensor was characterized by pressure sensitivity of 0.14 V/kPa, a response time of 22 ms, a wide frequency band ranging from 1 to 23 Hz, and stability up to 7000 cycles. Given this output performance, the fabricated sensor can detect subtle physiological signals (e.g., respiration, ballistocardiogram, and heartbeat) and body movement. More importantly, the sensor can be utilized in capturing human epidermal pulse waves with rich details, and the consistency of each cycle in the same measurement is as high as 0.9987. The 3 × 1 flexible sensor array is employed to acquire pulse waves at different local positions of the radial artery. In addition, the time domain parameters including pulse wave transmission time (PTT) and pulse wave velocity (PWV) can be obtained successfully, which holds promising potential in pulse-based cardiovascular system status monitoring. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Sensors)
Show Figures

Figure 1

15 pages, 9351 KiB  
Article
A Comparative Study on the Effects of Spray Coating Methods and Substrates on Polyurethane/Carbon Nanofiber Sensors
by Mounika Chowdary Karlapudi, Mostafa Vahdani, Sheyda Mirjalali Bandari, Shuhua Peng and Shuying Wu
Sensors 2023, 23(6), 3245; https://doi.org/10.3390/s23063245 - 19 Mar 2023
Cited by 9 | Viewed by 2910
Abstract
Thermoplastic polyurethane (TPU) has been widely used as the elastic polymer substrate to be combined with conductive nanomaterials to develop stretchable strain sensors for a variety of applications such as health monitoring, smart robotics, and e-skins. However, little research has been reported on [...] Read more.
Thermoplastic polyurethane (TPU) has been widely used as the elastic polymer substrate to be combined with conductive nanomaterials to develop stretchable strain sensors for a variety of applications such as health monitoring, smart robotics, and e-skins. However, little research has been reported on the effects of deposition methods and the form of TPU on their sensing performance. This study intends to design and fabricate a durable, stretchable sensor based on composites of thermoplastic polyurethane and carbon nanofibers (CNFs) by systematically investigating the influences of TPU substrates (i.e., either electrospun nanofibers or solid thin film) and spray coating methods (i.e., either air-spray or electro-spray). It is found that the sensors with electro-sprayed CNFs conductive sensing layers generally show a higher sensitivity, while the influence of the substrate is not significant and there is no clear and consistent trend. The sensor composed of a TPU solid thin film with electro-sprayed CNFs exhibits an optimal performance with a high sensitivity (gauge factor ~28.2) in a strain range of 0–80%, a high stretchability of up to 184%, and excellent durability. The potential application of these sensors in detecting body motions has been demonstrated, including finger and wrist-joint movements, by using a wooden hand. Full article
(This article belongs to the Special Issue Use of Smart Wearable Sensors and AI Methods in Providing P4 Medicine)
Show Figures

Figure 1

15 pages, 51753 KiB  
Article
Fabrication of Silane-Grafted Cellulose Nanocrystals and Their Effects on the Structural, Thermal, Mechanical, and Hysteretic Behavior of Thermoplastic Polyurethane
by Xuenan Sun, Xinze Yang, Jiajing Zhang, Bin Shang, Pei Lyu, Chunhua Zhang, Xin Liu and Liangjun Xia
Int. J. Mol. Sci. 2023, 24(5), 5036; https://doi.org/10.3390/ijms24055036 - 6 Mar 2023
Cited by 7 | Viewed by 1956
Abstract
Reinforcement of polymer nanocomposites can be achieved by the selection of the appropriate fabrication method, surface modification, and orientation of the filler. Herein, we present a nonsolvent-induced phase separation method with ternary solvents to prepare thermoplastic polyurethane (TPU) composite films with excellent mechanical [...] Read more.
Reinforcement of polymer nanocomposites can be achieved by the selection of the appropriate fabrication method, surface modification, and orientation of the filler. Herein, we present a nonsolvent-induced phase separation method with ternary solvents to prepare thermoplastic polyurethane (TPU) composite films with excellent mechanical properties using 3-Glycidyloxypropyltrimethoxysilane-modified cellulose nanocrystals (GLCNCs). ATR-IR and SEM analyses of the GLCNCs confirmed that GL was successfully coated on the surface of the nanocrystals. The incorporation of GLCNCs in TPU resulted in the enhancement of the tensile strain and toughness of pure TPU owing to the enhanced interfacial interactions between them. The GLCNC–TPU composite film had tensile strain and toughness values of 1740.42% and 90.01 MJ/m3, respectively. Additionally, GLCNC–TPU exhibited a good elastic recovery rate. CNCs were readily aligned along the fiber axis after the spinning and drawing of the composites into fibers, which further improved the mechanical properties of the composites. The stress, strain, and toughness of the GLCNC–TPU composite fiber increased by 72.60%, 10.25%, and 103.61%, respectively, compared to those of the pure TPU film. This study demonstrates a facile and effective strategy for fabricating mechanically enhanced TPU composites. Full article
(This article belongs to the Special Issue Recent Advances in Cellulose Chemistry)
Show Figures

Figure 1

13 pages, 3544 KiB  
Article
Optical and Structural Properties of Composites Based on Poly(urethane) and TiO2 Nanowires
by Malvina Stroe, Teodora Burlanescu, Mirela Paraschiv, Adam Lőrinczi, Elena Matei, Romeo Ciobanu and Mihaela Baibarac
Materials 2023, 16(4), 1742; https://doi.org/10.3390/ma16041742 - 20 Feb 2023
Cited by 4 | Viewed by 1886
Abstract
This article’s objective is the synthesis of new composites based on thermoplastic polyurethane (TPU) and TiO2 nanowires (NWs) as free-standing films, highlighting their structural and optical properties. The free-standing TPU–TiO2 NW films were prepared by a wet chemical method accompanied by [...] Read more.
This article’s objective is the synthesis of new composites based on thermoplastic polyurethane (TPU) and TiO2 nanowires (NWs) as free-standing films, highlighting their structural and optical properties. The free-standing TPU–TiO2 NW films were prepared by a wet chemical method accompanied by a thermal treatment at 100 °C for 1 h, followed by air-drying for 2 h. X-ray diffraction (XRD) studies indicated that the starting commercial TiO2 NW sample contains TiO2 tetragonal anatase (A), cubic Ti0.91O (C), and orthorhombic Ti2O3 (OR), as well as monoclinic H2Ti3O7 (M). In the presence of TPU, an increase in the ratio between the intensities of the diffraction peaks at 43.4° and 48° belonging to the C and A phases of titanium dioxide, respectively, is reported. The increase in the intensity of the peak at 43.4° is explained to be a consequence of the interaction of TiO2 NWs with PTU, which occurs when the formation of suboxides takes place. The variation in the ratio of the absorbance of the IR bands peaked at 765–771 cm−1 and 3304–3315 cm−1 from 4.68 to 4.21 and 3.83 for TPU and the TPU–TiO2 NW composites, respectively, with TiO2 NW concentration equal to 2 wt.% and 17 wt.%, indicated a decrease in the higher-order aggregates of TPU with a simultaneous increase in the hydrogen bonds established between the amide groups of TPU and the oxygen atoms of TiO2 NWs. The decrease in the ratio of the intensity of the Raman lines peaked at 658 cm−1 and 635 cm−1, which were assigned to the vibrational modes Eg in TiO2 A and Eg in H2Ti3O7 (ITiO2-A/IH2Ti3O7), respectively, from 3.45 in TiO2 NWs to 0.94–0.96 in the TPU–TiO2 NW composites, which indicates that the adsorption of TPU onto TiO2 NWs involves an exchange reaction of TPU in the presence of TiO2 NWs, followed by the formation of new hydrogen bonds between the -NH- of the amide group and the oxygen atoms of TixO2x-mn, Ti2O3, and Ti0.91O. Photoluminescence (PL) studies highlighted a gradual decrease in the intensity of the TPU emission band, which is situated in the spectral range 380–650 nm, in the presence of TiO2 NW. After increasing the TiO2 NW concentration in the TPU–TiO2 NW composite mass from 0 wt.% to 2 wt.% and 17 wt.%, respectively, a change in the binding angle of the TPU onto the TiO2 NW surface from 12.6° to 32° and 45.9°, respectively, took place. Full article
Show Figures

Figure 1

14 pages, 4111 KiB  
Article
All-Inkjet-Printed Ti3C2 MXene Capacitor for Textile Energy Storage
by Eugenio Gibertini, Federico Lissandrello, Luca Bertoli, Prisca Viviani and Luca Magagnin
Coatings 2023, 13(2), 230; https://doi.org/10.3390/coatings13020230 - 18 Jan 2023
Cited by 5 | Viewed by 2385
Abstract
The emerging wearable electronics integrated into textiles are posing new challenges both in materials and micro-fabrication strategies to produce textile-based energy storage and power source micro-devices. In this regard, inkjet printing (IJP) offers unique features for rapid prototyping for various thin-film (2D) devices. [...] Read more.
The emerging wearable electronics integrated into textiles are posing new challenges both in materials and micro-fabrication strategies to produce textile-based energy storage and power source micro-devices. In this regard, inkjet printing (IJP) offers unique features for rapid prototyping for various thin-film (2D) devices. However, all-inkjet-printed capacitors were very rarely reported in the literature. In this work, we formulated a stable Ti3C2 MXene aqueous ink for inkjet printing current-collector-free electrodes on TPU-coated cotton fabric, together with an innovative inkjet-printable and UV-curable solvent-based electrolyte precursor. The electrolyte was inkjet-printed on the electrode’s surface, and after UV polymerization, a thin and soft gel polymer electrolyte (GPE) was obtained, resulting in an all-inkjet-printed symmetrical capacitor (a-IJPSC). The highest ionic conductivity (0.60 mS/cm) was achieved with 10 wt.% of acrylamide content, and the capacitance retention was investigated both at rest (flat) and under bending conditions. The flat a-IJPSC textile-based device showed the areal capacitance of 0.89 mF/cm2 averaged on 2k cycles. Finally, an array of a-IJPSCs were demonstrated to be feasible as both a textile-based energy storage and micro-power source unit able to power a blue LED for several seconds. Full article
Show Figures

Figure 1

9 pages, 1513 KiB  
Article
Impact of Plastic-Wrap Properties and Cleaning Intervals on the Disinfection of Elevator Buttons
by Shin-Huei Kuo, Tzu-Yin Liu, Tun-Chieh Chen, Chih-Jen Yang and Yen-Hsu Chen
Int. J. Environ. Res. Public Health 2023, 20(2), 1649; https://doi.org/10.3390/ijerph20021649 - 16 Jan 2023
Viewed by 1903
Abstract
Fomite transmission is a possible route by which different pathogens spread within facilities. In hospital settings, elevator buttons are widely observed to be covered with various types of plastic wraps; however, limited information is available concerning the impact of different plastic materials on [...] Read more.
Fomite transmission is a possible route by which different pathogens spread within facilities. In hospital settings, elevator buttons are widely observed to be covered with various types of plastic wraps; however, limited information is available concerning the impact of different plastic materials on cleaning. Our study aimed to identify which plastic material is suitable for the coverage of elevator buttons and the optimal intervals for their cleaning. We tested six plastic covers, including polyethylene (PE), polymethylpentene (PMP), polyvinyl chloride (PVD), and polyvinylidene chloride (PVDC) plastic wraps; a thermoplastic polyurethane (TPU) keyboard cover; and a polyethylene terephthalate-ethylene vinyl acetate (PET-EVA) laminating film, which are plastic films. The bioburden on the elevator buttons at different time intervals was measured using an adenosine triphosphate (ATP) bioluminescence assay. Our results show that wraps made of PVDC had superior durability compared with those of PMP, PVC, and PVDC, in addition to the lowest detectable ATP levels among the six tested materials. Regarding different button locations, the highest ATP values were found in door-close buttons followed by door-open, and first-floor buttons after one- and three-hour intervals (p = 0.024 and p < 0.001, respectively). After routine disinfection, the ATP levels of buttons rapidly increased after touching and became more prominent after three hours (p < 0.05). Our results indicate that PVDC plastic wraps have adequate durability and the lowest residual bioburden when applied as covers for elevator buttons. Door-close and -open buttons were the most frequently touched sites, requiring more accurate and precise disinfection; therefore, cleaning intervals of no longer than three hours may be warranted. Full article
Show Figures

Figure 1

12 pages, 4457 KiB  
Article
Thermoplastic Laminated Composites Applied to Impact Resistant Protective Gear: Structural Design and Development
by Yan Yu Lin, Mei-Chen Lin, Ching-Wen Lou, Yueh-Sheng Chen and Jia-Horng Lin
Polymers 2023, 15(2), 292; https://doi.org/10.3390/polym15020292 - 6 Jan 2023
Cited by 5 | Viewed by 2511
Abstract
Laminated composites have been commonly applied to all fields. When made into laminated composites, Kevlar woven fabrics are able to provide the required functions. In this study, two types of TPU are incorporated to improve the intralayer features of Kevlar/TPU laminated composites. Hence, [...] Read more.
Laminated composites have been commonly applied to all fields. When made into laminated composites, Kevlar woven fabrics are able to provide the required functions. In this study, two types of TPU are incorporated to improve the intralayer features of Kevlar/TPU laminated composites. Hence, the Kevlar/TPU laminated composites consist of firmly bonded laminates while retaining flexibility of the fabrics. Being the interlayer of the laminated composites, the TPU layer provides adhesion while strengthening the tensile property, dynamic puncture resistance, and buffer strength of Kevlar/TPU laminated composites. The test results indicate that with a blending ratio of two types of TRU being 85/15 wt%, the Kevlar/TPU laminated composites exhibit a tensile strength of 18.08 MPa. When the stacking thickness is 1 mm, the tensile strength is improved to 357.73 N with the buffering strength reaching 4224.40 N. Notably, with a thickness being 1.2 mm, the laminated composites demonstrate a dynamic resistance being 672.15 N. In the meanwhile, functional Kevlar fabrics are allowed to keep the fiber morphology owing to the protection of TPU composite films. Considering the composition of protective gear, Kevlar/TPU laminated composites possess a powerful potential and are worthwhile exploring. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Graphical abstract

Back to TopTop